当前位置:文档之家› 数学建模案例多商品配送问题

数学建模案例多商品配送问题

数学建模案例多商品配送问题
数学建模案例多商品配送问题

数学建模经典案例:最优截断切割问题复习进程

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时, 只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

城市物流配送方案优化模型_数学建模

天津大学数学建模选拔赛 题目城市物流配送方案优化设计 摘要 所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程。本文就如何设计该城市的配送方案和增设新的配送网点并划分配送范围展开讨论。 第一问中,首先,在设计合理的配送方案时,我们要知道评价一个配送方案的优劣需考虑哪些指标。根据层次分析法所得各指标的权重及各因素之间关系可知:合理的配送方案需要优化货车的调度以及行驶路线。 然后,根据该城市的流配送网络路网信息以及客户位置及需求数据信息,用EXCEL 进行数据统计并用matlab绘制物流信息图,在图中可以清晰地看出客户位置密集和稀疏的区域。之后,我们运用雷达图分割法将城市分为20个统筹区(以及100个二级子区域)。 接着,我们针对一个二级子区域分析货车行驶的最佳路线。利用聚类分析和精确重心法在二级子区域N1中设置了7个卸货点,该目标区域内的用户都将在该区域的卸货点取货。我们利用图论中的Floyd算法和哈密尔顿圈模型求解往返最短路线问题,得知最短路线为1246753 配送中心配送中心,最短路程为 →→→→→→→→ 84.4332KM,最短运货用时为2.11小时。 最后,根据用户位置和需货量,计算出货车数量和车次,并给出了其中一种合理的针对整个城市的货车调度配送方案。 第二问中,我们建立了多韦伯模型,通过非线性0-1规划,确定了城市增加的5个

一.问题重述 配送是指在经济合理区域范围内,根据客户要求,对物品进行拣选、加工、包装、分割、组配等作业,并按时送达指定地点的物流活动,即按用户定货要求,在配送中心或其它物流结点进行货物配备,并以最合理方式送交用户。 配送是从用户利益出发、按用户要求进行的一种活动,因此,在观念上必须明确“用户第一”,把用户利益作为设计配送方案时首先要考虑的问题。城市的配送系统不但要考虑企业自身和用户的利益,也应从公众利益出发,尽量减少交通拥挤和废物排放。这无疑更增加了配送系统管理的难度,有效解决该问题对于改善城市出行环境和提高企业服务水平具有重要意义。 基于以上背景,为某企业设计其配送方案,建立数学模型分析如下问题: (1)假设该公司在整个城区仅有一个配送中心(107.972554615162,26.6060305362822)。附件1中给出了企业顾客位置和需求数据。附件2为配送网络路网信息。由于顾客需求为平均量,为克服需求高峰车辆不够的情况,实际中通常对每辆车的装载量进行限制,实际载货量为规定满载量的70%。司机工作时间为每天8小时。不考虑车辆数量限制,请为企业设计合理的配送方案。(每件产品规格:长:27.5CM,宽:9CM,厚:5CM)。配送用车请参考实际货车规格自己选定。 (2)适当增加配送中心数量,能降低配送成本,假设计划增设5个配送中心,请为各配送网点划分配送范围。 二、问题背景和问题分析 2.1问题背景 所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点(仓库、商店、货物站、物流配送中心等)进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程,城市物流配送是指在城市范围内进行的物流配送业务活动,城市物流配送系统的服务对象归类为:政府、工业、商业、农业、大众客户。城市物流配送已随客户需求变化从“少品种、大批量、少批次、长周期”向“多品种、小批量、多批次、短周期”转变。随着中国城市化进程的进一步加快,不管是从城市经济发展,还是从城市空间结构、城市交通运输布局及城市基础设施建设来考虑,每个城市都面临一个对原有的物流配送系统进行改造、建立新的物流配送系统的问题,这就是城市物流配送系统优化提出的原因。[1] 2.2问题分析 对于第一问,为了得到最优的配送方案,我们着重从货车的调度和货车的行走路线进行设计。首先我们需要对城市进行分区,并设计货车在所有区域内进行统筹调度的方法。然后,我们针对某一个小的区域,运用图论的知识,寻找货车运送完全部货物的最短路线,实现用户、社会和公司总体利益的最大化。 对于第二问,我们需要找到五个新增配送中心的位置并且划分各个配送网点的配送范围。这是一个典型的多韦伯问题。期间我们不但要注意使得配送中心到用户的距离之和最短。同时也要满足配送中心尽量偏重用户需求量大的地区的要求。

连锁店和生产基地增设以及货物配送问题数学建模

第一题: 1、问题重述 华商公司在全省县级及以上城镇设立销售连锁店,主要销售鲜猪肉。已知全省县级及以上城镇地理位置及道路连接。目前公司现有2个生产基地(分别设在120号和63号城镇)、23家销售连锁店,连锁店的日销售量见附录1。若运输成本为元/吨公里,请你为公司设计生产与配送方案,使运输成本最低。 2、问题分析 本题首先使用matlab软件将全省交通网络数据转换成矩阵,即若两点之间有路线,则采用矩阵的形式标注出来,若没有直接路线,则用相对很大的数如M表示,这对其求最短路没有影响。然后采用Floyd算法算出任意两个城镇之间的距离,得出新的最短路矩阵,然后从中挑选出每个连锁店与生产基地所在地城镇63和城镇120之间距离的最小值。由于每个连锁店的日销量都是给定的,并且生产基地必须满足所有连锁店的需求,因此,本题所求的运输成本最低可以转化为生产基地到连锁店的总路线最短。 3、模型假设 (1)位于同一个城镇里的生产基地和连锁店之间的距离视为0,不计入运输成本。 (2)由于要求运输成本最小,所以假定除了距离外,没有其他因素影响运输成本 (3)在求出的最短路中,皆是可行的路线。 4、符号说明 :从到的只以集合中的节点为中间节点的最短路径的长度

5、模型建立 由于要求的问题可转化为最短路问题,而解决任意两点之间的最短路问题,一般而言最为经典的模型便是Floyd算法,所以此模型即为Floyd算法的模型。即状态转移方程如下: 1.若最短路径经过点k,则; 2.若最短路径不经过点k,则。 因此,。 在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。 6、模型求解 全省交通网络图如下: 先把全省交通网络数据转换成矩阵,其matlab程序见附件程序一(注:如问题分析所说,若两点之间没有直接路线,则用大M表示,分析此题,可用1000代替大M,对程序运行结果无影响),然后采用Floyd算法,求出一个154*154的矩阵,D (i,j)表示i,j之间的最短距离。Floyd算法程序见附件程序二。我们算出任意两个城镇之间的距离,然后分别比较城镇63和城镇120与23个连锁店的距离,比如:如果城镇63与连锁店i的距离小于城镇120与连锁店i的距离,则连锁店i的猪肉由生产基地在城镇63的生产基地供应。最终所得方案如下: 表1 运输成本最小方案 生产基地连锁店所在城镇最短距离(公里)日销售量(kg)运费(元) 城镇63 2 106 38223

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

数学建模_送货线路设计问题

送货路线设计问题 1、问题重述 现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且她们往往一人送多个地方,请设计方案使其耗时最少。 现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线。各件货物的相关信息见表1,50个位置点的坐标见表2。 假定送货员最大载重50公斤,所带货物最大体积1立方米。送货员的平均速度为24公里/小时。假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算。 现在送货员要将100件货物送到50个地点。请完成以下问题。 1、若将1~30号货物送到指定地点并返回。设计最快完成路线与方式。给出结果。要求标出送货线路。 2、假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。要求标出送货线路。 3、若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。设计最快完成路线与方式。要求标出送货线路,给出送完所有快件的时间。由于受重量与体积限制,送货员可中途返回取货。可不考虑中午休息时间。 2、问题分析 送货路线问题可以理解为:已知起点与终点的图的遍历问题的合理优化的路线设计。 图的遍历问题的指标:路程与到达的时间,货物的质量与体积,以及最大可以负载的质量与体积。在路线的安排问题中,考虑所走的路程的最短即为最合理的优化指标。 对于问题二要考虑到所到的点的时间的要求就是否满足题意即采用多次分区域的假设模型从而找出最优的解 对于问题三则要考虑到体积与质量的双重影响,每次到达后找到达到最大的体积与质量的点然后返回,再依次分析各个步骤中可能存在的不合理因素达到模型的进一步合理优化得到最合理的解。 3、模型假设与符号说明 3、1、模型的假设 (1)、到同一地点的货物要一次拿上,即不考虑再以后又经过时再带些货物 (2)、要求达到不超过的时间不包括此次在该点交易的时间。 (3)、所用的距离数据都精确到米而时间则精确到0、0001h (4)、同一地点有多件货物也简单按照每件3分钟交接计算。

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

数学建模 配送问题

美国零售业巨头沃尔玛之所以能够迅速成为世界零售业之最,其中一个重要的原因是重视配送系统的建设与完善。从1962年第一家商场开业以来到目前为止,沃尔玛在美国有1800多家商场,在英国、墨西哥、德国及中国等国家及世界各地有1000多家商场,其中有720多个超级商业中心,沃尔玛在世界各地有110万职工。沃尔玛1970年在美国建起第一个配送中心,现在这个中心为4个洲32家商场配送。沃尔玛在2000年仅配送系统投资达1600亿美元,在美国利用自己的配送中心为连锁商场配送商品。在其他国家沃尔玛利用第三方物流。沃尔玛的企业理念是:“最低的成本,提供高质量的服务”。 试就下面的两个问题建立数学模型,并给出合理的解答: 1.考虑直送式配送运输,即一个供应点对一个客户的专门送货。在下面的物流网络图中(图1),寻找从A 点到K 点的最优配送线路。 图一 2.针对一般的分销系统,即系统由分销中心(DC ),多个零售商组成,该系统的运营成本主要由运输成本与库存成本构成。分销中心用自己的车辆为各零售商供货,而分销中心由制造商直接供货,假设零售商处的顾客需求是随机的且服从一定的概率分布,不同零售商之间以及同一零售商不同时期之间的需求是独立的。一般DC 与零售商均采用周期补货策略,补货时刻为周期末,DC 的一个补货周期一般包含多个零售商的补货周期。现考虑只有一个分销中心和30个零售商组成的分销系统,配送货物为单一产品。试就顾客需求服从参数为6的Possion 分布,销售中心位置为(0,0),30个零售商的位置可在[-200,200] [-200,200]的平面上随机产生得到的分销系统的运输、配送策略建立数学模型,并以题目中提供的部分数据为基础,进行数据模拟。 1 w=[ H G K F E D C B A 8 10 9 7 4 14 13 2 5 6 7 8 10 11 12

多元线性回归 数学建模经典案例

多元线性回归 黄冈职业技术学院数学建模协会胡敏 作业: 在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。 x1 x2 x3 x4 x5 y 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 编写程序如下: data ex; input x1-x5 y@@; cards; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 ; proc reg; model y=x1 x2 x3 x4 x5/cli; run; 运行结果如下: (1)回归方程显著性检验. Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 5 2.25207 0.45041 11.63 0.0170 Error 4 0.15497 0.03874 Corrected Total 9 2.40704

数学建模大赛-货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.5007小时,费用为4685.6元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.063小时,费用为4374.4元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为 19.6844小时,费用为4403.2。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

初中数学建模案例

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯

数学建模物流配送中心选址模型

数学建模物流配送中心 选址模型 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

物流配送中心选址模型 姓名:学号:班级: 摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。因此,发展现代化配送中心是现代业的发展方向。文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。 关键词:物流选址;选址;重心法;优化模型; 1.背景介绍 1.1 研究主题 如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。 1.2 前人研究进展 1.2.1国内外的研究现状:

国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。归纳起来,这些配送中心选址方法可分为三类: (1)应用连续型模型选择地点; (2)应用离散型模型选择地点; (3)应用德尔菲(Delphi)专家咨询法选择地点。 第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。解析方法的优点在于计算简单,数据容易搜集,易于理解。由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。 第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。 第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。 国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。北方交通大学鲁晓春等对配送中心的重心法地址做出了深入的研究,认为原有的重心法存在着问题,并把原有的计算公式用流通费用偏微分方程来取代。中国矿业大学周梅

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

数学核心素养之数学建模教学案例

数学核心素养之数学建模教学案例 1引言:新修订的高中数学课程提出,数学核心素养是数学课程目标的集中体现,是具有数学基本特征、适应个人终身发展和社会发展需要的必备品格与关键能力。高中数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。 其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。 在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。 特级教师张思明提出“我们通过数学建模的教与学要为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、自主解决问题的机会。近年来,数学建模应用题的数量和分值在高考中逐步增加,可见在命题中已经在转变传统的数学学科体系观念,旨在引导学生关心社会、关心未来,实现高考命题改革与中学教育、教学观念改革的结合。 2.中学数学模型的教学 2.1中学数学中常见的数学模型分类: (1)与函数的最值相关问题。工程中的用料最省、利润最大,列出所求量的函数解析式,利用代数工具解函数最大值。 (2)线性回归直线、非线性回归直线;如中学生身高和体重的关系,红铃虫产卵数与温度的关系。 (3)与周期有关的三角函数模型建立。电路信号,音频震动,潮水涨落周期。 (4)线性规划问题。关于求解含有多个约束条件的,目标函数的最有解问题。 (5)抽样统计调查类,独立性假设检验。 2.2数学建模的课堂陷入几个误区。 (1)数学建模课堂,教师陷入了对数学建模理论的讲解,而数学建模的基本步骤是什么,介绍集中常见的数学建模工具,里面有大量的数学公式推到,学生对数学建模的思想领会很少。

相关主题
文本预览
相关文档 最新文档