当前位置:文档之家› 风机轴承故障原因与处理方法

风机轴承故障原因与处理方法

风机轴承故障原因与处理方法
据不完全统计,水泥厂的风机发生振动异常的故障率最高时达58.6%.由于振动将造成风机运行不平衡,其中.轴承紧定套配合调整失当,会导致轴承异常温升和振动。

如某水泥厂在设备维修期间更换了风机轮叶。轮叶两侧用紧定套与轴承座轴承固定配合。重新试车就发生自由端轴承高温,振动值偏高的故障,拆开轴承匝上盖,手动慢速回转风机,发现处于转轴某一特定位置的轴承滚子,在非负荷区亦有滚动情况.如此可确定轴承运转间隙变动偏高且安装间隙可能不足。经测量得知,轴承内部间隙仅为0.04mm,转铀偏心达0.08mm;由于左右轴承跨距大,要避免转轴挠曲或轴承安装角度的误差较难,因此,大型风机采用可自动对心调整的球面滚子轴承。但当轴承内部间隙不足时.轴承内部滚动件因受运动空间的限制,其自动对心的机能受影响,振动值反而会升高。轴承内部间隙随配合紧度之增大而减小,无法形成润滑曲膜,当轴承运转间隙因温升而降为零时,若轴承运行产生的热量仍大于逸散的热量时,轴承温度即会快速爬升,这时,如不即时停机,轴承终将烧损,轴承内环与轴之配合过紧是本例中轴承运转异常高温的原因。

处理时,退下紧定套,重新调整轴与内环的配合紧度,更换轴承之后的间隙取0.10mm。重新安装完毕重新启动风机,轴承振动值及运转温度均恢复正常。

轴承内部间隙太小或机件设计制造精度不佳,均是分机轴承运转温度偏高的主因,为方便风机设备的安装;拆修和维护.一般在设计上多采用紧定套轴承锥孔内环配合之轴承座轴承,然而也易因安装程序上的疏忽而发生问题.尤其是适当间隙的凋整。轴承内部间隙太小.运转温度急速升高:轴承内环锥孔与紧定套配合太松,轴承易因配合面发生松动而于短期内故障烧损

石门电厂自1995年12月和1996年1号、2号机组相继投运以来,4台引风机多次发生因设备问题造成引风机跳闸、锅炉灭火、机组减负荷甚至被迫停炉等事故。引风机已成为石门电厂运行可靠性最低的主要辅机设备之一,既严重威胁着机组的安全经济稳定运行,又使检修工作量大大增加。在此对1996年2月~1998年10月引风机运行中出现的问题进行统计和分析。

从2 a共发生各类事故33次(其中导致停风机处理18次,紧急停炉处理2次)情况来看,引风机设备主要存在以下3个方面的问题:

第一,引风机本体问题(占统计数的49%)。一是风机频繁发生振动且振动值严重超标;二是轴承频繁发热;三是进、出口导叶和叶轮磨损。这些均导致轴承、叶轮、导叶等部件的

损坏。

第二,引风机配用电机问题(占统计数的15%)。一是轴承轴瓦运行温度过高;二是时有串轴现象发生;三是发现电机鼠笼转子有断条现象,开裂部位为导条圆弧根部和导条与铜环的焊接处。

第三,风机的电气、热工控制系统问题(占统计数的36%)。一是电气开关和保护引发风机跳闸;二是热工保护和其他连锁引发风机跳闸;三是风机进口导叶执行机构故障引发风机负荷摆动。这些问题极易造成MFT动作使炉膛灭火、锅炉负荷降低和机组运行的不稳定。


2 原因探析


2.1 风机振动原因分析

2.1.1 风机设计制造结构不合理

a.芯筒定位方式不稳定、不合理。芯筒既是叶轮轴承座的支撑架,也是叶轮及其轴承座中心定位的关键部件,芯筒中心的偏移将直接影响叶轮的对中。

芯筒中心的定位由后导叶和拉杆达成,拉杆两端均为焊接不易变动,但后导叶却因导叶或密封垫的更换,以及运行中导叶固定螺栓松动引起芯筒中心的变化,造成叶轮中心偏移而引发振动。

b.轴承座固定不牢靠,易松动。轴承座一端装配叶轮,另一端靠轴承端盖(厚度为37 mm)嵌于芯筒端板上,主要依赖8个螺栓固定,但厂家设计的螺栓无防松措施,在风机运行中随着工况的变化,容易造成螺栓的松动甚至断裂,使轴承座下垂,导致叶轮中心改变而产生振动。

c.叶轮固定螺栓易松动。风机叶轮夹于压板与轴端之间,靠4个螺栓紧固于轴端上,由于螺栓无防松措施,运行中易松动造成叶轮偏斜。

2.1.2 运行调整不当产生喘振

轴流风机的运行范围是受所谓“失速线”影响的,如果风机的运行工况长时间处于风机性能曲线图中“失速线”上方的不稳定区域,就会使风机发生喘振,如果不尽快消除或及时停机,一般只需运行30 s以上就可能造成引风机及其风道的严重损坏。

a.单台风机在启动过程中,如果运行人员操作不当,把握不准,在风机达到额定转速后,入口挡板和入口静叶长时间处于关闭或很小的开度状态,就极易造成失速,导致“喘振”发生。
摘要:分析了风机运行中轴承振动、轴承温度高、动叶卡涩、保护装置误动作等故障的几种原因,提出了被实际证明行之有效的处理方法。


风机
是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统

计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行。因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动。

1 
风机
轴承振动超标
风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1.1 不停炉处理叶片非工作面积灰引起风机振动
这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。
在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。
1.2 不停炉处理叶片磨损引起的振动
磨损是
风机
中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根

据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。
1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200
mm多,人站在风机外面,用手可以进行内部操 作。风机正常运行的情况下手孔门关闭。
2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加重量。
3)找完平衡后,计算应加的重量和位置,对叶轮进行焊接工作。在实际工作中,用三点法找动平衡较为简单方便。试加重量的计算公式为
P<=250譇0譍/D(3000/n)2(g)
【摘要】 为满足公路隧道通风降噪的需要,提出了射流风机推力影响因素及其选用要求。在计算隧道中总推力的前提下确定出射流风机的推力。并确定所用风机的数量。

关键词:喷流式通风机 隧道 选用 计算
一、引言

在公路隧道纵向通风系统中,射流风机通常是并联为一组,并沿隧道方向间隔布置,为了满足隧道内噪声环境的要求,射流风机通常配有整体消声器。在夜间,为了防止隧道洞口产生较大的噪声,通常是只运行隧道中间部分的风机,或者加长靠近隧道洞口处的风机消声器长度,或者采用双速射流风机。
二、射流风机推力影响因素及选用
1.每组风机之间的纵向距离
如果隧道中每组风机之间具有足够的距离,则喷射气流会有充分的逐渐减速,如果喷射气流减速不完全,将会影响到下一级风机的工作性能。一般情况下,每组风机之间的纵向间距取为隧道截面水力当量直径的10倍或10倍以上,也可以取风机空气动压(Pa)的十分之一作风机纵向间距(m),同一组风机之间的中心距至少取为风机直径的2倍。隧道中的射流风机布置并不一定具有同一间距,只要风机之间具有足够的纵向间距,则风机可以尽可能地布置在靠近隧道洞口的位置;如果风机轴向安装位置允许存在一定倾斜,则风机之间的纵向距离可以减少,从而可以提高安装系数。
2.隧道中空气流速、风机与壁面及拱顶的接近度
风机推力是在空气静止条件下,根据风机的空气动量的变化而测定的。如果风机进口的空气处于运动状态,则风机中空气动量的变化值必然减小。如果射流风机的安装位置靠近隧道壁面或拱顶,则空气射流与壁面或与拱顶之间必然产生附加摩擦损失。
3.风机尺寸
射流风机耗电量与推力之比与风机出口风速有关,对于给定的推力要求,出口风速越高,耗电量越大。因此,为了降低运行成本,应尽可能选用大直径、低转速或叶片角度小的风机。对于给定的风机尺

寸,如果降低其推力,必然导致风机数量的增加,从而增加风机本身的投资,但此时风机出口风速也随之降低,使得消声器得以取消或减小其长度。
4.可逆运转风机
可逆运转风机与单向风机相比,效率略低,且噪声稍高,但此类风机可以使隧道的运营具有较大的选择性。如在特别需要的情况下,单向隧道可以用作双向运营,在着火时,风机可以反转排烟。
三、隧道中总推力计算

对于采用纵向通风方式的公路隧道,在确定了其需要的空气量后,使可以计算用于克服隧道中全部空气阻力所需要的射流风机的推力,隧道中的空气阻力主要由以下各项阻力组成。
1.隧道进口、出口空气阻力
隧道进口、出口空气阻力pen,ex通常取为隧道中空气动压的1.5倍,如果隧道进口置有流线型喇叭段结构,出口置有扩散结构,则此项阻力会小些。
pdt=1/2ρV2T
式中 pdt——隧道空气动压,Pa
ρ——空气密度,kg/m3
VT——隧道中空气平均流速=qT/VT,m/s
qT——隧道中空气流速,m/s
AT——隧道截面积,m2
2.车辆拖阻或阻力
在单向隧道中,如果车辆速度低于隧道中风速,车辆会产生拖阻,如果车辆速度大于隧道中风速,则车辆会对空气流动产生助推力;在双向隧道中,与风速反向的车辆行驶速度会对空气流动产生阻力,车辆拖阻或助推力计算如下:
pdrag=CdAV/AT?.5ρ〔(NC1 NT1)(VV1 VT)2-(NC2 NT2)|VV2-VT|(VV2-VT)〕
式中 pdrag——车辆拖阻或阻力,Pa
Cd——车辆拖阻系数(1.0)
AV——车辆迎风面积(小汽车:2m2,卡车6m2)
NC1——与风向相反行驶小汽车车辆数
NT1——与风向相反行驶卡车车辆数
NC2——与风向同向行驶小汽车车辆数
NT2——与风向同向行驶卡车车辆数
VV1——与风向相反行驶车辆速度,m/s
VV2——与风向同向行驶车辆速度,m/s
对于单向隧道NC1=0,NT1=0

其主要节能措施分如下两类。

1.恒速机组高效风机换低效风机;小叶轮换大叶轮;截短叶轮外径;减少级数,拆摘叶片减少其数目;前(中、后)导叶控制,静叶可调;改变动叶安装角,动叶可调;台数组合控制,串----并联;ON-OFF开关控制;进口或出口节流;变叶片宽度;变扩压器安装角;联合调节微机控制;其它。

2.变速机组 变频调速;调压调速;电磁调速;变极对数调速;串级调速(或转子串电阻);无换向器电动机调速;汽轮机或燃气轮机等原动机的变速;液力耦合器;液力调速离合器;机电一体化装置(如微机控制等);多级液力变速传动装置(MSVD);其它(如带传动等)。
1.安装前应详细检查通风机是否因包装运输而有损坏、变形,待修理妥善后,才能进行安

装,安装时要注意检查各联接部分有无松动,叶片与风筒间隙应均匀,不得相碰。
2.联接出风口的管道重量,不应由风机承受,安装时应另加支撑。
3.在轴流通风机进口端,根据用户需要,可加装防护网。
4.风机底座必须与地基自然结合,不得敲打螺栓强制联接,以防底座变形。
5.若风机长期闲置后重新使用时,必须先检查各联接部分是否可靠牢固,并经试运转后,方可正式使用。
6.风机正式运转后,每年应检查一次螺栓是否松动,叶片磨损是否过度,电线表皮是否损坏,根据具体情况加以修理或更换零部件。
7.经常注意风机在运转中有无异常响声,并应及时检查修理。
8.除每次拆修后应更换润滑油外,还需定期更换润滑油。
9.订货时请标明风机型号、风量、风压、配用电机以及转速。并应明确使用场合,以便决定是否选用金属叶轮或防潮电机。可根据用户要求是否加装防护网罩或百页窗。
我国目前全国电机的装机总容量为 3.5亿千瓦,其耗电量占全国发电量的60%。大多数电机处于轻载运行状态,尤其是拖动风机、泵类负载的电机其运行状况更差。这些电机占全国用电量的31%。占工业用电量的50%。所以在风机泵类负载上大力提倡调速调节流量对于节约电能具有重大意义。正因为如此,早在87年佟纯厚等十位专家教授就给李鹏总理写信,建议大力发展交流电动机变频调速控制。
其中提到“应把交流电机调速节电作为重点措施,认真推广。”在另一文《评价企业合理用电技术导则》中指出:“对泵、风机等用电设备,需要调节流量时,应采用电动机调速控制代替阀门控制。”国家经委(87)78号文件《交流电机调速驱动节电技术座谈会纪要》中也指出:“交流电动机变频驱动是我国近年发展较快的新技术。这种技术用于变负荷的风机水泵和其他设备,可比阀门挡板节流等方法节约更多的电力。”国家领导人及有关领导部门的关怀重视和专家教授推荐提倡恰恰说明风机泵类负载的变频技术改造节电显著,势在必行,意义重大。

机泵类负载变频技术改造的优点

1、在风机泵类负载运行中,其输入的能量,约15"20%被电机和风机(或电机和泵)本身所消耗,约35"50%被挡板或风门节流所消耗。前者可通过采用高效电机及高效风要来降低,后者则可通过采用变频调速调节流量来取消。因为对风机水泵来说,其轴功率与转速的三次方成正比,流量与转速的一次方成正比。所以,如果通过调速将流量降到满载时的80%,则所需轴功率可减少一半(理论上)。实践及理论均已证明,采用变频调速调节流量节电可达20%到60%。

 

 一台锅炉在选用与其配套的风机容量时,均是按锅炉的最大蒸发量予以考虑,且留有 20%风压和20%流量的裕量。这就是说,即使锅炉全载运行,其风门开度也不会是100%,最多仅能达到80%左右,此外,风机在选用其配套电动机时,也留有一定裕量。因而在锅炉的正常运行中,其电动机总是处于不全载情况下运行。上面两种情况,使得采用变频调速调节流量要节约更多的电能。

1、风门或挡板调节流量,可调性能差,非线度大,反应速度慢,不准确。而且在风门或挡板开度很小时,电机的输入功率仍然很大。采用变频调速调节流量(此时风门或挡板处于全开位置),不仅可调性能好,反应速度快,而且线性度和准确性均很高。如采用闭环控制,则水位控制精度可达?0毫米,汽压控制精度可达?%,负压控制精度可达?Pa。

2、与计算机接口,接受计算机的指令来改变变频器的输出频率。这种控制方式可使锅炉始终在最佳状态下运行。这不仅可将锅炉的热效率提高3%,同时也具有约5%的节煤作用。

3、轻劳动强度,降低噪音、粉尘,从而减少了对环境的污染。
锅炉风机水泵变频技术改造方案的选择
根据锅炉的容量、台数、资金、操作维修人员的技术水平可有各种不同的选择。

1、有一台10吨以下的单台锅炉或6吨以下的多台锅炉,可选一台锅炉(选较大者)进行引风机和鼓风机变频技术改造。变频器的输出频率手工调节,可保留原有的工频运行功能。

2、多台10吨或多台20吨的锅炉房,可安装一套引风机鼓风机变频驱动装置。此装置包括两台变频器,一台驱动引风机,一台驱动鼓风机。这套变频驱动装置,可根据需要驱动任一台锅炉的引风机和鼓风机,而同时每台锅炉的引风机和鼓风机仍保留原有的工频运行功能。一台变频驱动装置可驱动锅炉的台数不超过三台。

3、对于40吨以上的锅炉,一般情况下一套变频驱动装置只驱动一台锅炉,且可保持原有的工频运行功能。

4、锅炉房的补水泵,可采用一般生活供水系统的变频驱动装置,一带一或一带多台补水泵。与一般生活供水系统不同的是反馈量是上锅筒的水位
性能故障分析和消除方法
压力过高,排除流量减小
1.气体成分改变,气体温度过低,或气体所含固体杂质增加,使气体的密度增大。
2 .出气管道和阀门被尘土、烟灰和杂物堵塞。
3.进气管道、阀门或网罩被尘土、烟灰和杂物堵塞。
4.出气管道破裂,或其管法兰密封不严密。
5. 密封圈磨损过大,叶轮的叶片磨损
1.测定气体密度,消除密度增大的原因
2.开大出气阀门,货进行清


3.开大进气阀门,或进行清扫
4.焊接裂口,或更换管法兰垫片
5.更换密封圈、叶片或叶轮2
压力过低,排出流量过大
1.气体成分改变,气体温度过高,或气体所含固体杂质减少,使气体的密度减小。
2.进气管道破裂,或其管法兰密封不严密。
风调节系统失灵
1.压力表失灵,阀门失灵或卡住,以致不能根据需要对流量和压力进行调节
2.由于需要流量减少,管道堵塞,流量急剧减小或停止,使风机在不稳定区(飞动区)工作,产生逆流反击风机转子的现象
1.修理或更换压力表,修复阀门
2.如是需要流量减小,应打开旁路阀门,或减低转速,如是管道堵塞应进行清扫
风机压力降低
1.管道阻力曲线改变,阻力增大,通风机工作点改变
2.通风机制造不良,或通风机严重磨损

3.通风机转速降低

4.通风机在不稳定区工作
1.调整管道阻力曲线,减小阻力,改变通风机工作点
2.检修通风机
3.提高通风机转速

4.调整通风机工作区
故 障 可 能 原 因 排 除 方 法
1 叶轮与叶
轮磨擦 (1) 叶轮上有污染杂质,造成间隙过小;
(2) 齿轮磨损,造成侧隙大;
(3) 齿轮固定不牢,不能保持叶轮同步;
(4) 轴承磨损致使游隙增大。 (1) 清除污物,并检查内件有无损坏;
(2) 调整齿轮间隙,若齿轮侧隙大于平均值30%~50%应更换齿轮;
(3) 重新装配齿轮,保持锥度 配合接触面积达75%;
(4) 更换轴承;
2 叶轮与墙
板、叶轮顶
部与机壳 (1) 安装间隙不正确;
(2) 运转压力过高,超出规定值;
(3) 运转温度过高;
(4) 机壳或机座变形,风机定位失效;
(5) 轴承轴向定位不佳。 (1)重新调整间隙;
(2)查出超载原因,将压力降到规定值;
(3)检查安装准确度,减少管道拉力;
(4)检查修复轴承,并保证游隙。
3 温度过高 (1) 油箱内油太多、太稠、大脏;
(2) 过滤器或消声器堵塞;
(3) 压力高于规定值;
(4) 叶轮过度磨损,间隙大;
(5) 通风不好,室内温度高,造成进口温度高;
(6) 运转速度太低,皮带打滑。 (1) 降低油位或挟油;
(2) 清除堵物;
(3) 降低通过鼓风机的压差;
(4) 修复间隙;
(5) 开设通风口,降低室温;
(6) 加大转速,防止皮带打滑。
4 流量不足 (1) 进口过滤堵塞;
(2) 叶轮磨损,间隙增大得太多;
(3) 皮带打滑;
(4) 进口压力损失大;
(5) 管道造成通风泄漏。 (1) 清除过滤器的灰尘和堵塞物;
(2) 修复间隙;
(3) 拉紧皮带并增加根数;
(4) 调整进口压力达到规定值;
(5) 检查并修复管道。
5 漏油或油泄
漏到机壳中 (1) 油箱位大高,由排油口漏出;
(2) 密封磨损,造成轴端漏油;
(3) 压力高于规定值;
(4)

墙板和油箱的通风口堵塞,造 成油泄漏到机壳中。 (1) 降低油位;
(2) 更换密封;
(3) 疏通通风口,中间腔装上具有2mm孔径的旋塞,打开墙板下的旋塞;
6 异常振动
和噪声立
即停车 (1) 滚动轴承游隙超过规定值或轴承座磨损;
(2) 齿轮侧隙过大,不对中,固定不紧;
(3) 由于外来物和灰尘造成叶轮与叶轮,叶轮与机壳撞击;
(4) 由于过载、轴变形造成叶轮碰撞;
(5) 由于过热造成叶轮与机壳进口处磨擦;
(6) 由于积垢或异物使叶轮失去平衡;
(7)地脚螺栓及其他紧固件松动。 (1) 更换轴承或轴承座;
(2) 重装齿轮并确保侧隙;
(3) 清洗鼓风机,检查机壳是否损坏;
(4) 检查背压,检查叶轮是否对中,并调整好间隙;
(5) 检查过滤器及背压,加大叶轮与机壳进口处间隙;
(6) 清洗叶轮与机壳,确保叶轮工作间隙;
(7) 拧紧地脚螺栓并调平底座。
7 电机超载 (1) 与规定压力相比,压差大,即背压或进口压力大高;
(2) 与设备要求的流量相比,风机流量太大,因而压力增大;
(3) 进口过滤堵塞,出口管道障碍或堵塞;
(4) 转动部件相碰和磨擦(卡住);
(5) 油位太高;
(6) 窄V型皮带过热,振动过大,皮带轮过小。 (1) 降低压力到规定值;
(2) 将多余气体放到大气中或降低鼓风机转速;
(3) 清除障碍物;
(4) 立即停机,检查原因;
(5) 将油位调到正确位置;
(6) 检查皮带张力,换成大直径的皮带轮。

________________________________________
中 国 最 强 网 游 --- 网 易 梦 幻 西 游 ,166 万 玩 家 同 时 在 线
________________________________________
两居40万,首付8万。高教新城销售热线:010-********/88

相关主题
文本预览
相关文档 最新文档