当前位置:文档之家› 扶壁码头计算书

扶壁码头计算书

扶壁码头计算书
扶壁码头计算书

第一章 扶壁式结构稳定性计算

由设计说明书可知,500吨级泊位设有系缆柱的结构段受到的水平力较大,故取这一段扶壁式结构进行稳定性验算。 1.1设计条件 1.1.1设计船型

长×宽×吃水=68.0m ×10.8m ×2.9m 1.1.2 结构安全等级 采用二级 1.1.3自然条件

(1) 设计水位及码头高程 设计高水位:19.62m 设计低水位:17.83m 码头前沿面高程:19.7m 码头前沿底高程:14.14m (2)波浪:

陆集港建于京杭大运河上,水流平缓,故不考虑波浪作用。 (3)地质资料 见设计说明书。 (4)地震设计烈度 8度

1.1.4 码头作用标准值

(1)码头后方堆载为整体计算时20kpa 。

(2)剩余水压力:按扶壁式码头墙后水位比墙前水位高30cm 计算。

1.1.5建筑材料的重度和内摩擦角标准值 γ:重度;γ':浮重度;?:内摩擦角。 混凝土:γ=233

/m kN ,γ'=133

/m kN

回填土:γ=19.33

/m kN ,γ'=9.33

/m kN ,c = 0kpa

1.2码头作用分类和及计算

计算段长度5m 。

1.2.1 结构自重力(永久作用): 1.2.1.1设计高水位(19.62m ):码头结构见图1-1,1-2

计算结果见表1-1

图1-1 扶壁式码头结构断面

表1-1 设计高水位情况下的结构自重力

设计高水位自重(KN)力臂 (m) 力矩(KN*m)

C30砼3.14*1.5^2*0.8*23+0.

08*5*5*13+1.92*5*5*1

3= 780

4 3119.984

C25加石砼139*14 =1946 4 7784基础自重合计2725.99610903.98干砌块石护面0.7*2.25*5*15=118.125

块石(2.25*2+8*1.5)*5*11=907.5

基床自重合计3751.625

1.2.1.1设计低水位(17.83m):码头结构见图1-1,1-2

计算结果见表1-2

表1-2 设计低水位情况下的结构自重力

设计高水位自重(KN)力臂 (m) 力矩(KN*m)

C30砼

3.14*1.5^2*0.8*23+

(19.7-17.83)

*5*5*23+(17.83-17.7)

*5*5*14= 1223.118

4 4892.472

C25加石砼139*14 =1946 4 7784基础自重合计2725.99610903.98干砌块石护面0.7*2.25*5*15=118.125

块石(2.25*2+8*1.5)*5*11=907.5

基床自重合计4194.743

1.2.2 土压力

土压力计算顶面标高19.0m,设计高、低水位土压力荷载标准值作用图示见图

1-2

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

沉箱吊装计算书

中交第一航务工程局有限公司 沉箱吊装受力计算书 工程名称:中委合资广东石化2000吨/年重油加工工程产品码头项目部 计算内容:沉箱吊装 审核:校核:计算:

1、沉箱重心计算 图1-1沉箱断面图 图1-2沉箱平面图 表1-2沉箱材料和体积矩计算表

沉箱重量:M=ρV=2.5×198.3=495.75t 沉箱重心:Xc= 1258.95/198.3=6.35m Yc =1110.09/198.3=5.60m 2、沉箱吊装计算 1)主钢丝绳受力计算 沉箱受力简化入图: 2250 2450 F1 F2 G 图1-3隔墙受力简化图 起吊后方块处于平衡状态, 根据受力平衡可得出:F 1+F 2=1.3G ,1.3为动力荷载系数,G=4850KN.............① 根据力矩平衡可得出: 设前沿每根钢丝绳拉力为F 前,后沿每根拉力为F 后,根据力矩平衡得 2.25F 1=2.45F 2...............................................② 解由①、②式得 F 1=3290KN ;F 2=3015KN 根据吊装采用4点吊按3点吊计算可以得出单根销子单侧受力: F 前=F 1/3=1097KN ;F 后=F 2/3=1005KN 因前侧吊孔受力较大,且前后墙所用钢丝绳用同一行型号,故只对前墙钢丝绳进行验算。 钢丝绳安全系数取5,采用公称抗拉强度为1770MPa 的6×37钢丝绳。 五金手册得公称抗拉强度为1770MPa 的6×37纤维芯钢丝绳直径100mm 的在5倍安全系数下容许拉力为5840KN ,满足要求。 2)销子受力计算 销子采用Q345直径210mm 的圆钢。

事故池施工组织设计

事故池施工方案 根据结构图纸,准备施工方案,提供地下开挖基坑围护设计方案和施工措施,确保地基施工安全、合规。 施工测量放线 ◆工程定位测量:根据应急处理事故池改造项目平面图,由建设单位对该事 故池工程定位核定,并由项目部专业放线人员对事故事故池轴线、外边线 进行定位并做好隐桩设置,隐桩点应远离基槽,并进行保护。根据控制点 布设施工场地,在施工场地确定下建立测量控制网,这样就可以根据测量 控制网进行施工,施工完后根据控制网将各个轴线控制点标在基坑边,并 打控制桩作为灰土回填控制线,用引桩点进行复核,以后每层灰土施工前 都要由专业放线人员根据基础轴线控制点用经纬仪将轴线上返至设计底标 高,在碾压灰土后进行各层施工放线。施工轴线在浇筑砼垫层后,用墨线 弹在砼上,钢筋工、木工方可施工。 ◆根据施工图纸设计标高,引测标高点由业主、及施工方共同进行确认。并 将这一点标在永久建筑物上,用于沉降观测和施工。设置固定点2处,标 高测定在围墙上,并用红笔做好标注。基础开挖至设计标高时,将控制标 高点由士0.000引测至基坑内,并在基坑边打桩保护好,做为灰土垫层浇 筑标高控制点。 施工方法及技术措施 钢板桩及土方开挖工程 施工人员认真熟悉施工图纸,开挖之前在基坑四周进行钢板桩围护施工及基 坑坑底加密注浆施工、等待桩基施工完毕,检测合格、保养期达到,进行开 挖长度和宽度分别为6m×8m,开挖深度为4m,长宽方向各放坡1.5m;并对 施工机械班组进行技术、安全、文明施工交底。施工时,本工程采用机械开 挖与人工开挖交替进行,基础开挖深度为相对标高。开挖完成后,由设计、 建设、施工方共同验槽后方可进行下一道工序施工。

矩形水池结构计算书

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规及参考书目: 《水工混凝土结构设计规》(SL 191-2008),以下简称《砼规》 《建筑地基基础设计规》(GB 50007-2002),以下简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型: 无顶盖,半地下水池 水池长度L =11940 mm,宽度B =5990 mm,高度H =4180 mm 地面标高=0.000 m,池底标高=-4.180 m 池壁厚度t3=400 mm,池壁贴角c1=0 mm 底板中间厚度t2=400 mm,底板两侧厚度t4=400 mm 底板贴角长度c2=0 mm,底板外挑长度a =400 mm 池壁顶端约束形式: 自由 底板约束形式: 固定 3.地基土、地下水和池水信息: 地基土天然容重γ=18.00 kN/m3,天然容重γm=20.00 kN/m3 地基土摩擦角φ=30.00 度,地下水位标高=-2.000 m 池水深H W=0.00 mm,池水重度γs=10.00 kN/m3 地基承载力特征值f ak=120.00 kPa 宽度修正系数ηb=0.00,埋深修正系数ηd=1.00 修正后地基承载力特征值f a=170.89 kPa 浮托力折减系数=1.00,抗浮安全系数K f=1.05

沉箱码头计算书

任务要求: 码头设计高水位12米,低水位7.4米,设计船型20000吨,波高小于1米,地面堆货20kpa ,Mh —16—30门座式起重机,地基承载力不足,须抛石基床。 一.拟定码头结构型式和尺寸 1. 拟定沉箱尺寸: 船舶吨级为20000吨,查规得相应的船型参数: 设计船型 总长 (m ) 型宽 (m ) 满载吃水 (m ) 183 27.6 10.5 即吃水为10.5米。 其自然资料不足,故此码头的前沿水深近似估算为: 1.1510.51 2.1D kT m ==?=, 设计低水位7.4米,则底高程:7.412.1 4.7m -=-,因此定底高程-5.1m 处。由于沉箱定 高程即为胸墙的底高程,此处胸墙为现浇钢筋混凝土结构,要求满足施工水位高于设计低水位,因此沉箱高度要高于码头前沿水深12.1m 。 综上,选择沉箱尺寸为: 1310.214l b h m m m ??=??。 下图为沉箱的尺寸图:

2.拟定胸墙尺寸: 如图,胸墙的顶宽由构造确定,一般不小于0.8m,对于停靠小型河船舶的码头不小于0.5m。此处设计胸墙的顶宽为 1.0m。设其底宽为5.5m,检验其滑动和倾覆稳定性要否满足要求:(由于此处现浇胸墙部分钢筋直接由沉箱顶部插入,可认为其抗滑稳定性满足要求,只需验算其抗倾稳定性) 设计高水位时胸墙有效重力小于设计低水位时,对于胸墙的整体抗倾不利,故考虑设计

高水位时的抗倾稳定。 沉箱为现浇钢筋混凝土,其重度在水上为3 23.5/kN m ,水下为3 13.5/kN m ,则在设计高水位时沉箱的自重为: ()][()5.511 1.51 1 1.5 1.5 5.5123.5 3.11 1.5 5.51 3.113.5 2 4.6 4.[{]62 }G -=?+???-?+?+?+-???()则 227.83G kN =。 自重G 对O 点求矩: G 77.10.533.4967 5.510.47922/3 5.51/3=733.56M kN m =?+?-??+()() 。 考虑到有门机在前沿工作平台工作时,胸墙的水平土压力最大,此处门机荷载折算为线性荷 载为: 25010 178.5714 q kPa ?== 。 (此处近似用朗肯土压力进行验算)朗肯主动土压力系数: 224545350.()7)(=2Ka tan tan ?=-=-。 则其土压力分布如上图: 如上图,其各点的土压力强度为: ()()()()()01112=0.27178.5748.21; 10.2718 1.5178.5755.5; 120.2718 1.59.5 3.1178.5763.46. a b P Ka h q kPa P Ka h q kPa P Ka h h q kPa γγγγ+=?==+=??+==++=??+?+= 则其土压力为: ()()0.5 1.548.2155.50.5 3.155.563.46262.17E KN =??++??+=。 作用点至墙底的距离为: 221148.21 4.6 2.37.29 3.10.57.96 3.10.50.57.29 1.5 3.11 (())3=2.203y E m = ??+??+???+???+ 。则土压力对墙前O 点的弯矩值为: 262.17 2.2576.77M KN m =?=。 综上:G =733.56576.77M kN m M KN m >= ,即说明在高水位时胸墙能保持抗倾稳定。 即胸墙的尺寸为:顶宽为1.0m ,底宽为5.5m ,高为4.6m 。 则码头的结构形式及尺寸如图:

水池、筒仓有限元整体计算模型

水池、筒仓有限元整体计算模型 谢靖中 (上海交通大学土木系) 水池、筒仓是土木工程中常见的一类构筑物,具有不同于其他土木工程结构的受力特点: 1、刚度大,对变形敏感。相对于框架结构、剪力墙结构,完全由混凝土壁板组成的水池筒仓,其结构的刚度大,因此温度等变形产生的荷载效应也大,结构对变形敏感。 2、荷载工况多,荷载作用形式复杂。常见的荷载即有结构自重、使用活荷载、内部储料表面压力、外部土压力、预应力、内外温差、动土压力、动水压力、风荷载等。此外还可能有季节温差、基础变形内力、内部气压等。这些荷载产生复杂的内力作用,例如贮料表面压力,不但产生竖向作用,而且产生水平作用。 3、结构本身为复杂的空间体。纵横交错、多向重叠的壁板、顶板,组成复杂的空间体,在复杂荷载作用下,产生纷繁复杂的内力效应。对于水池筒仓,由荷载计算内力的过程尤为复杂。 4、截面设计复杂。多种荷载作用,按不同要求进行荷载荷载,荷载组合类型多。在多数情况下,还需要考虑各仓、各池储料压力的不同时作用的荷载互异的情况,则荷载组合的类型成倍增加。壁板均为双向受力,并且两个方向均需按偏压、偏拉计算配筋。 现有针对水池、筒仓的设计方法,在大多数情况下,还是一种离散化的、针对局部结构(或单个构件)的设计方法。这种设计方法存在如下问题: 1、采用理想化的边界条件。对单个壁板边支承,理想为简支、嵌固、或弹性支承。实际上,几乎所有的板边支承均为弹性支承,支承刚度值是受相邻壁板、底板、顶板影响的复杂值,甚至同一条边不同部位的刚度值都不相同。 2、未考虑整个结构的协同作用。一个方向的壁板的侧向压力,在另外方向的壁板中产生轴向力,轴向力值的大小受壁板、底板的相对刚度值影响,并且轴力沿高度不均匀分布。一个仓室的内部水压,会在相邻壁板中产生次生弯矩和轴力。尤其是内外温差产生的内力,更是结构整体协同变形的结果。采用单个壁板的计算方式,很难精确计算这些复杂内力。 结构计算的方法,是与当时的技术条件相适应的,也是一个不断发展变化的过程。相对于多高层建筑结构,水池筒仓的有限元计算,对软件有更高的要求。由于壁板需要有限元剖分,水池筒仓的计算量大。一般体量的水池筒仓,其计算模型即超过数万节点,这已经超过早期基于一维变带宽技术的有限元软件的最大解题容量。在这种条件下,对水池筒仓进行整体有限元计算是很困难的。现代稀疏存储技术的发展,使基于微机的有限元软件能达到数十万节点的计算容量,这为水池筒仓的整体有限元计算,创造了必要的技术条件。 作者所开发的通用建筑结构STRAT软件,具有基于稀疏存储技术的大容量求解器,和较为完善的全三维空间建模的功能,具备对水池筒仓进行有限元整体计算能力。被广泛应用于水池筒仓的设计,取得很好的效果。 水池筒仓的整体有限元计算,对结构模型建立、计算单元的选取、边界条件的设置、加载的方法,都与此前常用方法有所不同。本文将根据STRAT软件在水池筒仓中的应用实践,介绍水池筒仓有限元计算模型的合理选取。 一、计算单元 水池筒仓的结构构成主要的是壁板、底板和顶板,较为合理有限元计算单元是壳单元。壳单元

植筋深度计算

本工程植筋范围:1)扶壁柱接长植筋;2)外挡墙水平钢筋植筋;3)消防水池钢筋混凝土墙水平钢筋植筋;4)消防水池钢筋混凝土梁纵筋植筋;5)车道与外挡墙加固桩相交处车道斜板植筋;6)抗水板与加固桩相交处板植筋;7)外挡墙局部在加固桩上竖向钢筋植筋。 1扶壁柱接长植筋 柱配筋1218,偏心受压构件,单根钢筋按受力钢筋根据《混凝土结构加固设计规范》(GB50367-2006)第12.2.2条计算: s ae N a l l ??= 其中: bd y spt s f df l /2.0α==××d ×360/= 扶壁柱接长,则:T w br N ????==××= 混凝土强度等级C35,则:ae ?= =a l ×==484.6mm 柱接长钢筋植筋深度可取500mm 。 2外挡墙水平钢筋植筋 挡墙配水平筋14@120,压弯构件,外侧受拉,内侧受压。 外侧受拉钢筋根据《混凝土结构加固设计规范》(GB50367-2006)第12.2.2条计算: s ae N a l l ??= 其中: bd y spt s f df l /2.0α==××d ×360/= T w br N ????==××= 混凝土强度等级C35,则:ae ?= =a l ×==326.5mm ,取=a l 350mm 内侧受压钢筋植筋最小锚固长度可根据《混凝土结构加固设计规范》(GB50367-2006)第12.2.2条基本锚固深度计算: bd y spt s f df l /2.0α===296.8mm ,取=a l 300mm

3消防水池钢筋混凝土墙水平钢筋植筋 钢筋混凝土墙配水平筋14@120,外侧受拉,内侧受压。 外侧受拉钢筋根据《混凝土结构加固设计规范》(GB50367-2006)第12.2.2条计算: s ae N a l l ??= 其中: bd y spt s f df l /2.0α==××d ×360/= T w br N ????==××= 混凝土强度等级C35,则:ae ?= =a l ×==326.5mm ,取=a l 350mm 内侧受压钢筋植筋最小锚固长度可根据《混凝土结构加固设计规范》(GB50367-2006)第12.2.2条基本锚固深度计算: bd y spt s f df l /2.0α===296.8mm ,取=a l 300mm 4消防水池钢筋混凝土梁纵筋植筋 梁上下配置纵筋6 22,沿梁腹板配置1014。 梁端负筋622,为受拉钢筋。根据《混凝土结构加固设计规范》(GB50367-2006)第12.2.2条计算: s ae N a l l ??= 其中: bd y spt s f df l /2.0α==××d ×360/=22d T w br N ????==××= 混凝土强度等级C35,则:ae ?= =a l 22×==532mm 钢筋植筋深度可取550mm 。 梁底钢筋622可按构造植筋,根据《混凝土结构加固设计规范》(GB50367-2006)第12.3.1条:)100;10;3.0max (mm d l s ,构造植筋深度可取250mm 。 梁腹受扭钢筋1014可按受拉钢筋植筋深度计算,即为=,植筋深度可取

水池计算书(手写版本)

保管期限 密级 设计计算书 建设单位上海美梭羊绒纺织品有限公司 工程名称山东建得佳纺织有限公司 工程号-子项号M1117-06 子项名称消防泵房设计专业结构页数部门一所计算人年月日校核人年月日审核人年月日 上海纺织建筑设计研究院

目录 一、设计采用规范 二、荷载选用及计算 三、基础工程 四、上部结构设计 五、图形文件及程序计算书

一、设计采用规范 1.《建筑结构可靠度设计统一标准》【GB50068-2001】 2.《建筑结构荷载规范》【GB50009-2001】(2006年版) 3.《混凝土结构设计规范》【GB50010-2010】 4.《建筑抗震设计规范》【GB50011-2010】 5.《建筑地基基础设计规范》【GBJ50007-2002】 6.《砌体结构设计规范》【GB50003-2001】 二、工程概况: 本工程位于位于山东聊城东阿县东阿工业园区,胶光路以北鑫大地建材厂东邻。本工程泵房结构形式为砖混砌体结构。室内外高差为0.300米。 本工程抗震设防烈度为7度,建筑场地类别为Ⅲ类,框架抗震等级为三级。 三、荷载选用及计算 1.泵房屋面(结构找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2

100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷0.015x20=0.3 KN/m2 合计 4.23 KN/m2 取 4.50 KN/m2 2)屋面活载: 0.50 KN/m2 2.水池盖板(建筑找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2 100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷 0.015x20=0.3 KN/m2 建筑2%砂浆找坡 0.09x10=0.9 KN/m2 合计 5.13 KN/m2 取 5.50 KN/m2 2)屋面活载: 2.00 KN/m2 3.风荷载: 0.45 KN/m2 4.雪荷载: 0.35 KN/m2 5.地震作用: 抗震设防烈度为7度,设计地震分组为第二组,设计基本地震加速 度为0.10g,建筑场地类别为Ⅲ类。

矩形水池力学计算

水池结构计算 2009-08-17 23:19 水池一般由底板和壁板组成,有些水池设有顶板。当平面尺寸较大时,为了减少顶板的跨度,可在水池中设中间支柱 设计要求在水压及其他荷载的作用下,池体的各部分应有足够的强度、刚度和耐久性;贮存水的渗透量应在允许的范围内;水池的材料应能防腐和抗冻,对水质无影响。 结构计算水池所受的荷载除自重外,还有水压力、土压力和下述各种荷载。在地震区,地震时可能引起自重惯性力、动水压力及动土压力;在寒冷地区,如无防寒措施,有可能产生冰压力。此外,水池内外的温湿度差及季节温湿度差,也在水池中产生温湿度应力。 由正方形板和矩形板组成的钢和钢筋混凝土矩形水池可用有限元法进行较为精确的分析,或采用近似方法计算。矩形水池高宽比大于2的称为深池;小于0.5的称为浅池;介于0.5~2.0之间的称为一般池。深池壁板在高度的中间部分受顶板和底板的影响很小,可按水平框架进行计算;在靠近顶板和底板的某一高度范围内(通常取等于宽度的一半),壁板受顶、底板的影响较大,应按三边支承一边自由的双向板计算;在平面尺寸较小时,深池的底板和顶板可按四边嵌固的板计算。浅池的壁板高度小、宽度大,中间部分受相邻壁板的影响很小,可作为竖直的单向板计算;壁板两侧边部分因受相邻壁板的影响,应按双向板计算。一般池的底板、壁板和顶板都是双向板,当每块板的四边都有支承时,整个水池可看作连续的双向板,各板的边缘弯矩可用双向板的弯矩分配法求得;然后用叠加法求各板的跨中弯矩。在目前所采用的双向板弯矩分配法中,假定矩形板的边缘弯矩是按正弦曲线分布的,这一假定对均布荷载情况比较合理;但对非均布荷载(如作用于壁板上的水压力是三角形的荷载),则有一定的误差。此外,弯矩传递系数还没有反映与板接触的地基的影响。 无论是圆形水池或是矩形水池,作用在底板上的地基反力应按弹性地基理论计算。但当水池的平面尺寸较小时,地基反力可以假定按直线规律变化。 对钢、钢筋混凝土和砖石水池,都应进行强度计算。对池壁较薄的钢水池和钢筋混凝土水池还应验算刚度。当钢筋混凝土水池的构件为轴心受拉或小偏心受拉时,应进行抗裂度的验算;当构件为受弯、大偏心受拉或大偏心受压时,应进行裂缝开展验算,裂缝的宽度应不大于容许值。除了各种外荷载可能导致裂缝外,由于水泥的水化热以及温湿度的变化,水池的各部分将发生收缩,当收缩受到基底的约束时,就在构件中引起拉应力而可能出现裂缝。为了防止裂缝的出现或减小裂缝的宽度,可采取下列措施:①每隔一定距离设置伸缩缝;②在底板与垫层间设置滑动层,以减少垫层对底板的摩擦力;③采用小直径的变形钢筋;④在施工中采取措施,以减少混凝土中的温湿度变化。 对半地下式及地下式的水池,当底板处于地下水位之下时,应验算水池的抗浮稳定性。

消防水池计算书

消防水池计算书 (一)处理池没水时荷载 1、池壁计算 主动土压力系数Ka取1/3 土重度r=18KN/m3无地下水池壁4.7m深 ∵LB/HB=5.3>2 ∴按单向板计算 主动土压力q土=rHKa=18x1/3x4.7=28.2KN/m 地面荷载产生侧压力q活=10x1/3=3.33KN/m ①竖向配筋计算 第一种情况 三种压力产生的弯矩 部位类型土压力弯矩Ms 水压力弯矩Mw 地荷载弯矩Mm 下端支座-41.5 0 -9.2 跨中18.6 0 5.2 支座基本组合弯矩值M=(Ms+Mw)x1.27+1.4xMm=65.585KN·m

支座准永久组合弯矩值Mq=Ms+Mw+0.5Mm=46.1 KN·m 跨中基本组合弯矩值M=(Ms+Mw)x1.27+1.4xMm=30.9KN·m 跨中准永久组合弯矩值Mq=Ms+Mw+0.5Mm=21.2KN·m 假设壁厚h=250,混凝土强度C30 查表可知选筋12100的裂缝(0.25mm)和承载力弯矩分别为63.33KN·m、67.22KN·m,大于支座计算准永久弯矩46.1 KN·m和基本组合弯矩65.585KN·m,满足要求。且配筋率0.452%,合适。 所以外钢筋选配12100 As=1131mm2/m 弯矩图 第二种情况 水压力q水=rh=10x4.7=47KN/m

两种压力产生的弯矩 部位类型土压力弯矩Ms 水压力弯矩Mw 下端支座-41.5 -69.22 跨中18.6 30.94 支座基本组合弯矩值M=1.27Mw-Ms=46.4KN*m 支座准永久组合弯矩值Mq=Mw-Ms=27.72KN*m 跨中基本组合弯矩值M=1.27Mw-Ms=20.69N*m 跨中准永久组合弯矩值Mq=Mw-Ms=12.34KN*m 池壁侧、外侧为12100均满足强度和裂缝要球。

扶壁码头计算书

第一章 扶壁式结构稳定性计算 由设计说明书可知,500吨级泊位设有系缆柱的结构段受到的水平力较大,故取这一段扶壁式结构进行稳定性验算。 1.1设计条件 1.1.1设计船型 长×宽×吃水=68.0m ×10.8m ×2.9m 1.1.2 结构安全等级 采用二级 1.1.3自然条件 (1) 设计水位及码头高程 设计高水位:19.62m 设计低水位:17.83m 码头前沿面高程:19.7m 码头前沿底高程:14.14m (2)波浪: 陆集港建于京杭大运河上,水流平缓,故不考虑波浪作用。 (3)地质资料 见设计说明书。 (4)地震设计烈度 8度 1.1.4 码头作用标准值 (1)码头后方堆载为整体计算时20kpa 。 (2)剩余水压力:按扶壁式码头墙后水位比墙前水位高30cm 计算。 1.1.5建筑材料的重度和内摩擦角标准值 γ:重度;γ':浮重度;?:内摩擦角。 混凝土:γ=233 /m kN ,γ'=133 /m kN 回填土:γ=19.33 /m kN ,γ'=9.33 /m kN ,c = 0kpa 1.2码头作用分类和及计算 计算段长度5m 。 1.2.1 结构自重力(永久作用): 1.2.1.1设计高水位(19.62m ):码头结构见图1-1,1-2 计算结果见表1-1

图1-1 扶壁式码头结构断面 表1-1 设计高水位情况下的结构自重力 设计高水位自重(KN)力臂 (m) 力矩(KN*m) C30砼3.14*1.5^2*0.8*23+0. 08*5*5*13+1.92*5*5*1 3= 780 4 3119.984 C25加石砼139*14 =1946 4 7784基础自重合计2725.99610903.98干砌块石护面0.7*2.25*5*15=118.125 块石(2.25*2+8*1.5)*5*11=907.5 基床自重合计3751.625 1.2.1.1设计低水位(17.83m):码头结构见图1-1,1-2 计算结果见表1-2

预应力技术在市政污水厂水池结构设计中应用

预应力技术在市政污水厂水池结构设计中应用 发表时间:2017-08-15T15:21:49.640Z 来源:《建筑学研究前沿》2017年第9期作者:曾卫华 [导读] 通常情况下,市政的污水厂以圆形水池为主,在这类水池结构设计施工中。 中国市政工程中南设计研究总院有限公司 430010 摘要:在市政设施建筑中,污水厂的水池建筑属于较为关键的一种类型,在这类水池的结构设计当中,预应力技术是一种重要的施工技术。本文针对此技术展开了详细分析,以期为各同行提供参考。 关键词:市政;污水厂;水池结构;预应力 前言 通常情况下,市政的污水厂以圆形水池为主,在这类水池结构设计施工中,常常采取一种环向的预应力技术,随着我国各地区市政的污水厂建设项目不断增多,该技术也不断得到广泛使用。 一、设计方案的选择 对污水厂的圆形水池进行结构设计时,常常会用到两种预应力技术,一种是分段张拉无粘结预应力筋法,另一种是绕丝法,目前我国大部分水池的结构设计均运用了这两种预应力技术。在实际运用过程中,这两种方法所需的材料不同,性能也各不相同,当然施工方法也有所不同,与此同时,在实际使用过程中的特点不相同。因此,在实际结构设计及后期施工过程当中,要根据工程施工要求来选择合适的预应力技术,必要时也可以两种方法共同使用。 其中,在使用分段张拉无粘结预应力筋法时,对于无粘结的预应力筋质量要求非常高,如果选择的预应力筋质量较差,则对后期的张拉工艺及其效果等均会造成严重影响,三者之间的联系十分密切。 二、水池结构的预应力分析与计算 (一)分析预应力的损失 (1)无粘结的预应力筋发生内缩,或张拉锚具出现变形等会造成预应力的损失。通常情况下,张拉操作完成后需要展开卸荷,此时预应力筋很可能有内缩现象出现,在此状态下导致预应力出现损失。 (2)预应力筋发生摩擦而造成预应力的损失。大部分污水厂的水池以圆形结构设计为主,其预应力筋从整体上呈现出曲线形状沿池外壁环向地布置,在张拉操作时需要严格按照圆形水池弧度及弧线长度进行,此操作过程当中预应力筋与池壁间出的摩擦使不可避免的,因此造成预应力的损失。此外,随摩擦系数不断增加损失程度也会加大。 (3)因预应力筋所引发应力松弛,进而使预应力出现损失。在此过程中,预应力筋出现松弛与否主要是受到钢筋种类、松弛等级而决定,所以在实际操作中为了尽可能将预应力筋松弛造成的损失减少,工程的张拉操作施工中通常会按照超张拉程序进行。 (4)因混凝土的收缩徐变所引发损失,因此在实际张拉过程中,可以考虑降低50%的损失。 (5)因弹性压缩所造成的损失。在开展分批张拉施工的过程当中,混凝土很可能会出现弹性压缩的现象,而张拉完成之后需要采取无粘结的预应力筋辅助施工,在混凝土发生弹性压缩的状态下,如果先分批张拉可能会使预应力筋出现一系列改变,可以有效缓解低预应力的损失量。 (二)计算内力 在受到荷载组合作用影响的状态下,污水厂的水池池壁不可出现任何载面裂缝问题,所以,实际施工需要合理控制好配筋。根据相关的要求规定,计算水池池壁的无粘结预应力筋内力时,需要综合考虑下面四种荷载组合,第一,在水池池壁施工阶段,应该确保池内无水,池外无覆土。第二,水池试水阶段,池内水位应按有关规范逐级加到设计要求高度,池外无覆土。第三,在水池的使用期间,水池的水量应该与试水期要求保持一致。第四,水池检修期间,池内空池无水,池外有覆土。 (三)构造设计 (1)设置锚固肋 在实际的施工过程当中,应该尽可能地将预应力损失降低,这样能够显著提高分段张拉、预应力筋锚固的施工效果。在操作的时候为了尽可能满足张拉及预应力筋锚固状态下的构造要求,务必沿水池池壁外侧均匀设置多个扶壁柱(根据圆形水池半径确定数量),也就是锚固肋,以提高预应力筋锚固的施工效果。 (2)链接池壁与底板 在进行圆形水池的结构设计时,需要对其竖向、弯矩作用进行充分考虑,要将此作用对底板所造成的影响有效消除,积极采取杯槽式的柔性连接后方能进行张拉操作,这一环节施工完成之后才可以展开混凝土浇筑施工。除此之外,为了确保水池的池壁根部位不会出现渗漏问题,可以在槽口、池壁之间加强嵌缝施工,密实浇筑混凝土后能够提升混凝土的凝固效果。最后,在水池池壁的扶壁柱上设置拉端,可以通过张拉施工后对扶壁柱进行锚固,然后再借助混凝土封堵即可[2]。 三、水池的预应力施工 (一)预应力筋铺设施工 预应力筋铺设施工主要采取下料铺设的方法进行,在铺设施工的过程中需要考虑施工图中的下料长度,实际铺设时需要借助水平仪来设定水池池壁上的预应力筋位置,与此同时,明确水池池壁上的每个预应力点坐标位置后,再按照设计的要求来配备好预应力筋的根数,然后在进行分束设置、定位,之后展开牢固绑扎操作。 (二)预应力筋的张拉施工 进入张拉预应力筋环节后,通常会在张拉的过程中积极采取双控手段,这种手段指的是借助控制力的方式来实施张拉,这也是该施工环节的主要内容,与此同时,在这个基础上开展伸长预应力操作。值得注意的是,张拉操作需在混凝土强度达到设计要求强度后方能进行,完成预应力张拉后要严格检验锚固肋的端部、水池池壁等部位有无裂缝出现,并将做好相关记录。在很多工程施工中,环向预应力筋

矩形水池结构计算方案

矩形水池结构计算方案 The latest revision on November 22, 2020

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规范及参考书目: 《水工混凝土结构设计规范》(SL191-2008),以下简称《砼规》 《建筑地基基础设计规范》(GB50007-2002),以下简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型:无顶盖,半地下水池 水池长度L=11940mm,宽度B=5990mm,高度H=4180mm 地面标高=0.000m,池底标高=-4.180m 池壁厚度t 3=400mm,池壁贴角c 1 =0mm 底板中间厚度t 2=400mm,底板两侧厚度t 4 =400mm 底板贴角长度c 2 =0mm,底板外挑长度a=400mm 池壁顶端约束形式:自由 底板约束形式:固定 3.地基土、地下水和池内水信息: 地基土天然容重γ=18.00kN/m3,天然容重γ m =20.00kN/m3地基土内摩擦角φ=30.00度,地下水位标高=-2.000m 池内水深H W =0.00mm,池内水重度γ s =10.00kN/m3 地基承载力特征值f ak =120.00kPa 宽度修正系数η b =0.00,埋深修正系数η d =1.00 修正后地基承载力特征值f a =170.89kPa 浮托力折减系数=1.00,抗浮安全系数K f =1.05 4.荷载信息: 地面活荷载q=10.00kN/m2,活荷载组合值系数=0.90 恒荷载分项系数:池身的自重γ G1=1.20,其它γ G =1.27 活荷载分项系数:地下水压力γ Q1=1.27,其它γ Q =1.27 地面活荷载准永久值系数ψ q =0.40 温(湿)度变化作用的准永久值系数ψ t =1.00 池内外温差或湿度当量温差△t=10.0度 温差作用弯矩折减系数η s =0.65 混凝土线膨胀系数αc=1.00×10-5/℃ 5.材料信息: 混凝土强度等级:C25 轴心抗压强度标准值f=16.70N/mm2;轴心抗拉强度标准值f=1.78N/mm2

水池、井类施工方案

水池及井类施工方案 1、工程概况 本工程为江苏斯尔邦石化有限公司醇基多联产项目一期工程二标段1万吨/年MTBE和10万吨/年丁烯氧化脱氢制丁二烯装置,位于连云港市徐圩新区。 本工程主要包括:1万吨/年MTBE和10万吨/年丁烯氧化脱氢制丁二烯装置街区MTBE单元(醚化反应部分、催化蒸馏部分、甲醇萃取和甲醇回收部分)、丁烯氧化单元(氧化脱硫反应部分、油吸收部分)、丁二烯抽提单元(丁二烯萃取精馏部分、丁二烯精制单元)、溶剂回收和废水处理单元、辅助单元(甲醇回收系统、溶剂缓冲、化学品添加、TBC回收、尾气分离及处理系统、火炬分离罐及溶剂排净系统、凝液闪蒸及热水循环系统、溴化锂制冷及乙二醇制冷系统)区域内变配电室、地下给排水管网所属区域内除低级处理、桩基施工、重量80吨或者安装高度60米以上的设备吊装、焊缝无损检测的射线检测(RT)、衍射时差法超声检测(TOFD)及超声波检测(UT)以外)全部施工内容。 土建专业施工内容(丁二烯装置界区内):动设备、静设备、地下给排水管道、管廊、框架的所有砼基础;建筑物和构筑物;消防围堰及防火堤;砼管墩及管支架;沟槽及井类;场坪、竖向及道路。 本方案主要针对:混凝土水池及井类施工。 2、编制依据 2.1中化二建集团有限公司ISO9002、ISO14001 OHSAS18001体系程序文件 2.2《建筑地基基础工程施工质量验收规范》GB50202-2002 2.3《混凝土结构工程施工质量验收规范》GB50204-2011 2.4《建筑装饰装修工程质量验收规范》GB50210-2001 2.5《建筑工程施工验收统一标准》GB50300-2001 2.6《钢筋焊接及验收规程》JGJ18-2003

水池计算书

矩形水池设计 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋: E - HRB400 1 基本资料 1.1 几何信息 水池类型: 有顶盖半地上 长度L=7.750m, 宽度B=14.300m, 高度H=6.350m, 底板底标高=-1.850m 池底厚h3=350mm, 池壁厚t1=300mm, 池顶板厚h1=150mm,底板外挑长度t2=350mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土内摩擦角30度 修正后的地基承载力特征值fa=210.00kPa 地下水位标高-2.000m,池内水深5.000m, 池内水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 池顶板1.50kN/m2, 地面10.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.27 活荷载分项系数: 地下水压1.27, 其它1.27 活载调整系数: 其它1.00 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 不考虑温湿度作用. 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

沉箱码头稳定验算和内力计算

码头稳定性验算 (一)作用效应组合 持久组合一:设计高水位(永久作用)+堆货门机(主导可变作用)+波谷压力(非主导可变作用) 持久组合二:设计高水位(永久作用)+波谷压力(主导可变作用)+堆货门机(非主导可变作用) 短暂组合:设计高水位(永久作用)+波峰压力(主导可变作用) 不考虑地震作用去1 (二)码头延基床顶面的抗滑稳定性验算 根据《重力式码头设计与施工规范》(JTJ290-98)第3.6.1规定 应考虑波浪作用,堆货土压力为主导可变时:按(JTJ290-98)中公式(3.6.1-4)计算。 01 ()()E H E qH P B G E V E qV u BU d E E P G E E P f γγγψγγγγψγγ++≤ +++ 应考虑波浪作用,波浪力为主导可变时: ()()f E P E G E P E qV E Bu u V E G d qH E B P H E ψγλγγ γψγγγ γ+++≤ ++1 o 短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.7计算 f P G P Bu u G B p )(0λλλλ-≤ 式中:o γ——结构重要系数,一般港口取1.0; E γ——土压力分项系数;取1.35 PW γ——剩余水压力分项系数;取1.05 PR γ——系缆力分项系数;1.40 ψ——作用效应组合系数,持久组合取0.7; V H E E 、——码头建筑物在计算面以上的填料、固定设备自重等永久作用所产生的总主动土压力的水平分力和竖向分力的标准值; W P ——作用在计算面以上的总剩余水压力标准值; RH P ——系缆力水平分力的标准值; qV qH E E 、——码头面上的可变作用在计算面上产生的总主动土压力的水平分力和竖向分力的标准值; RV P ——系缆力垂直分力的标准值; G γ——结构自重力的分项系数,取1.0;

水池壁计算书

单向板式地下室外墙计算 一、计算条件: 工程名称: 工程一 工程项目: 项目一 外墙编号: 外墙1 计算方式: 按受弯构件 是否考虑人防荷载: 否 地下室层数n: 1 地下一层层高H1(m): 4.15 地下一层墙厚t1(mm): 300 地下一层顶板标高DbBg(m): 0 室外地坪标高DpBg(m): 0 水位标高SwBg(m): 0 地面活载Q h(kPa): 0 土的内摩擦角θ(°): 30 是否考虑基坑支护的影响: 否 水位以上土的容重r(kN/m3): 0.00001 水位以下土的浮容重r'(kN/m3): 0.00001 外墙单侧最小配筋率(%): 0.125 外墙裂缝限值(mm): 0.3 地下一层顶板处支座型式: 铰接 是否进行支座弯矩调幅: 否 地下一层混凝土强度等级: C35 钢筋级别: HRB400 墙外侧保护层厚度c1(mm): 40 墙内侧保护层厚度c2(mm): 15 裂缝计算依据《混凝土结构设计规范》GB50010-2010 二、计算依据: 《混凝土结构设计规范》GB50010-2010 《建筑结构荷载规范》GB5009-2012 三、计算结果: (1)计算简图符号说明: T - 静止土压力S - 静止水压力 Q - 活载侧压力R - 人防等效静荷载 (2)荷载计算 静止土压力系数: K = 1 - sin(θ) = 1 - sin(30.0) = 0.50 基础底板上皮标高: JcBg = DbBg - H1 = 0.000 - 4.150 = -4.150 m 总的水头高度: H s = SwBg - JcBg = 0.000 - ( - 4.150) = 4.150 m 基础底板上皮静止水压力: Q s = H s × 10 = 4.150 × 10 = 41.50 Kpa 水位以上土的高度: H t1 = DpBg - SwBg = 0.000 - 0.000 = 0.000 m 水位标高静止土压力: Q t1 = K ×H t1 ×r = 0.50 × 0.000 × 0.0 = 0.00 Kpa 水位以下基础底板以上土的高度: H t = SwBg - JcBg = 0.000 - ( - 4.150) = 4.150 m 基础底板上皮静止土压力: Q t = Q t1 + K ×H t ×r' = 0.00 + 0.50 × 4.150 × 0.0 = 0.00 Kpa

相关主题
文本预览
相关文档 最新文档