当前位置:文档之家› 三角形高阶

三角形高阶

三角形高阶
三角形高阶

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

动点直角三角形问题的解法

“动点直角三角形问题”的三种解法 李永红 中考数学压轴题中常会出现“动点直角三角形问题”,如2013年山西、成都、攀枝花、长春、济宁、绵阳、襄阳等省市中考数学试卷中均出现了“动点直角三角形问题”,对于这类问题的解决,即使是数学尖子生也感到很棘手.其实,解决“动点直角三角形问题”有“法”可循,并不算“难”. 一、例题分析 例1 在直角坐标系中,已知点)0,1(A ,)2,0(-B ,将线段AB 绕点A 按逆时针方向旋转090至AC ,如图1. (1)求点C 的坐标; (2)若抛物线22 12++-=ax x y 经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外)使ABP ?是以AB 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由. 分析(1)构造三垂图可求得点C 的坐标为)1,3(-C . (2)①将点C 的坐标代入22 12++-=ax x y 可求得抛物线的解析式为22 1212++-=x x y . ②法1(利用数形结合): 如图2,易求得直线AC 的解析式为2 121+-=x y . 由??? ????++-=+-=2212121212x x y x y 解得???=-=11y x 或???-==13y x (舍去).此时点P 的坐标为 )1,1(-. 设过点B 且与直线AC 平行的直线的解析式为b x y +-=2 1,将点

)2,0(-B 代入,得2-=b ,所以过点B 且与直线AC 平行的直线的解析式为 221--=x y .由??? ????++-=--=221212212x x y x y 解得???-=-=12y x 或???-==44y x .此时点P 的坐标为)1,2(--或)4,4(-. 综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法2(构造三垂图): 如图3,延长CA 交抛物线于点),(1n m P ,过点1P 作x D P ⊥1轴于点D , 易证DA P 1?∽AOB ?,∴OB AD OA D P =1.∵1=OA ,2=OB ,m AD -=1,n D P =1,∴211m n -=,即m n 2121-=.∵点),(1n m P 在抛物线上,∴22 1212++-=m m n .由??? ????++-=-=2212121212m m n m n 解得???=-=11n m 或???-==13n m (舍去).此时点P 的坐标为)1,1(-. 过点B 作直线AC 的平行线,交抛物线于点2P ,3P .过点2P 作y E P ⊥2轴于点E ,易证2BEP ?∽AOB ?,可求得点2P 的坐标为)1,2(--;过点3P 作y F P ⊥3轴于点F ,易证3BFP ?∽AOB ?,可求得点3P 的坐标为)4,4(-; 综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法3(利用勾股定理): 设抛物线上存在点)22 121,(2++- m m m P ,使ABP ?是以AB 为直角边的直角三角形.分别利用勾股定理可得52=AB , ,)22121()1(2222++-+-=m m m AP 2222)42 121(++-+=m m m BP . 当点A 、B 分别为直角顶点时,分别由+2AB =2AP 2BP 、 +2AB 2BP 2AP =得到关于m 的一元四次方程,用已学知识难以求解. 例2 已知抛物线32++=bx ax y 与x 轴交于点)0,3(-A ,)0,1(B ,与y 轴交于点C ,如图4. (1)求抛物线的解析式及顶点的坐标; (2)在抛物线的对称轴l 上存在点Q ,使ACQ ?为直角三角形,请求出点Q 的坐标.

三角形常见的辅助线Word版

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. A

应用:1、(09崇文二模)以 ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图①当 ABC ?为直角三角形时,AM与DE的位置关系是 , 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC,AD平分BAC ∠,且AD=BD,求证:CD⊥AC C D B A

联系测量方案

第一章联系测量 第一节联系测量的定义 一、联系测量的定义 将地面坐标系统和高程系统传递到地下,确定地下控制点、控制边,作为地下控制导线的起算数据,这一过程测量工作叫做联系测量。将地面平面坐标系统传递到地下的测量称为平面联系测量,简称定向。将地面高程系统传递到地下的测量称高程联系测量,简称导入高程[1]。联系测量工作应包括地面趋近导线测量趋近水准测量、通过竖井斜井通道的定向测量和传递高程测量以及地下趋近导线测量地下趋近水准测量[2]。 二、联系测量的任务 联系测量的任务在于: (1)、确定地下经纬仪导线起算边的坐标方位角; (2)、确定地下经纬仪导线起算点的平面坐标x和y; (3)、确定地下水准点的高程H[1]。 前两项任务是通过平面联系测量定向来完成的;第三个任务是通过导入高程来完成的。这样就获得了地下平面与高程测量的起算数据[1]。 第二节联系测量的种类 联系测量分为平面联系测量(简称为定向)和高程联系测量(简称为导入高程)。平面联系测量说来可分为两大类:一类是从几何原理出发的几何定向;另一类是以物理特性为基础的物理定向[1]。 几何定向分为: 1、通过平硐或斜井的几何定向; 2、通过一个立井的几何定向(一井定向); 3、通过两个立井的几何定向(两井定向)[1]。 物理定向可分为: 1、用精密磁性仪器定向; 2、用投向仪(投点仪)定向; 3、用陀螺经纬仪定向[1]。 通过平硐或斜井的几何定向,只需要通过平硐或斜井敷设经纬仪导线,对地面和地下进行联测即可[1]。但是在地铁工程中由于地下铁道本身的特点,并没有平硐或斜井,有的只是竖井(出土井或下灰井或是更宽敞的明挖车站),因此,通过平硐或斜井的几何定向在地铁的平面联系测量中一般不用,只在矿山测量中有应用。在地铁平面联系测量中的导线直接传递法、竖直导线定向法的原理和通过平硐或斜井几何定向的原理是一样的[1]。 第三节几何定向 这里主要讲的是立井几何定向。在立井中悬挂钢丝垂线由地面向地下传递平

常见三角形辅助线口诀

初二几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。

由角平分线想到的辅助线 一、截取构全等 如图,AB证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。 分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。 由线段和差想到的辅助线 五、截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。 由中点想到的辅助线 一、中线把三角形面积等分 如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。 分析:利用中线分等底和同高得面积关系。 二、中点联中点得中位线 如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。 分析:联BD取中点联接联接,通过中位线得平行传递角度。 三、倍长中线 如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。

联系三角计算方法

联系三角形法 联系三角形法是一种传统的竖井联系测量方法 2.1 仪器设备 TC1800全站仪;10kg重锤2个;Φ0.5mm高强钢丝60m;小绞车、导向滑轮及经过比长的钢卷尺等。 2.2 作业实施 (1)导线布设 导线布设情况如图3。垂线1、垂线2是通过竖井绞车及导向滑轮悬挂并吊有垂锤的高强钢丝。Z、A为已知的地面导线点,B、G为待求的井下导线点,井下、井上三角形布设时应满足下列要求: ①垂线边距a、a′应尽量布置长些; ②e、f、e′、f′角度应尽量小,最大不应大于2°; ③b/a、b′/a′'之比值应尽量小,最大值不应大于1 5。 (2)三角形测量 ①测e、f、e′、f′角度; ②量a、b、c、a′、b′、c′边长。 (3)三角形平差计算 根据a、b、c、f求j:sinj=bsinf/a c的计算值:c算=bcosf+asinj c的不符值:h=c算-c a边改正值:Δa=-h/4 b边改正值:Δb=-h/4 c边改正值:Δc=h/2 以改正后的边长a、b、c为平差值,按正弦定理计算出i、j,即为平差后的角值。f改正很小,仍采用原测角值。 采用上述方法可计算出井下三角形平差后的边角a′、b′、c′、i′、j′。f′改正很小,仍采用原测角值。 (4)坐标和方位传递计算 已知A点坐标为XA、YA,AZ方位角为Z0。根据平差后的三角形边角进行计算。 ①BG方位角Z0′ AF方位角Z1=Z0+e

FE方位角Z2=Z1+180+j E′B方位角Z3=Z2+180-j′ 求算边BG方位角Z0′=Z3+180+e′ ②B点坐标 XB=XA+ccosZ1+acosZ2+c′cosZ3 YB=YA+csinZ1+asinZ2+c′sinZ3 (5)重复观测 进行联系三角形测量时,为保证精度,要重复观测数组。每组只将两垂线位置稍加移动,测量方法完全相同。由各组推算井下同一导线点之坐标和同一导线边之坐标方位角。各组数值互差满足限差规定时,取各组的平均值作为该次测量的最后成果。

三角形常见辅助线练习题

三角形常见辅助线作法练习题 1如图:D 、E 为△ABC 内两点,求证:AB+AC>BD +DE+CE 、 2如图:已知D 为△ABC 内得任一点,求证:∠BDC>∠BA C。 3如图:已知AD 为△ABC 得中线,且∠1=∠2,∠3=∠4,求证:B E+CF>EF 4如图:AD 为 △ABC 得中线,求证:AB+AC>2AD 5已知△ABC,A D就是B C边上得中线,分别以AB 边、A C边为直角边各向形外作等腰直角三角形, 求证EF=2AD 。 6如图:在△AB C中,AB>AC,∠1=∠2,P 为A D上任一点、求证:AB -AC >PB-PC 。 7如图:在Rt△A BC 中,A B=AC,∠B AC=90°,∠1=∠2,CE ⊥B D得延长于E 。求证:BD=2CE

A B C D E F 2 1 B A C D F 2 1 E 8已知:AB=4,AC =2,D 就是BC 中点,A D就是整数,求AD 9已知:B C=DE,∠B=∠E,∠C =∠D,F 就是CD 中点,求证:∠1=∠2 10已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 11已知:AD 平分∠BAC,AC=AB+B D,求证:∠B=2∠C 12已知:AC 平分∠BA D,CE ⊥AB,∠B +∠D=180°,求 证:AE=A D+BE 13、 如图,四边形A BCD 中,AB ∥D C,BE、CE 分别平分∠ABC 、∠BCD,且点E 在AD 上。求证:B C=AB+DC 、 14。如图,已知∠A=∠D,AB =D E,AF =CD,BC=EF 、求证:BC ∥EF 15:如图,ΔABC 中,AB=AC,E 就是AB 上一点,F 就是AC 延长线上一点,连EF 交BC 于D,若EB=C F。 求证:D E=D F。 16:△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠AB C交AC 于Q,求证:AB+BP =BQ+AQ 。 17.如图5,在四边形ABCD 中,已知BD 平分∠ABC,∠A+∠C=180°.证明:AD=CD. A D B C C D B A D A C B

解直角三角形的基本类型及其解法公式

解直角三角形的基本类型及其解法公式(总结) 1、解直角三角形的类型与解法 已知、解法 三角 类型 已 知 条 件 解 法 步 骤 Rt △ABC B c a A b C 两 边 两直角边(如a ,b ) 由tan A =a b ,求∠A ;∠B =90°-A , c = 2 2b a + 斜边,一直角边(如c ,a ) 由Sin A =a c ,求∠A ;∠B =90°-A ,b =22a -c 一 边 一 角 一角边 和 一锐角 锐角,邻边 (如∠A ,b ) ∠B =90°-A ,a =b ·Sin A ,c =b cosA cosA 锐角,对边 (如∠A ,a ) ∠B =90°-A ,b =a tanA ,c =a sinA 斜边,锐角(如c ,∠A ) ∠B =90°-A ,a =c ·Sin A , b =c ·cos A 2、测量物体的高度的常见模型 1)利用水平距离测量物体高度 数学模型 所用工具 应测数据 数量关系 根据 原理 侧倾器 皮尺 α、β、 水平距离a tan α=1 x ι ,tan β=2x ι ι=a ·tan α·tan βtan α+tan β 直角 三角 形的 边角 关系 tan α= x a +ι tan β= x ι ι=a ·tan α·tan β tan β-tan α 2)测量底部可以到达的物体的高度 数学模型 所用工具 应测数据 数量关系 根据 原理 皮尺 镜子 目高a 1 水平距离a 2 3a h =2 1a a ,h =231a a a 反射 定律 β α a x 1 x 2 ι α β x a ι 镜子 1a 2a 3a h

判定三角形形状的十种方法

判定三角形形状的十种方法 数学考试和数学竞赛中,常有判断三角形形状的题目,这类题目涉及的知识面广,综合性强,它沟通了代数、几何、三角等方面的知识联系。解题思路不外是从边与边、边与角之间的关系考虑,从而达到解题的目的。 1、若有a=b或(a-b)(b-c)(c-a)=0, 则△ABC为等腰三角形。 2、若有(a-b)2+(b-c)2+(c-a)2=0, 则△ABC为等边三角形。 3、若有a2+b2>c2,则△ABC为锐角三角形; 若有a2+b2=c2,则△ABC为直角三角形; 若有a2+b2<c2,则△ABC为钝角三角形。 4、若有(a2-b2)(a2+b2-c2)=0, 则△ABC为等腰三角形或直角三角形。 5、若有a=b且a2+b2=c2, 则△ABC为等腰直角三角形。 以上是从三角形的边与边之间的关系考虑的。 6、若有sin2A+sin2B=sin2C或sinA=sinB, 则△ABC为直角三角形或等腰三角形。 7、若有cosA>0,或tanA>0,(其中∠A为△ABC中的最大角) 则△ABC为锐角三角形。

8、若有cosA<0,或tanA<0,(其中∠A为△ABC中 的最大角), 则△ABC为钝角三角形。 9、若有两个(或三个)同名三角函数值相等(如 tanA=tanB),则△ABC为等腰三角形(或等边三角形)。 10、若有特殊的三角函数值,则按特殊角来判断,如 cosA=,b=c,则△ABC为等边三角形。 以下就一些具体实例进行分析解答: 一、利用方程根的性质: 例1:若方程x2+2ax+b2=0与x2+2cx-b2=0有一 个相同的根,且a、b、c为一个三角形的三条边,则此三 角形为() (A)锐角三角形;(B)钝角三角形; (C)以c为斜边的直角三角形;(D)以a为斜边的直角 三角形; (“缙云杯”初中数学邀请赛) 解:将两个方程相减,得:2ax-2cx+2b2=0,显然a≠c,否则b=0,与题设矛盾,故x= ,将两个方程相加, 得2ax+2cx+2b2=0,∵x≠0,否则b=0,与题设矛盾, ∴x=-(a+c),∵两个方程有一个相同的根, ∴ =-(a+c),即b2+c2=a2,故△ABC是以a为斜边 的直角三角形,故应选(D) 二、利用根的判别式

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

初中数学三角形辅助线大全(精简、全面)

三角形作辅助线方法大全 1.在利用三角形的外角大于任何和它不相邻的角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在角的位置上,再利用外角定理证题. 例:已知D 为△ABC 任一点,求证:∠BDC>∠BAC 证法(一):延长BD 交AC 于E , ∵∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC 同理:∠DEC>∠BAC ∴∠BDC>∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF>∠BAD 同理∠CDF >∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD 即:∠BDC>∠BAC 2.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4, 求证:BE +CF >EF 证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC 在△BDE 和△NDE 中, DN = DB ∠1 = ∠2 ED = ED ∴△BDE≌△NDE ∴BE = NE 同理可证:CF = NF 在△EFN 中,EN +FN >EF ∴BE+CF >EF 3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF 证明:延长ED 到M ,使DM = DE ,连结CM 、FM △BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD ∴△BDE≌△CDM ∴CM = BE 又∵∠1 = ∠2,∠3 = ∠4 ∠1+∠2+∠3 +∠4 = 180o F A B C D E D C B A 43 21N F E C B A

中考数学直角三角形的存在性问题解题策略

直角三角形的存在性问题解题策略 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例1、 如图1-1,在△ABC 中,AB =AC =10,cos ∠B =45 .D 、E 为线段BC 上的两个动点,且DE =3(E 在D 右边),运动初始时D 和B 重合,当E 和C 重合时运动停止.过E 作EF //AC 交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值. 图1-1 【解析】△BDF 中,∠B 是确定的锐角,那么按照直角顶点分类,直角三角形BDF 存在两种情况.如果把夹∠B 的两条边用含有x 的式子表示出来,分两种情况列方程就可以了. 如图1-2,作AH ⊥BC ,垂足为H ,那么H 是BC 的中点. 在Rt △ABH 中,AB =10,cos ∠B = 45 ,所以BH =8.所以BC =16. 由EF //AC ,得BF BE BA BC =,即31016BF x +=.所以BF =5(3)8x +. 图1-2 图1-3 图1-4 ①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠= =,得45BD BF =. 解方程45(3)58x x = ?+,得x =3.

2动态三角形法(图解法)

共点力平衡——动态三角形法(图解法) 动态三角形法: 1、质量为m 的物体用轻绳AB 悬挂于天花板上。用水平向左的力F 缓慢 拉动绳的中点O ,如图所示。用T 表示绳OA 段拉力的大小,在O 点向 左移动的过程中,分析F 与T 的变化情况? 2、如图,在倾角为α的光滑斜面上放一个重为G 的光滑球,并 用光滑的竖直挡板挡住,求光滑球受到斜面和挡板的支持力F 1、 F 2分别是多少?若挡板向左转动,F 1、F 2分别怎样变化? 3、如图,用力F 拉着小球保持静止,且使细绳与竖直方向 夹角保持α不变,当拉力F 与水平方向夹角β为多大时,力 F 最小? 4、如图,小球用细绳系住,绳的另一端固定于O 点, 现用水平F 缓慢推动斜面体,小球在斜面上无摩擦地滑 动,细绳始终处于直线状态,当小球升到接近斜面顶端 时细绳接近水平,分析此过程中斜面对小球的支持力F N , 以及绳对小球的拉力F T 的变化情况。 5、如图,在粗糙水平地面上放着一个截面为半圆的柱状物 体A ,A 与竖直挡板之间放一光滑圆球B ,整个装置处于静 止状态。现对挡板加一向右的力F ,使挡板缓慢向右移动, B 缓慢上移而A 仍保持静止。设地面对A 的摩擦力为F 1, B 对A 的作用力为F 2,地面对A 的支持力为F 3 。分析此过 程中F 1 ,F 2 ,F 3的变化情况。 6、如图,将一个重物用两根等长的细绳OA 、OB 悬挂在半圆形的架子上,在保持重物位置不动的前提下,B 点固定不动,悬点A 由位置C 向位置D 移动,直至水平,分析在这个过程中,细绳OA 、OB 受的拉力大小的变化情况。

三角形中的常用辅助线方法总结

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

矢量三角形法--专题

矢量三角形法在三力平衡问题中的应用 在静力学中,经常遇到在力系作用下处于平衡的物体其所受诸力变化趋势判断问题.这 种判断如果用平衡方程作定量分析往往很繁琐,而采用力三角形图解讨论则清晰、直观、全 面.我们知道,当物体受三力作用而处于平衡时,必有∑F=O ,表示三力关系的矢量图呈闭 合三角形,即三个力矢量(有向线段)依次恰好能首尾相接.当物体所受三力有所变化而又维 系着平衡关系时,这闭合三角形总是存在而仅仅是形状发生改变.比较不同形状的力三角形各几何边、角情况,我们对相应的 每个力大小、方向的变化及其相互间的制约关系将一目了然.所 以,作出物体平衡时所受三力矢量可能构成的一簇闭合三角形, 是力三角形法的关键操作。 三力平衡的力三角形判断通常有三类情况. 一、三力中有一个力确定,即大小、方向不变,一个力方向 确定。这个力的大小及第三个力的大小、方向变化情况待定 例1 如图1所示,用细绳通过定滑轮沿竖直光滑的墙壁匀速向上拉动, 例2 则拉力F和墙壁对球的支持力N的变化情况如何? 分析与解 以球为研究对象,在平衡时受重力,绳上的拉力及墙壁 对球的支持力,三力关系可由一系列闭合的矢量三角形来描述。其中重 力为确定力,墙壁对球的支持力为方向确定力, 如图2,取点O作表示 重力的有向线段①,从该箭头的端点作支持力N的作用线所 在射线②,作从射线②任意点指向O点且将图形封闭成三角形的一系列有向线段③它们就是绳子拉力矢量。用曲线箭头 表示变化趋势,从图中容易分析绳子拉力不断增大,墙壁对 球的支持力也不断增大,因上升的过程中图中角度θ在不断 增大 例2 如图3装置,AB 为一轻杆在B 处用铰链固定于 竖墙壁上,AC 为不可伸长的轻质拉索,重物W可在AB 杆上滑行。试分析当重物W 从A 端向 B 端滑行的过程中,绳索中拉力的变化情况以及墙对AB 杆作用力的变化情况。 分析与解 以AB 杆为研究对象,用力矩平 衡的知识可较为方便明确AC 拉索中的拉力变化情 况,但不易确定墙对AB 杆作用力的情况。我们考虑 到AB 杆受三个力作用且处于平衡状态,则它们的作 用线必相交于一点,这样三力关系可由闭合的矢量 三角形来描述。其中重物对杆的拉力为确定力,拉索对杆的拉力为方向确定力,与上题类似。 如图4,取O 点作表示重物对AB 杆拉力的有向线 段①,过O 点作绳索拉力的作用线所在射线②,从①箭头 端点作指向射线②上任意 点的有向线段③,则③就是墙对AB 杆的作用力. 用曲箭头表明变化趋势。从图中可以看出:随着重物从A 端向B 端移动的过程中,①、③的夹角θ逐渐减小,所以 绳索的拉力不断减小,墙对AB 杆的作用力先减小后增大。 综上所述,类型一问题的作图方法是:以确定力矢量 为力三角形系的基准边,在它的箭头端沿已知方向力的方 向作射线,从射线上的点作指向确定力矢量箭尾的有向线 图4 图 1 图2 图3

常见三角形辅助线口诀

初二几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线 一、截取构全等 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自已试一试。

二、角分线上点向两边作垂线构全等 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。三、三线合一构造等腰三角形 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。 分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。 由线段和差想到的辅助线 五、截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。 分析:过C点作AD垂线,得到全等即可。

联系三角形法在地下工程中的应用

联系三角形法在地下工程中的应用 【摘要】在地下工程施工中建立地面与地下统一的坐标系是工程建设过程中的关键,只有统一的坐标才能使隧道的贯通得以顺利进行,而如何使地上、地下的坐标得以统一联系测量是工程施工中的关键。本文介绍的一井定向方法解决了地上与地下的坐标统一问题,解析了联系三角形的计算方法,提出了利用一井定向进行地下工程的联系测量不但可以保证工程的进度,同时可以保证工程的精度。 【关键词】一井定向;联系三角形;贯通;统一坐标系 0 引言 一井定向是指经过一个竖井进行定向的方法,亦可称为联系三角形定向。一井定向的方法是通过测量角度、距离等几何量来完成定向的,属于几何定向方法。这种方法需要在竖井、车站或投点孔等处进行。 进行一井定向时,在竖井井筒中悬挂两根钢丝垂球,在地面上利用地面控制点测定两垂球线的平面坐标及其连线方位角,在井下使用全站仪测角量边把垂球线与井下起始控制点连接起来,通过计算确定井下起始控制点的坐标和方位角。一井定向测量工作可分为投点(即在井筒中下放钢丝)和连接测量两项工作。 1 联接测量 暗挖隧道采用竖井联系三角形测量即通过竖井悬挂两根钢丝,由近井点测定与钢丝的距离和角度,算得钢丝的坐标以及它们的方位角,然后在井下认为钢丝的坐标和方位角已知,通过测量和计算便可得出地下导线的坐标和方位角,从而将地上和地下联系起来。图1所示为一井定向的示意图。 图1 联系三角形定向测量 联系三角形法,一般适合于井口小、深度大的竖井进行联系测量。虽然其作业工作量较大,但其精度很稳定,在城市轨道交通联系测量工作中该法也得到广泛应用。井上、井下联系三角形应满足下列要求: 1)竖井中悬挂钢丝间的距离c应尽可能长; 2)联系三角形锐角γ、γ’,一般应小于1°,呈直伸三角形; 3)a/c及a’/c比值,一般应小于1.5,a为近井点至悬挂钢丝的最短距离。钢丝宜选用Φ0.3mm,悬挂10kg重锤,并将重锤浸没在阻尼液中。联系三角形边长测量可采用光电测距或经检定的钢尺丈量,每次应独立测量三测回,每测回三次读数,各测回较差应小于1mm。地上与地下丈量的钢丝间距较差应小于2mm。

直角三角形的存在性问题(教案)

直角三角形的存在性问题(教案) 学习目标: 1、经历探索直角三角形存在性问题的过程,熟练掌握解题技巧。 2、体会分类讨论的数学思想,体验解决问题方法的多样性。 一、课前准备 1.已知直角三角形的两边长分别是3和4,则第三边的长为 . 2.如图,A (0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为 . 【设计意图】通过两个简单的关于直角三角形的练习,检测学生对勾股定理、M 型相似的应用情况,同时引出课题——直角三角形的存在性问题. 二、我们一起来探究 如图,A (0,1),B (4,3)是直线12 1 += x y 上的两点,点P 是x 轴上一个动点. 问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标. (备用图1) (备用图2) 提问:(1)这样的问题,你怎么思考的? 需要针对直角顶点进行分类. (2)一般会有几种情况? 三种. (3)分类之后需要做什么? 画图. (4)解题有哪些方法? (5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点. 变式跟进:将上述直线向上平移a 个单位,A 、B 两点也同时向上平移到相应的位置,x 轴上存在唯一的点P ,使得∠APB=90°. 求a 的值. 【小结】直角三角形的存在性问题解题策略: . 【设计意图】通过这个环节,探究直角三角形存在性问题解题策略:分类——画图——解题,重在让学生了解这类题的的三种解法:几何法、解析法、代数法,从而为后面的练习做好铺垫. 三、反馈练习 1.如图,点O (0,0),A (1,2),若存在格点P ,使△APO 为直角三角形,则点P 的个数有 个.

解直角三角形的方法技巧

解直角三角形的方法技巧 解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角的大小和面积等。首先要明确解直角三角形的依据和思路:在直角三角形中,我们是用三条边的比来表述锐角三角函数的定义。因此,锐角三角函数的定义本质上揭示了直角三角形中边角之间的关系,它是解直角三角形的基础。每个边角关系式都可看作方程,解直角三角形的思路,实际上就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解方程来求解。 例1.如图1,若图中所有的三角形都是直角三角形,且∠==A AE α,1,求AB 的长。 图1 思路1:所求AB 是Rt ABC ?的斜边,但在Rt ABC ?中只知一个锐角A 等于α,暂不可解。而在Rt AD E ?中,已知一直角边及一锐角是可解的,所以就从解Rt AD E ?入手。 解法1:在Rt AD E ?中,因cos A A E A D = ,且∠=A α,AE =1 故A D A E A ==cos cos 1α 在Rt AD C ?中,由cos A A D A C = ,得AC AD A = = =cos cos cos cos 1 12 ααα 在Rt ABC ?中,由cos A A C A B =,得AB AC A ===cos cos cos cos 1 123 ααα 思路2:观察图形可知,CD 、DE 分别是Rt ABC ?和Rt AC D ?斜边上的高,具备应用射 影定理的条件,可以利用射影定理求解。 解法2:同解法1得A D = 1cos α 在Rt AC D ?中,由AD AE AC 2 =?,得AC AD AE = = 2 2 1cos α

高中物理解题方法例话:7三角形法

7三角形法 [例题1]如图1所示,三角形支架AB=20cm、AC=30cm、BC=40cm,在支架的C点系一重物G=200N,求AC、BC两杆所受力的大小。 图1 解析:重物对绳的拉力F=G=200N,根据力的作用效果分析,如图2所示,显而易见:力的三角形FACCF与支架三角形CAB相似, 图2 即:△FACCF~△CAB 所以:FAC/AC=FBC/BC=F/AB 代入数值得:FAC=300N FBC=400N。 [例题2]如图3所示,河水流速v1=5m/s,一只小机动船在静水中速度v2=4m/s,现在它从A点开始渡河,要使其位移最短,船头应指向何方向行驶? 图3 解析:由于v1>v2,机动船无论向什么方向航行也不能垂直过河,那么机动船向什么方向航行渡河位移才能最小呢?我们作如图4分析:由于水的速度v1大小和方向都不变,而机动船的速度v2大小不变,则利用三角形定则合成时,v2末端在以v1末端为圆心、以v2的大小为半径的一个圆周上,显然,当机动船过河的实际速度方向与圆相切时,即α角最大,过河位移最短,此时,sinα=v2/v1=4/5,所以α=arcsin4/5=53°,即船头与河岸夹角为53°时过河位移最小。 图4 [例题3]如图5所示为某一横波的波形及波上A、B、C、D各质点的图像,求: (1)若此

列波向左传播,试判断A、B、C各质点的运动方向。 图5 (2)若D质点此时向下运动,试判断波的传播方向. 解析:(1)我们可以在两波谷(或波峰)间画一直线MN,沿波的传播方向标上箭头,然后在这条直线中心所对应的靠近波峰(或波谷)取一点Q,连接QN、QM使MNQ为一个三角形,在△MNQ的每条边上标上箭头,使箭头的方向首尾相连,由于NQ边的箭头指向上,所以A质点此时向上运动,同理B、C点向下运动. (2)由于D质点向下运动,我们沿波的斜坡画一直线EG,箭头由E指向G,然后同样作△EGF,依次标上箭头使它们首尾相连.由于靠近两波峰的EF边的箭头向右,因此,可以判断坡的传播方直水平向右。

(一)压轴题解题方法——直角三角形的存在性

直角三角形的存在性 A(1.5,0),B(4,0),C(0,-3) CA 垂直平分BB’ , 垂足为Q 在抛物线上是否存在一点P , 使△QCP 是以QC 为直角边的直角三角形? 第一步 寻找分类标准 以QC 为直角边的Rt △QCP 分两种情况: ①C 为直角顶点 ②Q 为直角顶点 ①C 为直角顶点 ②Q 为直角顶点 的Rt △QCP 有1个 的Rt △QCP 有2个 ①C 为直角顶点 那么△AOC ∽△CNP 21113 24 y x x =-+ -2 1 ==OC OA NP NC 于是 NC NP 2=因此) (2N C P y y x -=数形结合,

②Q 为直角顶点 画图无法精确 关键点必须准确,标注坐标 点P 容易找到 分类讨论,防止遗漏 求解实在麻烦 数形结合,当心负号 如果用代数法求解点P 的坐标? 又多了2大步求直线的解析式,错误系数更高 ) 34 11 21,(2-+-x x x P 设) 4 11 21(22x x x -=那么2 13 ,021= =x x 解得C x 的几何意义就是点01=P x 的几何意义就是点2 13 2= 2 1''= =OB OB MB MP 于是' 2MP MB =因此' '2P P B y x x =-数形结合,) 34 11 21,(2-+-x x x P 设) 34 11 21(242-+-=-x x x 那么2 5 ,421= =x x 解得2 5,421= =x x 解得B x 的几何意义就是点41=' 2 5 2P x 的几何意义就是点=???抛物线的解析式 的解析式直线方程组'BB ?? ?抛物线的解析式 的解析式 直线方程组CP

相关主题
文本预览
相关文档 最新文档