当前位置:文档之家› RAM内存分为哪些种类

RAM内存分为哪些种类

RAM内存分为哪些种类
RAM内存分为哪些种类

RAM内存分为哪些种类

RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。

01.DRAM(Dynamic RAM,动态随机存取存储器)

这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。

02.SRAM(Static RAM,静态随机存取存储器)

静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。

03.VRAM(Video RAM,视频内存)

它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。

04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)

改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU 需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期,FPM DRAM被大量使用。

05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器)

这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM 那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下

的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM

开始执行。。

06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器)

这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。

07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器)

MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。

08.WRAM(Window RAM,窗口随机存取存储器)

韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。

09.RDRAM(Rambus DRAM,高频动态随机存取存储器)

Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。

10.SDRAM(Synchronous DRAM,同步动态随机存取存储器)

这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。

11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)

SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。

RAM工作原理

RAM工作原理 实际的存储器结构由许许多多的基本存储单元排列成矩阵形式,并加上地址选择及读写控制等逻辑电路构成。当CPU要从存储器中读取数据时,就会选择存储器中某一地址,并将该地址上存储单元所存储的内容读走。 早期的DRAM的存储速度很慢,但随着内存技术的飞速发展,随后发展了一种称为快速页面模式(Fast Page Mode)的DRAM技术,称为FPDRAM。FPM内存的读周期从DRAM阵列中某一行的触发开始,然后移至内存地址所指位置的第一列并触发,该位置即包含所需要的数据。第一条信息需要被证实是否有效,然后还需要将数据存至系统。一旦发现第一条正确信息,该列即被变为非触发状态,并为下一个周期作好准备。这样就引入了“等待状态”,因为在该列为非触发状态时不会发生任何事情(CPU必须等待内存完成一个周期)。直到下一周期开始或下一条信息被请求时,数据输出缓冲区才被关闭。在快页模式中,当预测到所需下一条数据所放位置相邻时,就触发数据所在行的下一列。下一列的触发只有在内存中给定行上进行顺序读操作时才有良好的效果。 从50纳秒FPM内存中进行读操作,理想化的情形是一个以6-3-3-3形式安排的突发式周期(6个时钟周期用于读取第一个数据元素,接下来的每3个时钟周期用于后面3个数据元素)。第一个阶段包含用于读取触发行列所需要的额外时钟周期。一旦行列被触发后,内存就可以用每条数据3个时钟周期的速度传送数据了。 FP RAM虽然速度有所提高,但仍然跟不上新型高速的CPU。很快又出现了EDO RAM和SDRAM等新型高速的内存芯片。 介绍处理器高速缓存的有关知识 所谓高速缓存,通常指的是Level 2高速缓存,或外部高速缓存。L2高速缓存一直都属于速度极快而价格也相当昂贵的一类内存,称为SRAM(静态RAM),用来存放那些被CPU频繁使用的数据,以便使CPU不必依赖于速度较慢的DRAM。 最简单形式的SRAM采用的是异步设计,即CPU将地址发送给高速缓存,由缓存查找这个地址,然后返回数据。每次访问的开始都需要额外消耗一个时钟周期用于查找特征位。这样,异步高速缓存在66MHz总线上所能达到的最快响应时间为3-2-2-2,而通常只能达到4-2-2-2。同步高速缓存用来缓存传送来的地址,以便把按地址进行查找的过程分配到两个或更多个时钟周期上完成。SRAM在第一个时钟周期内将被要求的地址存放到一个寄存器中。在第二个时钟周期内,SRAM把数据传送给CPU。由于地址已被保存在一个寄存器中,所以接下来同步SRAM就可以在CPU读取前一次请求的数据同时接收下一个数据地址。这样,同步SRAM 可以不必另花时间来接收和译码来自芯片集的附加地址,就“喷出”连续的数据元素。优化的响应时间在66MHz总线上可以减小为2-1-1-1。 另一种类型的同步SRAM称为流水线突发式(pipelined burst)。流水线实际上是增加了一个用来缓存从内存地址读取的数据的输出级,以便能够快速地访问从内存中读取的连续数据,而省去查找内存阵列来获取下一数据元素过程中的延迟。流水线对于顺序访问模式,如高速缓存的行填充(linefill)最为高效。 什么是ECC内存 ECC是Error Correction Coding或Error Cheching and Correcting的缩写,它代表具有自动纠错功能的内存。目前的ECC存储器一般只能纠正一位二进制数的错误。 Intel公司的82430HX芯片组可支持ECC内存,所以采用82430HX芯片的主板一般都可以安装使用ECC 内存,由于ECC内存成本比较高,所以它主要应用在要求系统运算可靠性比较高的商业计算机

全面教你认识内存参数

全面教你认识内存参数 内存热点 Jany 2010-4-28

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是 Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM 的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存 第二代DDR内存

DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存 DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit 预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片

ram的特点是

ram的特点是 易失性 当电源关闭时RAM不能保留数据。如果需要保存数据,就必须把它们写入一个长期的存储设备中(例如硬盘)。RAM和ROM相比,两者的最大区别是RAM在断电以后保存在上面的数据会自动消失,而ROM不会自动消失,可以长时间断电保存。 随机存取 所谓“随机存取”,指的是当存储器中的数据被读取或写入时,所需要的时间与这段信息所在的位置或所写入的位置无关。相对的,读取或写入顺序访问(Sequential Access)存储设备中的信息时,其所需要的时间与位置就会有关系。它主要用来存放操作系统、各种应用程序、数据等。 对静电敏感 正如其他精细的集成电路,随机存取存储器对环境的静电荷非常敏感。静电会干扰存储器内电容器的电荷,引致数据流失,甚至烧坏电路。故此触碰随机存取存储器前,应先用手触摸金属接地。 访问速度 现代的随机存取存储器几乎是所有访问设备中写入和读取速度最快的,存取延迟和其他涉及机械运作的存储设备相比,也显得微不足道。 需要刷新(再生)

现代的随机存取存储器依赖电容器存储数据。电容器充满电后代表1(二进制),未充电的代表0。由于电容器或多或少有漏电的情形,若不作特别处理,数据会渐渐随时间流失。刷新是指定期读取电容器的状态,然后按照原来的状态重新为电容器充电,弥补流失了的.电荷。需要刷新正好解释了随机存取存储器的易失性。 根据存储单元的工作原理不同,RAM分为静态RAM和动态RAM。 静态随机存储器(SRAM) 静态存储单元是在静态触发器的基础上附加门控管而构成的。因此,它是靠触发器的自保功能存储数据的。 动态随机存储器(DRAM) 动态RAM的存储矩阵由动态MOS存储单元组成。动态MOS 存储单元利用MOS管的栅极电容来存储信息,但由于栅极电容的容量很小,而漏电流又不可能绝对等于0,所以电荷保存的时间有限。为了避免存储信息的丢失,必须定时地给电容补充漏掉的电荷。通常把这种操作称为“刷新”或“再生”,因此DRAM内部要有刷新控制电路,其操作也比静态RAM复杂。尽管如此,由于DRAM存储单元的结构能做得非常简单,所用元件少,功耗低,已成为大容量RAM的主流产品。 只读存储器 ROM-read only memory只读存储器

动态分区式存储管理

可变分区存储管理 设计思路: 整体思路: 可变分区管理方式将内存除操作系统占用区域外的空间看做一个大的空闲区。当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个 空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 设计所才用的算法: 采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值min size,如果空闲区的大小减去作业需求长度得到的值小于等于min size,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。 内存分配与回收所使用的结构体: 为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“ 1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于min size,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。同时,在已分配区表中找到一个标志为“ 0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。若空闲区的大小与作业所需大小的差值大于

ram结构

RAM的基本结构 RAM的基本结构如图7-30所示,可以分为三个部分:存储矩阵,地址译码器及读写电路。 ? 存储矩阵 存储矩阵是用来存储要存放的代 码,矩阵中每个存储单元都用一个二进 制码给以编号,以便查询此单元。这个 二进制码称作地址。 ?地址译码器 译码器可以将输入地址译为电平信号,以选中存储矩阵中的响应的单元。寻址方式分为一元寻址和二元寻址。一元寻址又称为单向译码或字译码,其输出的译码线就是字选择线,用它来选择被访问字的所有单元;二元寻址又称为双向译码,二元寻址能够访问每一个单元,由X地址译码器输出的译码线作为行选择线进行“行选”;由Y 地址译码器输出的译码线作为列选择线进行“列选”,则行、列选择线同时选中的单元即为被访问单元,可以对它进行“写入”或“读出”。 ?读写电路 读写电路是RAM的控制部分,它包括片选CS,读写控制R/W以及数据输入读出放大器,片选CS的作用是只有当该端加低电平时此RAM才起作用, 才能进行读与写,读写控制R/W的作用是当R/W端加高电平时,对此RAM进行读出,

当R/W端加低电平时进行写入。输出级电路一般采用三态输出或集电极开路输出结构,以便扩展存储容量,如果是集电极开路输出(即OC输出),则应外接负载电阻。 双口RAM 目录 简介 特点 编辑本段简介 双口RAM 是在一个SRAM 存储器上具有两套完全独立的数据线、地址线和读写控制线,并允许两个独立的系统同时对该存储器进行随机性的访问。即共享式多端口存储器。 双口RAM最大的特点是存储数据共享。一个存储器配备两套独立的地址、数据和控制线,允许两个独立的CPU或控制器同时异步地访问存储单元。因为数据共享,就必须存在访问仲裁控制。内部仲裁逻辑控制提供以下功能:对同一地址单元访问的时序控制;存储单元数据块的访问权限分配;信令交换逻辑(例如中断信号)等。 双口RAM可用于提高RAM的吞吐率,适用于作于实时的数据缓存。 编辑本段特点 (1)对同一地址单元访问的竞争控制 如果同时访问双口RAM的同一存储单元,势必造成数据访问失真。为了防止冲突的发生,采用Busy逻辑控制,也称硬件地址仲裁逻辑。图2给出了地址总线发生匹配时的竞争时序。此处只给出了地址总线选通信信号先于片选脉冲信号的情况,而且,两端的片选信号至少相差tAPS——仲裁最小时间间隔(IDT7132为5ns),内部仲裁逻辑控制才可给后访问的一方输出Busy闭锁信号,将访问权交给另一方直至结束对该地址单元的访问,才撤消Busy闭锁信号,将访问权交给另一方直至结束对该地址单元的访问,才撤消Busy闭锁信号。即使在极限情况,两个CPU几乎同时访问同一单元——地址匹配时片选信号低跳变之差少于tAPS,Busy闭锁信号也仅输出给其中任一CPU,只允许一个CPU访问该地址单元。仲裁控制不会同时向两个CPU发Busy闭锁信号。

固定分区存储管理

理工大学信息工程与自动化学院学生实验报告 ( 2013 —2014 学年第一学期) 课程名称:操作系统开课实验室:信自楼444 2013年 11月28 日 注:报告容按下列的要求进行。 一、实验目的 通过编写固定分区存储管理的模拟程序,加深对操作系统存储管理功能中的固定分区管理方式、主存分配表等相应知识的理解。 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的存分配和回收。 二、实验题目 1.设计一个固定分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 2.必须建立分区表,记录空闲区与占用区的状况。

本系统将存用户空间划分为五个大小不固定的分区,其分区大小由用户输入决定。在每个分区只装入一道作业,这样把用户空间划分为几个分区,便允许几道作业并发运行。当有一个空闲分区时,便可以从外存的后备队列中选择一个适当大小的作业装入该分区,当该作业结束时又可以从后备作业队列中找出另一作业调入该分区。 每个存空间是一个Node型的对象。Node类有一个三个参数的构造函数。分别为:分区号、起始地址、大小。然后就是一些属性的get、set方法和一个打印其属性的函数。四个数据域分别为:属性m_No用来表示该存空间的序号。属性m_Addr用来表示存分区的起始地址。属性m_Size用来表示存空间的大小。属性m_State表示存空间的是否已分配的状态标志。若该存空间已分配,m_TaskNo表示占有该存空间的任务序号。否则没有实际意义。 在用户申请任务的存空间时,提示用户输入任务号和其需要的存空间大小。 流程图 主程序:

释放存空间算法

DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件 设计规范 By: Michael Oct 12, 2010 haolei@https://www.doczj.com/doc/1a801109.html,

目录 1.概述 (3) 2.DDR的基本原理 (3) 3.DDR SDRAM与SDRAM的不同 (5) 3.1差分时钟 (6) 3.2数据选取脉冲(DQS) (7) 3.3写入延迟 (9) 3.4突发长度与写入掩码 (10) 3.5延迟锁定回路(DLL) (10) 4.DDR-Ⅱ (12) 4.1DDR-Ⅱ内存结构 (13) 4.2DDR-Ⅱ的操作与时序设计 (15) 4.3DDR-Ⅱ封装技术 (19) 5.DDR-Ⅲ (21) 5.1DDR-Ⅲ技术概论 (21) 5.2DDR-Ⅲ内存的技术改进 (23) 6.内存模组 (26) 6.1内存模组的分类 (26) 6.2内存模组的技术分析 (28) 7.DDR 硬件设计规范 (34) 7.1电源设计 (34) 7.2时钟 (37) 7.3数据和DQS (38) 7.4地址和控制 (39) 7.5PCB布局注意事项 (40) 7.6PCB布线注意事项 (41) 7.7EMI问题 (42) 7.8测试方法 (42)

摘要: 本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。 关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT , DLL, MRS, ODT Notes : Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

内存条的种类

内存条的种类 老的内存有FPM、EDO、SDRM,后来的有DDR、DDR2、DDR3、RDRAM 目前能见到的内存有:SDR、DDR、DDR2 ,DDR3三类。比如说DDR 800后面所带的数字表示内存的频率,数字越高速度越快。 内存的价格非常不稳定,没办法讨论其性价比。 性能从低到高分别是:SDR DDR DDR2 DDR3 外观: SDR一般有两个缺口 DDR1的缺口比较靠外 DDR2的缺口比较靠中间 DDR2代和DDR3代的槽是一样的 其中DDR与DDR2的区别很不明显,DDR是184线接口,DDR2是240线接口,金手指比DDR的要密看标识,上面写的很清,下面用图片来直观的说一下其中的区别吧 延迟问题

在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。 这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。 封装和发热量: DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。 DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。 DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。 DDR2采用的新技术: 除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。 OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。 ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。

内存的物理结构和工作原理

内存的物理结构和工作原理 内存也叫主存,是PC系统存放数据与指令的半导体存储器单元,也叫主存储器(Main Memory),通常分为只读存储器(ROM-Read Only Memory)、随机存储器(RAM-Red Access Memory)和高速缓存存储器(Cache)。我们平常所指的内存条其实就是RAM,其主要的作用是存放各种输入、输出数据和中间计算结果,以及与外部存储器交换信息时做缓冲之用。 下面是结构: 1、PCB板 内存条的PCB板多数都是绿色的。如今的电路板设计都很精密,所以都采用了多层设计,例如4层或6层等,所以PCB板实际上是分层的,其内部也有金属的布线。理论上6层PCB板比4层PCB板的电气性能要好,性能也较稳定,所以名牌内存多采用6层PCB板制造。因为PCB板制造严密,所以从肉眼上较难分辩PCB板是4层或6层,只能借助一些印在PCB板上的符号或标识来断定。 2、金手指 黄色的接触点是内存与主板内存槽接触的部分,数据就是靠它们来传输的,通常称为金手指。金手指是铜质导线,使用时间长就可能有氧化的现象,会影响内存的正常工作,易发生无法开机的故障,所以可以隔一年左右时间用橡皮擦清理一下金手指上的氧化物。 3、内存芯片 内存的芯片就是内存的灵魂所在,内存的性能、速度、容量都是由内存芯片组成的。 4、内存颗粒空位 5、电容 PCB板上必不可少的电子元件就是电容和电阻了,这是为了提高电气性能的需要。电容采用贴片式电容,因为内存条的体积较小,不可能使用直立式电容,但这种贴片式电容性能一点不差,它为提高内存条的稳定性起了很大作用。 6、电阻 电阻也是采用贴片式设计,一般好的内存条电阻的分布规划也很整齐合理。7、内存固定卡缺口:内存插到主板上后,主板上的内存插槽会有两个夹子牢固的扣住内存,这个缺口便是用于固定内存用的。 8、内存脚缺口 内存的脚上的缺口一是用来防止内存插反的(只有一侧有),二是用来区分不同的内存,以前的SDRAM内存条是有两个缺口的,而DDR则只有一个缺口,不能混插。 9、SPD SPD是一个八脚的小芯片,它实际上是一个EEPROM可擦写存贮器,这的容量有256字节,可以写入一点信息,这信息中就可以包括内存的标准工作状态、速度、响应时间等,以协调计算机系统更好的工作。从PC100时代开始,PC100规准中就规定符合PC100标准的内存条必须安装SPD,而且主板也可

动态分区存储管理系统分解

操作系统原理 课程设计报告 题目:动态分区分配存储管理系统 所在学院:计算机科学与技术学院 班级: 11级计算机科学与技术(非师) 学号: 20111202052 姓名:吴创连 指导教师:黄侠剑 2014年3月18

目录 1 引言 (1) 2 需求分析 (1) 3 概要设计 (1) 4 详细设计 (1) 4.1问题描述和分析 (1) 4.2程序流程图 (2) 4.3数据结构体分析 (3) 4.4主要程序代码分析 (4) 5 调试与操作说明 (11) 5.1初始界面 (11) 5.2模拟内存分配 (12) 5.3回收内存界面 (12) 5.4最佳适应算法的实现 (13) 5.5最坏适应算法的实现 (13) 6总结与体会 (13)

1 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 2 需求分析 动态分区分配是根据进程的实际需要,动态地为之分配内存空间。在实现动态分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。常用的数据结构有动态分区表和动态分区链。在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(最佳适应算法,最坏适应算法),在动态分区存储管理方式中主要实现内存分配和内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接等相关的内容。 3 概要设计 本程序采用机构化模块化的设计方法,共分为两大模块。 1.最佳适应算法实现 它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。 2.最坏算法实现 最坏适应分配算法要扫描整个空闲分区或链表,总是挑选一个最大的空闲分区分割给作业使用。该算法要求将所有的空闲分区按其容量从大到小的顺序形成一空闲分区链,查找时只要看第一个分区能否满足作业要求。 4 详细设计 4.1 问题描述和分析 系统应利用某种分配算法,从空闲分区链表中找到所需大小的分区,如果空闲分区大小

详解内存工作原理及发展历程

详解内存工作原理及发展历程 RAM(Random Access Memory)随机存取存储器对于系统性能的影响是每个PC 用户都非常清楚的,所以很多朋友趁着现在的内存价格很低纷纷扩容了内存,希望借此来得到更高的性能。不过现在市场是多种内存类型并存的,SDRAM、DDR SDRAM、RDRAM等等,如果你使用的还是非常古老的系统,可能还需要EDO DRAM、FP DRAM(块页)等现在不是很常见的内存。 虽然RAM的类型非常的多,但是这些内存在实现的机理方面还是具有很多相同的地方,所以本文的将会分为几个部分进行介绍,第一部分主要介绍SRAM 和异步DRAM(asynchronous DRAM),在以后的章节中会对于实现机理更加复杂的FP、EDO和SDRAM进行介绍,当然还会包括RDRAM和SGRAM等等。对于其中同你的观点相悖的地方,欢迎大家一起进行技术方面的探讨。 存储原理: 为了便于不同层次的读者都能基本的理解本文,所以我先来介绍一下很多用户都知道的东西。RAM主要的作用就是存储代码和数据供CPU在需要的时候调用。但是这些数据并不是像用袋子盛米那么简单,更像是图书馆中用有格子的书架存放书籍一样,不但要放进去还要能够在需要的时候准确的调用出来,虽然都是书但是每本书是不同的。对于RAM等存储器来说也是一样的,虽然存储的都是代表0和1的代码,但是不同的组合就是不同的数据。 让我们重新回到书和书架上来,如果有一个书架上有10行和10列格子(每行和每列都有0-9的编号),有100本书要存放在里面,那么我们使用一个行的编号+一个列的编号就能确定某一本书的位置。如果已知这本书的编号87,

DRAM内存原理.

DRAM内存原理 1. 内存基础 不管你信不信,RDRAM (Rambus、DDR SDRAM甚至是EDO RAM它们在本质上讲是一样的。RDRAM、DDR RAM、SDRAM、EDO RAM都属于 DRAM(Dynamic RAM,即动态内存。所有的DRAM基本单位都是由一个晶体管和一个电容器组成。请看下图: 上图只是DRAM一个基本单位的结构示意图:电容器的状态决定了这个DRAM 单位的逻辑状态是1还是0,但是电容的被利用的这个特性也是它的缺点。一个电容器可以存储一定量的电子或者是电荷。一个充电的电容器在数字电子中被认为是逻辑上的1,而“空”的电容器则是0。电容器不能持久的保持储存的电荷,所以内存需要不断定时刷新,才能保持暂存的数据。电容器可以由电流来充电——当然这个电流是有一定限制的,否则会把电容击穿。同时电容的充放电需要一定的时间,虽然对于内存基本单位中的电容这个时间很短,只有大约0.2-0.18微秒,但是这个期间内存是不能执行存取操作的。

DRAM制造商的一些资料中显示,内存至少要每64ms刷新一次,这也就意味着内存有1%的时间要用来刷新。内存的自动刷新对于内存厂商来说不是一个难题,而关键在于当对内存单元进行读取操作时保持内存的内容不变——所以DRAM单元每次读取操作之后都要进行刷新:执行一次回写操作,因为读取操作也会破坏内存中的电荷,也就是说对于内存中存储的数据是具有破坏性的。所以内存不但要每64ms 刷新一次,每次读操作之后也要刷新一次。这样就增加了存取操作的周期,当然潜伏期也就越长。 SRAM,静态(StaticRAM不存在刷新的问题,一个SRAM基本单元包括4个晶体管和2个电阻。它不是通过利用电容充放电的特性来存储数据,而是利用设置晶体管的状态来决定逻辑状态——同CPU中的逻辑状态一样。读取操作对于SRAM不是破坏性的,所以SRAM不存在刷新的问题。 SRAM不但可以运行在比DRAM高的时钟频率上,而且潜伏期比DRAM短的多。SRAM仅仅需要2到3个时钟周期就能从CPU缓存调入需要的数据,而DRAM 却需要3到9个时钟周期(这里我们忽略了信号在CPU、芯片组和内存控制电路之间传输的时间。前面也提到了,SRAM需要的晶体管的数目是DRAM 的4倍,也就是说成本比DRAM高至少是4倍,在目前的售价SRAM每M价格大约是DRAM的8倍,是RAMBUS内存的2到3倍。不过它的极短的潜伏期和高速的时钟频率却的确可以带来更高的带宽。 结构和功能(SDRAM 内存最基本的单位是内存“细胞”——也就是我们前面展示给大家DRAM 基本单元示意图所示的部分,下面我们对这个部分通称为DRAM基本单元。每个DRAM 基本单元代表一个“位”——Bit(也就是一个比特,并且有一个由列地址和行地址定义的唯一地址。8个比特组成一个字节,它可代表256种组合(即2的八次幂,字节是内存中最小的可寻址单元。DRAM基本单元不能被单独寻址——否则现在的内存将会更加复杂,而且也没有必要。很多DRAM基本单元连接到同一个列线(Row line和同一个行线(Column line,组成了一个矩阵结构,这个矩阵结构就是一个Bank。大部

Flash存储芯片工作原理概况

Flash 存储芯片工作原理: Flash 芯片并不是像光盘那样把信息刻上去的。为了更加清楚地说明,我首先让你知道计算机的信息是怎样储存的。计算机用的是二进制,也就是0与1。在二进制中,0与1可以组成任何数。而电脑的器件都有两种状态,可以表示0与1。比如三极管的断电与通电,磁性物质的已被磁化与未被磁化,物质平面的凹与击,都可以表示0与1。硬盘就是采用磁性物质记录信息的,磁盘上的磁性物质被磁化了就表示1,未被磁化就表示0,因为磁性在断电后不会丧失,所以磁盘断电后依然能保存数据。而内存的储存形式则不同,内存不是用磁性物质,而是用RAM 芯片。现在请你在一张纸上画一个“田”,就是画一个正方形再平均分成四份,这个“田”字就是一个内存,这样,“田”里面的四个空格就是内存的储存空间了,这个储存空间极小极小,只能储存电子。。好,内存现在开始工作。内存通电后,如果我要把“1010”这个信息保存在内存(现在画的“田”字)中,那么电子就会进入内存的储存空间里。“田”字的第一个空格你画一点东西表示电子,第二个空格不用画东西,第三个空格又画东西表示电子,第四个格不画东西。这样,“田”的第一格有电子,表示1,第二格没有,表示0,第三格有电子,表示1,第四格没有,表示0,内存就是这样把“1010”这个数据保存好了。电子是运动没有规律的物质,必须有一个电源才能规则地运动,内存通电时它很安守地在内存的储存空间里,一旦内存断电,电子失去了电源,就会露出它乱杂无章的本分,逃离出内存的空间去,所以,内存断电就不能保存数据了。再看看U 盘,U 盘里的储存芯片是Flash 芯片,它与RAM 芯片的工作原理相似但不同。现在你在纸上再画一个“田”字,这次要在四个空格中各画一个顶格的圆圈,这个圆圈不是表示电子,而是表示一种物质。好,Flash 芯片工作通电了,这次也 是保存“1010”这个数据。电子进入了“田”的第一个空格,也就是芯片的储存空间。电子把里面的物质改变了性质,为了表示这个物质改变了性质,你可以把“田”内的第一个圆圈涂上颜色。由于数据“1010”的第二位数是0,所以Flash 芯片的第二个空间没有电子,自然里面那个物质就不会改变了。第三位数是1,所以“田”的第三个空格通电,第四个不通电。现在你画的“田”字,第一个空格的物质涂上了颜

一文详解SRAM特点和原理

一文详解SRAM特点和原理 基本简介SRAM不需要刷新电路即能保存它内部存储的数据。而DRAM (Dynamic Random Access Memory)每隔一段时间,要刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,且功耗较大。所以在主板上SRAM存储器要占用一部分面积。 主要规格一种是置于CPU与主存间的高速缓存,它有两种规格:一种是固定在主板上的高速缓存(Cache Memory );另一种是插在卡槽上的COAST(Cache On A STIck)扩充用的高速缓存,另外在CMOS芯片1468l8的电路里,它的内部也有较小容量的128字节SRAM,存储我们所设置的配置数据。还有为了加速CPU内部数据的传送,自80486CPU 起,在CPU的内部也设计有高速缓存,故在PenTIum CPU就有所谓的L1 Cache(一级高速缓存)和L2Cache(二级高速缓存)的名词,一般L1 Cache是内建在CPU的内部,L2 Cache是设计在CPU的外部,但是PenTIum Pro把L1和L2 Cache同时设计在CPU的内部,故PenTIum Pro的体积较大。最新的Pentium II又把L2 Cache移至CPU内核之外的黑盒子里。SRAM显然速度快,不需要刷新的操作,但是也有另外的缺点,就是价格高,体积大,所以在主板上还不能作为用量较大的主存。 基本特点现将它的特点归纳如下: ◎优点,速度快,不必配合内存刷新电路,可提高整体的工作效率。 ◎缺点,集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。 ◎SRAM使用的系统: ○CPU与主存之间的高速缓存。 ○CPU内部的L1/L2或外部的L2高速缓存。 ○CPU外部扩充用的COAST高速缓存。 ○CMOS 146818芯片(RTCMOS SRAM)。

固定分区存储管理

昆明理工大学信息工程与自动化学院学生实验报告 ( 2013 —2014 学年第一学期) 课程名称:操作系统开课实验室:信自楼444 2013年 11月28 日 注:报告内容按下列的要求进行。 一、实验目的 通过编写固定分区存储管理的模拟程序,加深对操作系统存储管理功能中的固定分区管理方式、主存分配表等相应知识的理解。 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二、实验题目 1.设计一个固定分区分配的存储管理方案。并模拟实现分区的分配和回收过程。

2.必须建立分区表,记录空闲区与占用区的状况。 3.流程图按选定的算法自己完成。 三、算法设计的思想或流程图 本系统将内存用户空间划分为五个大小不固定的分区,其分区大小由用户输入决定。在每个分区只装入一道作业,这样把用户空间划分为几个分区,便允许几道作业并发运行。当有一个空闲分区时,便可以从外存的后备队列中选择一个适当大小的作业装入该分区,当该作业结束时又可以从后备作业队列中找出另一作业调入该分区。 每个内存空间是一个Node型的对象。Node类有一个三个参数的构造函数。分别为:分区号、起始地址、大小。然后就是一些属性的get、set方法和一个打印其属性的函数。四个数据域分别为:属性m_No用来表示该内存空间的序号。属性m_Addr用来表示内存分区的起始地址。属性m_Size用来表示内存空间的大小。属性m_State表示内存空间的是否已分配的状态标志。若该内存空间已分配,m_TaskNo表示占有该内存空间的任务序号。否则没有实际意义。 在用户申请任务的内存空间时,提示用户输入任务号和其需要的内存空间大小。 流程图 主程序:

硬盘内部硬件结构和工作原理详解

硬盘内部硬件结构和工作原理详解 一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、生产日期、容量、参数和主从设置方法等。这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。 硬盘主要由盘体、控制电路板和接口部件等组成,如图1-1所示。盘体是一个密封的腔体。硬盘的内部结构通常是指盘体的内部结构;控制电路板上主要有硬盘BIOS、硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示;硬盘接口包括电源插座、数据接口和主、从跳线,如图1-3所示。 图1-1 硬盘的外观 图1-2 控制电路板 图1-3 硬盘接口 电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE接口电缆进行连接。新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。 此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。

1.2 硬盘的内部结构 硬盘的内部结构通常专指盘体的内部结构。盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。 图1-4 硬盘内部结构 硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in (1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in 硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。 有的硬盘只装一张盘片,有的硬盘则有多张盘片。这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。早期硬盘由于单碟容量低,所以,盘片较多,有的甚至多达10余片,现代硬盘的盘片一般只有少数几片。一块硬盘内的所有盘片都是完全一样的,不然控制部分就太复杂了。一个牌子的一个系列一般都用同一种盘片,使用不同数量的盘片,就出现了一个系列不同容量的硬盘产品。 盘体的完整构造如图1-5所示。

内存名称详解

内存名称详解 PC-66 这种内存使用66MHz的频率,而这也是第一代的SDR SDRAM内存。 PC-100 同样的,这种内存只是将工作频率提升到了100MHz,工作在CAS3模式下。 PC-133 这次改变还是只是将频率提升到133MHz,同样工作在CAS3模式下。 PC-150 这种内存并非官方发布的一个版本,而PC-150实际上就是一个超频版的内存。通常这种内存可以运行在150MHz频率CAS3模式或者是133MHz频率CAS2模式下,但是据说Corsair 的PC-150内存可以在150MHz 的频率下以CAS2的模式工作。 PC-166 另外一类超频内存,只是单纯的超频使得频率达到了一个新高点而已,仍然运行在CAS3之下。 PC-180 可以算作是另类的超频内存了,它简单的将频率提升到了180MHz,但是我个人认为这种内存没有实际使用的意义,因为毕竟现在DDR内存的价格已经是非常便宜了。 DDR SDRAM DDR内存按照速度分类就可以用两种方法来进行分类了。第一种就是以DDRXXX这种方式命名。后边的“XXX”就表示了这个内存是以两倍于XXX的速度运行的内存。另外一种就是以PCXXXX进行命名。后边的“XXXX”就是内存的带宽。 PC1600 此类DDR内存就是最早的一代DDR内存了。它的工作频率为200MH(由于是DDR内存,所以频率增加一倍,就是100MHz x2所以实际上这类内存是工作在200MHz的频率下的),而工作模式为CAS2.5。 DDR266/PC2100 现在最普遍见到的DDR内存,工作频率为266MHz,工作模式为CAS2.5。 PC2400 又是一个非官方版本的DDR内存。实际上就是通过对内存颗粒的筛选、改造而制造成质量上乘的超频DDR内存。这样,让它们可以在150MHz(实际使用中双倍变为300MHz)的频率下工作在CAS2的模式下。Corsair就是其中的一个厂商。 DDR333/PC2700 官方发布的一个DDR内存版本,通过将内存频率增加到166MHz DDR(实际工作中双倍变为333MHz)的CAS2.5模式,来提升系统性能。

4G内存条的终极解释

昨天刚换4G内存虽然是64BIT windows7 但是依然无法完全使用。可用内存只有3G。。。坛子上搜了不少帖子发现时主板问题。。 SIS671DX 号称支持4G内存的主板。。实际在操作系统里是无法完全使用的。。。内存映射PAE这些选项在笔记本主板里是没有的。。所以至今还是个无解的难题。 一下转载某人博客里的文章希望大家能深刻理解。。。 全面解析4GB内存无法识别问题 因为内存价格的持续走低,目前各大内存厂商相继推出了单条2GB的DDR2 800内存,这些内存给人最大的感觉就是价格便宜量又足。很多用户就直接买了两条2GB的内存,想组成双通道使用。可拿回家一看,原本4GB的内存容量被识别出来的只有3.2GB左右。通过检查,发现内存本身并没有问题。那又是什么吞食了你的内存呢?这就是我们本期将要给大家说清楚的一个问题。 800MB内存被吞食了 大家或许会发现一种很奇怪的现象,在我们的Windows XP和Vista中,安装4GB内存后,显示出来的只有3.2GB左右甚至更少,有800多MB的内存“无缘无故”地消失了,这让人感觉十分费解,主板和操作系统之所以不能使用全部的4GB内存,问题的根源就在于计算机那32位X86架构。32位X86架构是指个人电脑的地址总线是32位的,CPU、内存控制器、操作系统都是按32位地址总线设计。32位地址总线可以支持的内存地址代码是4096MB,也就是有4GB的地址代码,可以编4GB个地址。这4GB个地址码正好可以分配给4GB内存。但是,这4GB个地址码不能全部分配给安装在主板上的物理内存。因为个人电脑还有很多设备需要地址代码,以便CPU可以根据地址码找到它们,同时CPU和这些设备交换数据需要暂时存放数据的存储器——寄存器,这些寄存器也需要地址代码。比如硬盘控制器、软驱控制器、管理插在PCI槽上的PCI卡的PCI总线控制器,PCI-E总线控制器和PCI-E显卡,它们都有寄存器都需要系统分配给它们地址代码。这些地址由系统分配,电脑用户在使用中感觉不到。这样一来,当我们为电脑插上总容量为4GB的内存时,就有一部分内存分配不到地址代码而不能使用。 要深入了解4GB内存之谜,我们就得弄清楚各部件与4GB内存关系,其中涉及到的部件有CPU、内存控制器(Intel平台集成在北桥,AMD平台集成在CPU)和操作系统。CPU、内存控制器、BIOS:能支持4GB CPU能支持4GB内存 从386时代开始,CPU的地址总线就是32位的,可以访问4GB的地址代码。从奔腾Ⅱ到奔腾Ⅳ,理论上已经可以访问64GB的地址编码。后来支持64位架构的奔腾Ⅳ到现在的酷睿2,地址总线已经升级到64位,64位地址总线可以访问千亿GB的地址编码。实际上用不到这么多的地址总线,一般用42位足够了,可以编码的地址量有4TB。兼容64位架构的CPU 用在32位系统时地址总线就缩小为36位。所以现在的CPU支持4GB内存是没有问题的。

相关主题
文本预览
相关文档 最新文档