当前位置:文档之家› 选矿厂浮选回收率计算方法

选矿厂浮选回收率计算方法

选矿厂浮选回收率计算方法
选矿厂浮选回收率计算方法

选矿厂浮选回收率计算方法

一种产品计算方法

回收率=(原矿品位—尾矿品位)×精矿品位/(精矿品位—尾矿品位)×原矿品位

产率×精矿品位/原矿品位=回收率

两种产品时(以铅锌为例)计算方法

产率计算分母(锌含锌—锌尾)×(铅含铅—铅尾)—(铅含锌—锌尾)×(锌含铅—铅尾)

锌产率分子(锌原矿—锌尾) ×(铅含铅—铅尾)—(铅含锌—锌尾)×(铅原矿—铅尾)

锌产率=锌产率分子/产率计算分母回收率=锌产率×锌精品位/锌原矿品位、

以下类同

锌产率分子(锌含锌—锌尾)×(铅原矿—铅尾) —(锌原矿—锌尾) ×(锌含铅—铅尾)

三种产品时(以锌铅铜)为例)计算方法

锌产率分子=(A0B2C3+A2B3C0+A3B0C2) —(A0B3C2+A2B0C3+A3B2C0) 铅产率分子=(A1B0C3+A0B3C1+A3B1C0) —(A1B3C0+A0B1C3+A3B0C1) 铜产率分子=(A1B2C0+A2B0C1+A0B1C2) —(A1B0C2+A2B1C0+A0B2C1)

回收率包括绝对回收率和相对回收率

回收率包括绝对回收率和相对回收率。 绝对回收率也称提取回收率,包括萃取回收率。提取回收率在最新的“化学药物临床药代动力学研究的技术指导原则"z中是这样定义的”从生物样品基质中回收得到分析物质的响应值除以标准品产生的响应值即为分析物的提取回收率。也可以说是将供试生物样品中分析物提取出来供分析的比例。”其具体做法是取标准品,以流动相(最好同样品进样溶剂)溶解,做一个5点的标准曲线,另取三个浓度的标准品,加入到空白生物基质中,处理后进样测定,每浓度5个样品,这样来计算绝对回收率。 相对回收率的做法和上面不同的是标准曲线也是加入到基质中配成的。 如果做绝对回收率时,如果标准曲线不是直接进样,而是同样品处理,只是不加基质是不对的,因为这样会使操作和系统的其它一些影响因素被掩盖。比如有机相的转移不完全,处理容器的吸附等。绝对回收率的目的就是要看你能将分析物从样品中提取出来用于分析的比例。 之所以用标准曲线,而不是单点相比,是因为萃取回收率小于100%,有的只有百分之二三十或更低,依药物性质和方法而定,这样一来峰面积只有标准品峰面积的百分之几十,如果峰面积浓度的关系不是过原点的直线,而是有截距或线性不好,那么就有偏差了,这个好理解。另外单点也是需要进几次样来重复的,不然也有误差。既然进几次,不如换成几个点做标准曲线,几种误差都可以消去。 峰面积与浓度是对应关系的,我不认为这两者的比有什么差别。实际也是拿峰面积代进去算。 to lydialydia 比如有一个药绝对回收率设三个点20、100、500ng/ml,取相应标准品加入空白基质中,使成此三个浓度(每浓度5个样品),处理后进样。另取标准品以回收率样品进样溶剂溶解,5个点分别为10、50、100、250、500ng/ml。样品峰面积代入标准曲线算出浓度,与理论浓度比即得回收率。相对回收率只是将标准曲线的5个点也是加入空白基质处理。 1)绝对回收率(萃取回收率或提取回收率) 反映方法的萃取效率,与样品检测灵敏度有关。例如:分别取一定量被测药物标准品两份,其中一份加到空白样品中,按设定方法处理、进样测定,测定色谱峰面积A测,另一份用纯品溶剂溶解并稀释至同浓度,进样测得峰面积A真,回收率=A测/A真×100% 应考察高、中、低三个浓度,高浓度在标准曲线上限附近,低浓度在定量限附近,中间取一个浓度。 对于回收率的大小与变异不宜苛求,一般添加量在10-6~10-9g,绝对回收率达50%~80%令人满意。 内标法:分别取相同量的药物标准品和内标物两份,其中一份加到空白样品中,按设定方法处理,测定药物和内标峰面积,求出比值R测=A药/A内。另一份用纯溶剂溶液进样,测得药物和内标峰面积,计算其比值,回收率=R测/R真×100%。 内标法中要求药物与内标物各自用外标法测得的绝对回收率应相近,两者相差小于10%,否则回收率偏离100%太远。 2)方法回收率 取一系列浓度的药物标准品加到空白体液中,按设定的分析方法测定,根据标准品浓度及相应的测定信号绘制标准曲线,然后取高、中、低浓度的药物标准品加到空白体液中,按标准曲线制备方法同法测定,每个浓度至少平行测定5份,测得值代入方程,与加入量比较,即为方法回收率,除定量限外,各浓度测得的平均值偏离实际加入量应小于15%,定量限这点应小于20%。 回收率测定时,不管采用何种方法,要求添加的药物量必需与实际测量相近;必须与实际存在的状态相似;必须同时做空白实验。否则测得结果不可靠,因此报道方法的回收率时,必须说明添加量。

选矿指标定义及计算公式精选文档

选矿指标定义及计算公 式精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

主要采选生产统计指标定义及计算公式 二O一四年六月 生产技术组

目录 采矿生产技术经济指标 ......................................... 一、采矿作业量及产品产量指标.................................. (一)掘进量 ................................................. (二)剥岩量 ................................................. (三)掌子出矿量 ............................................. (四)采剥(掘)总量 ......................................... (五)采出矿量(简称矿量) ................................... 二、采矿技术经济指标 ......................................... (一)采矿质量指标。 ......................................... 1、采出矿石品位 .............................................. 2、废石混入率 ................................................ 3、矿石贫化率 ................................................ (二)采矿物料单耗指标 ....................................... 1、炸药单耗 .................................................. 2、导爆管雷管单耗 ............................................ 3、钻杆单耗 .................................................. 4、钻头单耗 .................................................. (三)采矿能源单耗指标 ....................................... 1、柴油单耗 .................................................. 2、电力单耗 .................................................. (四)采矿设备效用指标 ....................................... 1、钻机台班效率 .............................................. 2、挖掘机台班效率 ............................................ 3、铲运机台班效率 ............................................ 4、电机车台班效率 ............................................ 5、采矿设备作业率 ............................................ (五)采矿实物劳动生产率指标.................................. 1、采矿从业人员实物劳动生产率................................. (六)采矿其他技术经济指标 ................................... 1、采矿损失率 ................................................ 2、采矿回采率 ................................................ 3、剥采比 .................................................... 4、掘采比 .................................................... 5、采切比 .................................................... 6、延米爆破量 ................................................ 7、三级矿量 .................................................. 1)开拓矿量(露天) ........................................... 2)备采矿量(露天) ........................................... 3)开拓矿量(地下) ........................................... 4)采准矿量(地下) ...........................................

海德能RO膜回收率计算

海德能RO膜回收率计算 一、海德能RO膜性能评价指标: ①单位面积上透水量大,脱盐率高; ②机械强度好,多孔支撑层的压实作用小; ③化学稳定性好,耐酸、碱腐蚀和微生物侵蚀; ④结构均匀,使用寿命长,性能衰降慢; ⑤制膜容易,价格便宜,原料充足。 因此对海德能RO膜的评价指标可以从以下几个方面分析: 1、脱盐率和透盐率 脱盐率――通过海德能RO膜从系统进水中去除可溶性杂质浓度的百分比。 透盐率――进水中可溶性杂质透过膜的百分比。 脱盐率=(1-产水含盐量/进水含盐量)100% 透盐率=100%-脱盐率 GE海德能RO膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于反渗透膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,海德能RO膜元件对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到98%。

2、产水量(水通量) 产水量(水通量)――指反渗透系统的产能,即单位时间内透过膜水量,通常用吨/小时或加仑/天来表示。 渗透流率――渗透流率也是表示海德能RO膜元件产水量的重要指标。指单位膜面积上透过液的流率,通常用加仑每平方英尺每天(GFD)表示。过高的渗透流率将导致垂直于膜表面的水流速加快,加剧膜污染。 3、回收率 回收率――指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。回收率通常希望最大化以便提高经济效益,但是应该以膜系统内不会因盐类等杂质的过饱和发生沉淀为它的极限值。 回收率=(产水流量/进水流量)100%

农残回收率计算

回收率的计算方法 有机磷类 国标: 假设取5PPM某农药0.5毫升加入到10克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其10克蔬菜样品中农药浓度为X=(5×0.5)/10=0.25PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)和V2(分取体积)应该一样均为100毫升二氯甲烷,因为有机磷农药前处理未进行分取,是100%浓缩的。注ρ=5PPM。 所以,ρ×100×2×1×A1 ρ×A1 W(含量)= = 10×100×1×A 5A W(含量)ρA1 回收率= ×100% = X X×5A 农业部行标: 假设取5PPM某农药0.5毫升加入到25克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其25克蔬菜样品中农药浓度为X=(5×0.5)/25=0.1PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) ρ×50×5×1×A1 ρ×A1 W(含量)= = 25×10×1×A A W(含量)ρA1 回收率= ×100% = X X×A

菊酯类 国标: 假设取5PPM某农药0.5毫升加入到20克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其20克蔬菜样品中农药浓度为X=(5×0.5)/20=0.125PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)为30毫升正己烷加30毫升丙酮,总计为60毫升。V2(分取体积)为3毫升过柱体积。注ρ=5PPM。 所以,ρ×60×1×1×A1 ρ×A1 W(含量)= = 20×3×1×A A W(含量)ρA1 回收率= ×100% = X X×A 农业部行标: 同有机磷计算方法。 注:以上W(含量)即为准确测量的蔬菜样品农药残留浓度,单位为PPM或mg/kg ,若换算成μg/kg 则需要乘以1000。

提高金矿回收率研究与实践

【内容摘要】通过对河南灵宝市大湖金矿选厂工艺流程的考查与研究,找出了回收率低的原因,现场生产中通过采取合理配矿、预先碱浸、分段加药、增加浸前调浆槽和浸出作业供氧量等措施解决了问题,提高了选矿回收率,并取得较明显的经济效益。 关键词:选矿回收率研究与实践 一、引言 河南灵宝市大湖金矿位于河南省灵宝市西南阳平镇峪口村,现选矿厂处理规模为500吨/日,其中炭浆系列200吨/日,浮选氰化系列300吨/日,采用“浮选+浮选金精矿并入炭浆氰化”的选冶工艺流程;自97年11月300吨/日浮选氰化系列扩建投产以来,经过改造调试,生产正常,各项技术经济指标达到了原设计要求,选冶回收率稳定;进入99年以来,随着矿山开采向640米标高以下延伸,矿石逐步由氧化矿递变为中等硫化物矿,矿石性质发生了较大变化,99年4月份,氰化尾渣开始跑高,选冶回收率下降,浮选系列被迫二次停车,生产无法进行;通过对原矿化验分析,流程考查、小型试验等一系列工作,查明了原因,采取相应措施,改进了工艺流程,稳定了选冶回收率;到99年6月份生产恢复了正常,氰化尾渣品位由改造前的0.60克/吨降到0.33克/吨,尾液品位由0.04克/米 3降到0.02克/米 3,选冶回收率提高了7.44个百分点,每年可增加经济收入350多万元,经济效益显著。 二、矿石类型及矿物组成 1、矿石类型 大湖金矿矿床工业类型为含金石英脉和构造蚀变岩型,矿床成因类型为中~低温热液型金矿床。矿石按工业类型分为中等硫化物矿石和氧化矿石两类,其中氧化矿石分布在640米标高以上,中等硫化物矿石分布在640米标高以下。 矿区矿石自然类型有含金石英脉和构造蚀变岩型两个主要类型,多金属硫化物角砾岩次之。 2、矿物组成 组成矿石的矿物共有20多种,其中金属矿物占矿物总量的8.46%,主要金属矿物有黄铁矿,次为自然金、黄铜矿、方铅矿及少量的闪锌矿、辉钼矿等;脉石矿物主要为石英,约占64%,其次有微斜长石、斜长石、方解石、绢云母、黑云母、绿泥石和磷灰石等,次生矿物为褐铁矿、斑铜矿、铜蓝,脉石约占矿物总量的91.54%。 3、矿石结构与构造 矿石结构有自形一半自形粒状结构,它形晶粒状结构、碎裂结构、包容结构、浸蚀结构、交代穿孔结构等;矿石构造以浸染构造为主,细脉状、条带状、块状构造次之。 4、金的赋存状态及嵌布特征 矿石中含金矿物主要是自然金,自然金又分为明金和微粒金两类,明金约占47.65%,微粒金约占52.30%;金的赋存状态和嵌布特征有三种形式,其中以包体金为主约占61%,其次为裂隙金约占27%、粒间金约占12%;金主要赋存在黄铁矿中,约占78%,黄铁矿是金的主要载体矿物。 金的颗粒形状以尖角粒状、麦粒状、针线状为主,其次为浑圆粒状,少量夹角粒状、板片状等,矿石中金的粒度以中粒金(0.074~0.037mm)、细粒金(0.037~0.01mm)为主,其次是粗粒金(>0.074mm )和微粒金 (<0.01mm= 。属典型的小秦岭地区金矿石类型。 5、矿石的机械物理性质 矿石硬度:f=8~10

加标回收率计算方法

加标回收率 有空白加标回收和样品加标回收两种 空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。 样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率。 加标回收率的测定,是实验室内经常用以自控的一种质量控制技术.对 于它的计算方法,给定了一个理论公式: 加标回收率=(加标试样测定值—试样测定值)加标量X 100%. 理论公式使用的约束条件 加标量不能过大,一般为待测物含量的0.5?2.0倍,且加标后的总含量不应超过方法的测定上限;加标物的浓度宜较高,加标物的体积应很小,一般以不超过原始试样体积的1%为好。加标后引起的浓度增量在方法测定上 限浓度C的0.4~0.6(C)之间为宜。对分光光度计来说,吸光度A在0.7以下,读数较为准确。 回收率计算结果不受加标体积影响的几种情况 F列情况下,均可以采用公式(2)计算加标回收率 (1) 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时,尽

管因加标而增大了试样体积,但样品经处理后重新定容并不会对分析结果产生影响?比如采用酚二磺酸分光光度法分析水中的硝酸盐氮(GB7480287),样品及加标样品经水浴蒸干后,需要重新定容到50 mL再行测定。 ⑵样品分析过程中可以预先留出加标体积的项目,比如采用离子选择电 极法分析水中的氟化物(GB7484287),当样品取样量为35 mL、加标样取 5.0mL以内时,仍可定容在50 mL ,对分析结果没有影响。 (3)当加标体积远小于试样体积时,可不考虑加标体积的影响?比如采用4- 氨基安替比林萃取光度法分析水中的挥发酚(GB7490287),加标体积若为 1.0 mL ,而取样体积为250 mL时,加标体积引起的误差可以忽略不计。 理论公式约束条件的含义 加标物的浓度宜较高,加标物的体积应很小”的含义便更加清晰:在计算加标试样浓度C2时,应尽可能减小标准溶液的取样体积V 0.只有这样,分别采用公式(3)和(4)的计算结果才会相等.由此可见,采用浓度值法计算加标回收率时,任意加大加标试样的体积,将会导致回收率测定结果偏低。 对加标量的规定: 1. 加标量应尽量与样品中待测物质含量相等或相近,并注意对样品容积的 影响 2. 当样品中待测物质含量接近方法检出限时,加标量应控制在校准曲线的 低浓度范围;当样品中待测物含量小于方法检出限时,以检出限的量作 为待测物质的含量加标

选矿常用名词术及计算公式

选矿常用名词术及计算公式

————————————————————————————————作者:————————————————————————————————日期:

一般概念 1、选矿:是把有用矿物与脉石矿物最大限度的分开,除去脉石,使有用矿物得到富集,或使 共生的有用矿物彼此分离,从而获得高品位的一种或多种精矿的过程。 2、岩石:由一种或多种矿物组成的矿物集合体称岩石。或者说,构成地球外壳岩石圈的物质。 3、矿石:指在现代技术条件下,能够加工告别或能直接提炼金属以及其他化合物的岩石。 4、矿物:在地壳中自然生成的具有固定化学组成与物理化学性质的自然元素或化合物。 5、有用矿物:能够为人类所利用的矿物、矿石、岩石。 6、脉石:矿石中没有工业价值或暂时不能为人类所利用的部分称脉石。 7、围石:矿体周围的矿石称围岩。矿体上部围岩称上盘或顶盘,矿体下部围岩称下盘或底盘, 夹在矿体中间的围岩称夹石。 8、废石:矿体围岩和夹岩称废石。实际上矿石和废石的概念是相对的。处于矿石边界品位以 下无工业价值的低品位矿石和围岩、夹石统称废石。 9、矿石品位:是指矿石中某种金属,非金属或其它有用组分含量的多少,一般用百分数表示, 有的用每吨矿石中含的克数来表示。 10、原矿品位:是指进入选厂的矿石中的某种金属,非金属或其它有用组分与原矿量的百分 比。 11、精矿品位:指精矿中所含某种金属(或非金属或其它有用组分)与精矿量的百分比。 12、尾矿品位:尾矿中所含某种金属(或非金属或其它有用组分)与尾矿量的百分比。 13、重力先矿:简称重选,是根据矿石中各种矿物比重(密度)的差异进行分选的选矿方法。 比重不同的矿物颗粒在运动的介质(水、空气、重介质)中受液体动力和其它机械力作用。形成分层,使轻、重矿物得到分离。 重选法连同下述的浮选法、磁选法、电选法是主要的选矿方法。 14、浮游选矿:简称浮选,浮选通常为泡沫浮选,它是根据矿物表面物理化学性质(主要是 润湿性、电性、吸附以及溶解、氧化等化学反应)的差异,经浮选药剂处理后,矿浆中 各种矿物的表面性质差异变得更加明显,从而使矿物颗粒可以有选择地附着在气泡表面 上,并把这些附着在气泡表面的矿物提升到矿浆表面上来的全过程。 泡沫浮选是一个复杂的过程。是一种选择性分离工艺。 15、磁力选矿:简称磁选,是根据矿物自然磁性的不同,在磁选机磁场作用下,使各矿物受 到不同的作用力,从而使矿物得到分离的方法。 16、电选法:是根据矿物导电率的差别进行分选的方法。 17、粗选:矿浆经调合后进入浮选的第一个工序,选出部分高于原矿品位,但一般达不到精 矿质量要求的粗精矿作业。 18、精选:将粗选所得到的粗精矿再选,并得到合格精矿的作业。 19、扫选:把粗选之后还不能做为最终尾矿丢弃的矿浆进行再选的作业。 为提高回收率,需降低尾矿品位,扫选也常进行多次。 20、精矿:矿石经选别作业后,除去了大部分脉石和杂质,使有用矿物得到充分富集的最终 产品。 21、中矿:在选别过程中得到的中间产品(通常为扫选作业的精矿和精选作业的尾矿)。 中矿品位一般介于最终精矿和尾矿品位之间。中矿一般需要返回某适当作业点进行再选或单独处理。 22、尾矿:矿石经选别作业后,主要有用成份富集于精矿中,所剩余的不再进行回收的部分。 尾矿中一般都含有一定数量有回收利用价值的矿物,只是由于受一定时期技术水平的 限制或继续回收的费用太高而暂时丢弃。因此尾矿要妥善保管起来。

选矿回收率怎么计算

选矿回收率怎么计算 添加时间:2010-04-11 一、名词解释 重力选矿法(简称重选法):是在运动介质(水)中,按粒度比重和粒度的差异进行分选的分法。 浮选法:是选金生产中,应用最广泛的一种选矿法。是利用矿物表面物理化学性质的差异来选分矿石的一种方法。 混汞法:是一种古老而又简易的选金方法。在矿浆中,金粒被汞(水银)选择性地润湿并形成金汞齐,使它和别的矿物及脉石互相分离,这种方法称为混汞法。 品位:就是矿石或选矿产物中该金属或选矿产物重量之比值,通常用百分数来表示。 产率:选矿产物的重量与原矿重量之比值,通常用百分数来表示。 选矿比:原矿重量与精矿重量的比值,它表示获得1吨精矿需要处理的原矿的吨位。 富矿比:精矿中有用成分的品位和原矿中有用成分的品位之比值。它表示精矿中有用成分的品位和原矿中有用成分的品位高出的倍数。 回收率:选矿的目的就是要把原矿中所含的金属,最大限度地选入到品位更高的精矿中。这个选分过程的完全程度,可以用金属回收率来评定。所谓金属回收率,就是精矿中所含的金属重量与原矿中该金属重量的比值,常用百分数来表示。 二、选矿指标 处理原矿品位(克/吨)=处理原矿含金量(克) / 处理原矿量(吨) 精矿品位: 是指平均每吨精矿中的含金量,它是反映精矿质量的指标,计算公式为: 精矿品位(克/吨)=精矿含金量(克) / 精矿数量(吨) 精矿产率: 是指产出的精矿量占原矿量的百分比,它是反映选矿厂质量的指标。计算公式为: 精矿产率(%)=精矿数量(吨) /原矿数量(吨) ×100% 尾矿品位: 是指选矿厂排弃的尾矿中,平均每吨尾矿中的含金量。它是反映在选矿过程中金属损失程度的指标。计算公式为: 尾矿品位(克/吨)=尾矿含金量(克)/尾矿数量(吨) 尾矿量(吨)=处理原矿量(吨)-精矿量(吨) 选矿回收率: 是指采用各种选矿方法获得的最终产品含金量占处理原矿含金 量的百分比。按理论和实际回收率两种方法计算。 选矿理论回收率(%)=精矿品位×(原矿品位-尾矿品位)/(原矿品位×(精矿品位-尾矿品位) ×100%=理论回收的金属量(克) /处理原矿金属量(克)×100% 选矿实际回收率(%)=金精矿含金量(克)/原矿含金量(克)×100% (浮选回收率) 浸出率: 是指经浸出作业已溶解金的金属量占氰原矿金属量的百分比。计算公式为: 浸出率=已溶解金的金属量(克)/氰原矿金属量(克)×100%=( 氰原矿金属量(克)-浸渣金属量(克) )/氰原矿金属量(克)×100% 洗涤率: 是指贵液中含金量占浸出溶解金的金属量的百分比。计算公式为:

选矿常用计算公式

选矿常用计算公式公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

选矿常用计算公式 1、品位:一般用化学分析确定 α一原矿品位,β—精矿品位,θ—尾矿品位 2、产率: (1)用重量计算 γ精= Q K/ Q n*(100%) γ尾= Q n- Q k/ Q n*(100%) 式中:Q n、Q k分别为原矿和精矿重量(吨) (2)用品位计算 γ精=α-θ/β-θ*(100%) γ尾=1- γ精 (3)用回收率计算 γ精=α·ε/β*100% 式中:ε为回收率 3、选矿比: (1)用重量计算 K重= Q k/ Q n(倍) (2)用品位计算 K重=β-θ/α-θ(倍) 4、富矿比: I n=β/α(倍) 5、破碎比: I=D max/d min 式中:D max破碎前物料最大块直径(mm)

d min破碎后物料最大块直径(mm) 6、单个矿块粒度计算: d=(a+b+c)/3 式中:a、b、c分别为块矿的长、宽、高尺寸 7、筛分效率:(1)E1=β(α-θ)/α(β-θ)*100% (2)E2=C/(θ*α)*100% 式中:α、β、θ分别为给矿、筛下、筛上产物中小于筛孔尺寸粒级的百分含量,C为筛下产品重量 8、破碎机作业率: ?作=t实/t计*100% 式中:t实为破碎机实际开车小时数 t计为日历台数X台数X24小时(计开车小时数) 9、球磨机作业率:计算方法同破碎机作业率 10、球磨机台数能力: Q台= Q总/ t实(t/H) 式中:Q台为球磨机1小时处理原矿吨数 Q总为球磨机当班(或日、月、季、年等)处理原矿总吨数11、球磨机利用系数: ?系= Q台/V(t/H·m3) 式中:?系为球磨机单位体积单位时间内处理的原矿量 V为球磨机有效容积(m3)

回收率

准备两份:一份待测样品A,一份加入一定量标准B,然后用加标测的结果减去理论值,回收率等于B-A/B*100% 4.6. 5. 回收率 4.6. 5.1. 在检测的样品中添加一定量的标准物质,测试添加进去的标准物质的回收率,可以衡量前处理或测试过程中的基体干扰、样品的交叉污染、样品损失、仪器性能等,故回收率试验一直是化学实验室质量控制中重要的手段之一。 4.6. 5.2. 进行回收率测试时,应选择具有代表性的样品,样品应均匀性良好,目标测试物质具有一定的含量。 4.6. 5.3. 回收率测试时,称取上述选择的经预处理的样品两份,其中一份中加入目标测试物质,加入量是样品中目标测试物质量的50%-150%。两份样品同时经过前处理后,同时上机测试,计算回收率。 4.6. 5.4. 回收率=(V2c2-V1c1)×100%/V0c0 其中:c2:加标样品测试值,ug/mL V2:加标样品体积,mL c1:未加标样品测试值,ug/mL V1:未加标样品体积,mL c0:加入标准溶液的浓度,ug/mL V0:加入标准溶液体积,mL 本计算公式是基于加标样品和未加标样品的质量一致的前提,如两者不一致,则应折算为一致的质量。 4.6. 5.5. 回收率的范围一般控制为80%-120%,根据项目的不同,由实验室技术指导进行适当调整。回收率的测定结果记录在《回收率测定记录表》中。 4.6. 5. 6. 回收率测试的另外一种形式是,如果怀疑样品溶液基体对测试结果有影响,则可以直接在样品溶液中加入一定体积的标准溶液,测试此加标液的浓度,计算加标回收率,此时可以衡量溶液基体对测试有无影响。 以上摘自我们公司的程序文件中关于结果质量保证中关于加标回收率测定, 回收率试验它也叫加标回收,即在测定样品的同时,于同一样品的子样品中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,除以加入量,计算回收率。它可以反映测试结果的准确度。 目的就是控制实验的准确度。加标回收衡量准确度,做平行样是用来衡量精密度的.这两个手段是实验室质量保证上经常用到的措施. 测量方法确认技术分成以下几类。 (1)准确度试验(标准物质分析试验、回收率试验、不同方法的比对试验)。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验)。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。

聚氨酯计算公式中有关术语及计算方法

PU 资料 聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为,水份含量%,酸值12,求聚酯羟值 羟值校正 = + + = 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (为氢氧化钾的分子量) 羟值 官能度分子量1000 1.56??=

例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 如二乙醇胺,其结构式如下: CH 2CH 2OH HN < CH 2CH 2OH 分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105 5. 异氰酸基百分含量 异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。 式中42为NCO 的分子量 对预聚体及各种改性TDI 、MDI ,则是通过化学分析方法测得。 有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的脲时,1克分子胺消耗的异氰酸酯的克数。 胺当量和异氰酸酯百分含量的关系是: 6. 当量值和当量数 当量值是指每一个化合物分子中单位官能度所相应的分子量。 如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值 在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。 7. 异氰酸酯指数 3366 50 1000 31.56=??= 分子量%48174 2 42%=?=NCO TDI 的%6.33250 2 42%=?= NCO MDI 的官能度 数均分子量当量值=

选矿基本知识

选矿基本知识 一、名词解释 重力选矿法(简称重选法):是在运动介质(水)中,按粒度比重和粒度的差异进行分选的分法。 浮选法:是选金生产中,应用最广泛的一种选矿法。是利用矿物表面物理化学性质的差异来选分矿石的一种方法。 混汞法:是一种古老而又简易的选金方法。在矿浆中,金粒被汞(水银)选择性地润湿并形成金汞齐,使它和别的矿物及脉石互相分离,这种方法称为混汞法。品位:就是矿石或选矿产物中该金属或选矿产物重量之比值,通常用百分数来表示。 产率:选矿产物的重量与原矿重量之比值,通常用百分数来表示。 选矿比:原矿重量与精矿重量的比值,它表示获得1吨精矿需要处理的原矿的吨位。 富矿比:精矿中有用成分的品位和原矿中有用成分的品位之比值。它表示精矿中有用成分的品位和原矿中有用成分的品位高出的倍数。 回收率:选矿的目的就是要把原矿中所含的金属,最大限度地选入到品位更高的精矿中。这个选分过程的完全程度,可以用金属回收率来评定。所谓金属回收率,就是精矿中所含的金属重量与原矿中该金属重量的比值,常用百分数来表示。二、选矿指标 处理原矿品位(克/吨)=处理原矿含金量(克) / 处理原矿量(吨) 精矿品位: 是指平均每吨精矿中的含金量,它是反映精矿质量的指标,计算公式为: 精矿品位(克/吨)=精矿含金量(克) / 精矿数量(吨) 精矿产率: 是指产出的精矿量占原矿量的百分比,它是反映选矿厂质量的指标。计算公式为:精矿产率(%)=精矿数量(吨) /原矿数量(吨) ×100% 尾矿品位: 是指选矿厂排弃的尾矿中,平均每吨尾矿中的含金量。它是反映在选矿过程中金属损失程度的指标。计算公式为:

尾矿品位(克/吨)=尾矿含金量(克)/尾矿数量(吨) 尾矿量(吨)=处理原矿量(吨)-精矿量(吨) 选矿回收率: 是指采用各种选矿方法获得的最终产品含金量占处理原矿含金 量的百分比。按理论和实际回收率两种方法计算。 选矿理论回收率(%)=精矿品位×(原矿品位-尾矿品位)/(原矿品位×(精矿品位-尾矿品位) )×100% =理论回收的金属量(克) /处理原矿金属量(克)×100% 选矿实际回收率(%)=金精矿含金量(克)/原矿含金量(克)×100% (浮选回收率) 浸出率: 是指经浸出作业已溶解金的金属量占氰原矿金属量的百分比。计算公式为: 浸出率=已溶解金的金属量(克)/氰原矿金属量(克)×100% =( 氰原矿金属量(克)-浸渣金属量(克) )/氰原矿金属量(克)×100% 洗涤率: 是指贵液中含金量占浸出溶解金的金属量的百分比。计算公式为: 洗涤率(%)= 贵液含金量(克) / 浸出已溶金的金属量(克)×100% =( 氰原矿金属量(克)-浸渣金属量(克) -排液金属量(克))/( 氰原矿金属量(克)-浸渣金属量(克) )×100% 置换率: 是指通过置换沉淀而析出的金泥含金量占贵液含金量的百分比。计算公式为:置换率(%)=金泥含金量(克) /贵液含金量(克)×100% 氰化回收率: 是指氰化金泥含金量占氰原矿含金量的百分比。计算公式为: 氰化回收率(%)=金泥含金量(克)/氰原矿含金量(克)×100% =浸出率(%)×洗涤率(%)×置换率(%) 氰化金泥冶炼回收率: 是指冶炼后合质金含量占氰化金泥量的百分比。计算公式为: 冶炼回收率=合质金含金量(克)/金泥含金量(克)×100%

提高浮选回收率的措施

提高浮选回收率措施 1、由于目前矿石性质复杂多变,原矿品位波动较大,浮选工艺条件不容易控制,选别指标无法保证;应进行合理配矿,确保原矿品位在一个较小的波动范围内,整个浮选工艺条件容易控制,过程也相对的稳定,对浮选过程有利。 2、如果新建3000吨/日选厂能使用自动化控制,对一些主要的工艺参数如:给矿量、磨矿浓度、溢流浓细度、药剂添加量都能准确的控制,提高选别过程的稳定性,对提高浮选回收率能够起到很好的效果。 3、3000吨/日选厂投产后,地表氧化矿会逐渐增加,可以先考察地表矿石的氧化和泥化程度,如果原矿含泥量大,对浮选是很不利的,对为了消除或减少矿泥对浮选的影响,可采取下列措施:(1)入选前添加矿泥分散剂;(2)分段、分批加药,在二扫作业前新增设一个加药点,便于调整;(3)入选前可先进行脱泥处理,若矿泥有用矿物含量较多,可进行集中处理。 4、通过小型试验室实验和生产实验选择适合地表氧化矿的新型捕收剂与现有药剂混合使用,降低尾矿品位。 5、勤观察原矿粒度变化,根据返砂量,溢流浓度,及时调整前、后水量,做到均匀给矿,确保浮选工序液面稳定。 6、每小时检测一次溢流浓、细度并作好记录,勤调整并在小范围内循序渐进的调整,告知浮选工提前做好应对准备 7、定期采样,对磨矿产品进行粒度分析,以此为依据判断球磨

机内部钢球配比是否合理,既要满足处理量的要求,又要满足细度要求,出现异常及时调整。 8、勤观察原矿品位变化情况,通过泡沫刮出量、颜色等,做出相应的调整。 9、严格按药剂制度准确的添加各类药剂,每小时去药台巡视,避免断流。 10、每周清理地沟和回收池,返回流程,避免金属流失。 11、定期组织流程考察和选矿试验,根据生产实际不断优化工艺参数。 12、组织浮选工相互学习、交流经验,根据不同种类矿石性质的差异,总结出有针对性的操作方法,提高技术水平。 13、选矿技术人员每天下车间检测各项工艺参数,指导现场操作,稳定生产。

加样回收试验

现在一般都用第二种方法,又分两种添加方法: 1 添加样品中含量一半的80%、100%和120%,每个两份 2 添加样品中含量一半的50%、100%和150%,每个两份。这两种都可以的 计算时添加后测得的含量与原来样品的含量一半之差作分子,添加的含量做分母,并计算这6个结果的RSD,小于3%即可。 关于加样回收率的讨论已有报道[1-3],虽对加样回收率的两种计算方法均从不同侧面做了较透彻的讨论与选择,但均忽略了原样品(实际样品)中待测组分含量确定的方法及其误差性质对回收率结果可靠性的影响,有必要做进一步的探讨作为补充。设原样品中待测组分的真实量为Xo,待测组分纯品标准加入的真实量为Yo,为统一讨论,我们把Yo的获得及加入过程也看为一种测量,那么,Xo、Yo及其总量的测得量分别为X、Y和Z,它们的测量误差分别为EX、EY和EZ,则目前回收率R有如下两种计算方法依据测得Xo的方法不同分以下两种情况讨论。 1成熟方法包括药典法及可靠的文献法。 由于选用的方法成熟可靠,测量误差小,则EX可忽略,而且Yo的获得及加入过程一般是可靠的,Ey亦可忽略,则(1)、(2)式可分别简化为(3)、(4)式:两式中,R唯一地与测量误差EZ相关,理论上讲,可以用来检验拟订方法的准确度。2拟订方法同上讨论,Ey可以忽略,但由于X0是按拟订方法测得的,故EX不可盲目忽略,则(1)、(2)式可分别简化为(5)、(6)式:R并不唯一地与EZ相关,还与测定原样品中Xo的误差EX有关,是否可以用来检验拟订方法的准确度需要做进一步的讨论。测量误差按其性质分为两类:偶然误差和系统误差,系统误差又包括恒定误差和比例误差。偶然误差可以通过增加试验次数来消除,本文不做更深讨论,而系统误差却会给测定带来固定方向的偏差。 2.1系统误差为恒定误差:此时EX=EZ,所以(5)、(6)式可写为(7)、(8)式:即在该情况下,无论拟订方法的误差多大,回收率均为100%。结果显然是不可靠的。 2.2系统误差为比例误差:设比例误差的比例系数为E,则EX=E·Xo,EZ=E·(Xo+Yo),则(5)、(6)式可分别写成(9)、(10)式:回收率的实质是单位真实量的测得量,而E是单位真实量的测量误差,所以R应等于1+E,此时,用(9)式计算回收率是可靠的,而用(10)式计算,R随Xo/(Xo+Yo)的值变化而变化,当且仅当Xo/(Xo+Yo)=0,即Xo=0或Yo为无穷大时,R=1+E。但前者回收率试验实质上已是模拟样品回收率,而后者已变为纯品回收率试验,均不在本文讨论范围之内。上面讨论的是两种极端情况,而在实际工作中,测量误差既包括恒定误差,又包括比例误差,文献认为:“仪器由于灵敏度等原因,测量一般为恒定误差,而方法误差也不全为比例误差,”另外,由于操作者造成的误差也往往表现为恒定误差,如对滴定终点指示剂变色的判断等。这说明目前定量研究的误差多属恒定误差,所以用拟订方法测定原样品中待测组分的含量后计算回收率的方法并不可靠。因此,虽然目前绝大多数药物分析工作者在做加样回收率计算时均使用(1)式,认为测得总量减去原样品测得量后即可消除原样品中待测组分含量及其测量误差的影响,但却未考虑到并非所有情况下均适用,反而会因此获得一个不真实的回收率,错误判断拟订方法的准确度。例:我们把某一测定方法假设为一根容量足够大的刻度吸量管,首先我们假设它有恒定误差,它的Oml刻度处实为10ml,其余部分准确,即本吸量管有一10ml的恒定误差,下面结合上述讨论对该吸量管(即某一测定方法)的准确度做一个检验。设X0=20ml,Y0=10ml,则EZ=-10ml。如用(3)、(4)式计算:(3)R=1+(-10)/10=0%(4)R=1+(-10)/(20+10)=67%如用(5)、(6)两式计算:(5)R=[10+(-10)-(-10)]/10=100%(6)R=(20+10)+(-10)/20+10+10=100%由上可见,对于一个设定的明显有很大误差的测定方法,用拟订方法测定X0后计算却得出了“理想”的回收率数据,可见如此计算在测定存在恒定误差的情况下是不可靠的;而用成熟方法测定X0后,均得出方法不准确的结论,但用两式计算,结果明显不同,我们认为造成这一现象的原因是对于每次测定来说,由于误差恒定,(3)式把本应该由整

加标回收率计算方法的探讨 (1)

加标回收率计算方法的探讨 摘要:阐述了加标回收率计算的理论公式的使用条件和不足, 并推导出5 种不同条件下适用的加标回收率计算方法的数学表达式。 关键词: 加标回收率; 理论公式; 计算方法 加标回收率的测定, 是实验室内经常用以自控的一种质量控制技术. 对于它的计算方法, 文献[1, 2 ]中均给定了一个理论公式: 加标回收率= (加标试样测定值-试样测定值)÷加标量×100%. 1 理论公式的使用条件与不足 1.1 理论公式使用的前提条件 文献[1 ]中对加标回收率的解释是:“在测定样品的同时, 于同一样品的子样中加入一定量的标准物质进行测定, 将其测定结果扣除样品的测定值, 以计算回收率. ”因此,使用理论公式时应当满足以下2 个条件:① 同一样品的子样取样体积必须相等; ②各类子样的测定过程必须按相同的操作步骤进行。 1.2 理论公式使用的约束条件 文献[2 ]中强调指出: 加标量不能过大,一般为待测物含量的0.5~ 2.0 倍, 且加标后的总含量不应超过方法的测定上限; 加标物的浓度宜较高, 加标物的体积应很小,一般以不超过原始试样体积的1%为好。 1.3 理论公式的不足之处 ( 1) 各文献对公式中“加标量”一词的定义, 均未准确给定, 使其含义不是十分明确. 从公式的分子上分析, 加标量应为浓度单位; 从公式的分母上理解, 应为加入一定体积的标准溶液中所含标准物质的量值, 为质量单位。 (2) 若公式中的加标量为浓度单位, 此时的加标量并不是指标准溶液的浓度, 而应该是加标体积所含标准物质的量值除以试样体积(或除以试样体积与加标体积之和)所得的浓度值. 这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来。 2 加标回收率计算方法及数学表达式 2.1 以浓度值计算加标回收率理论公式可以表示为: P =(c2-c1)/c3× 100%. (1) 式中: P 为加标回收率;c1 为试样浓度, 即试样测定值, c1 =m 1/V 1;c2 为加标试样浓度,即加标试样测定值, c2 =m 2/V 2;c3 为加标量, c3 =c0 ×V 0/V 1或c3 =c0 ×V

相关主题
文本预览
相关文档 最新文档