当前位置:文档之家› 理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

本讲主要内容

1、空间任意力系向一点的简化及结果分析

2、空间任意力系的平衡方程及常见的空间约束

3、重心的计算

1、空间任意力系向一点的简化

及结果分析

(1) 空间任意力系向一点简化·主矢和主矩

F 1

F 2

F n

1

F ¢

2F ¢

n F ¢

1M 2

M n

M 空间汇交力系与空间力偶系等效代替一空间任意力系.

)

(i O i i

i F M M F F ==¢及结果分析

主矢

汇交力系的合力

主矢大小方向作用点:

一般令其作用于简化中心上

2

2

2

R

)()()(???++=¢iz iy ix F F F F R

R

),cos(F F iz

¢=

¢?k F 1F ¢

2F ¢n F ¢

1

M 2

M n

M k j i F F ????++==¢z y x i R

F F F R

F ¢R

R

),cos(F F ix

¢=

¢?j F R

R

),cos(F F ix

=

¢?i F (与简化中心无关)

主矩

空间力偶系的合力偶矩

主矩大小方向作用位置:

刚体上任意位置

1

M 2

M n

M )

(??==i O i O F M M M R

F ¢O

),cos(M M x

O ?=

i M O

M 由力对点的矩与力对轴的矩的关系,有

k

j i M )()()(???++=i z i y i x O F M F M F M 2

2

2

)

()()(???++=z y x O M M M M O

),cos(M M y

O

?=

j M O

),cos(M M z

O

?=

k M (一般与简化中心有关)

—有效推进力飞机向前飞行—有效升力飞机上升—侧向力

飞机侧移—滚转力矩飞机绕纵轴滚转—偏航力矩飞机转弯—俯仰力矩

飞机俯仰

向一点简化的实际意义

y

x

z

M O

'

R F y

'

R F x

'R F z

y O M x

O M z

O M R

F ¢及结果分析

(2) 空间任意力系向一点简化的结果合力过简化中心

合力

合力对某点(轴)之矩等于各分力对同一点(轴)之矩的矢量和

①F R ′≠0, M O =0

②F R ′≠0, M O ≠0,F R ′⊥M O

合力矩定理

合力作用线距简化中心为

R

O F M d ¢=?==′=)

()(i O R O R O F M F M F d M

a. 简化为合力

1、空间任意力系向一点的简化

及结果分析

中心轴过简化中心的

力螺旋

O

O M F M F //',0,0'R R 11右螺旋左螺旋

力螺旋

由一个力和一个力偶组成的力系, 并且力垂直于力偶的作用面。

b. 简化为力螺旋

及结果分析

钻头钻孔时施加

的力螺旋

及结果分析

④既不垂直也不平行

O O M F M F 与',0,0'R R 11

q cos O O

M M =¢q sin O O

M M =¢¢R

O R O F M F M d ¢=

¢¢=q sin 力螺旋R

sin O M d F q

=

¢中心轴距简化中心为b. 简化为力螺旋

1、空间任意力系向一点的简化

及结果分析

c. 简化为合力偶

与简化中心无关

⑥F R ′= 0, M O = 0

平衡

平面任意力系简化的最后结果

只能是合力、合力偶、平衡三种情况,不可能出现力螺旋。

⑤F R ′= 0, M O ≠0

一个合力偶d. 平衡

1、空间任意力系向一点的简化

及结果分析

理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

本讲主要内容 1、空间任意力系向一点的简化及结果分析 2、空间任意力系的平衡方程及常见的空间约束 3、重心的计算

1、空间任意力系向一点的简化 及结果分析

(1) 空间任意力系向一点简化·主矢和主矩 F 1 F 2 F n 1 F ¢ 2F ¢ n F ¢ 1M 2 M n M 空间汇交力系与空间力偶系等效代替一空间任意力系. ) (i O i i i F M M F F ==¢及结果分析

主矢 汇交力系的合力 主矢大小方向作用点: 一般令其作用于简化中心上 2 2 2 R )()()(???++=¢iz iy ix F F F F R R ),cos(F F iz ¢= ¢?k F 1F ¢ 2F ¢n F ¢ 1 M 2 M n M k j i F F ????++==¢z y x i R F F F R F ¢R R ),cos(F F ix ¢= ¢?j F R R ),cos(F F ix ¢ = ¢?i F (与简化中心无关)

主矩 空间力偶系的合力偶矩 主矩大小方向作用位置: 刚体上任意位置 1 M 2 M n M ) (??==i O i O F M M M R F ¢O ),cos(M M x O ?= i M O M 由力对点的矩与力对轴的矩的关系,有 k j i M )()()(???++=i z i y i x O F M F M F M 2 2 2 ) ()()(???++=z y x O M M M M O ),cos(M M y O ?= j M O ),cos(M M z O ?= k M (一般与简化中心有关)

理论力学 第2章力系的简化习题解答

第二章 力系的简化 习题解答 2-1在立方体的顶点A 、H 、B 、D 上分别作用四个力,大小均为F ,其中1F 沿AC ,2F 沿IG , 3F 沿BE ,4F 沿DH 。试将此力系简化成最简形式。 解:各力均在与坐标平面平行的面内,且与所在平面的棱边成45°角。将力系向A 点简化,主矢'R F 在坐标轴上的投影为 045cos 45cos '21=-= F F F Rx , F F F F F F Ry 245cos 45cos 45cos 45cos '4321=+-+= , F F F F Rz 245cos 45cos '43=+= 。 用解析式表示为: ()k j F += F R 2' 设立方体的边长为a ,主矩A M 在坐标轴上的投影为 045cos 45cos 32=?+?-=a F a F M Ax , Fa a F a F M Ay 245cos 45cos 42-=?-?-= , Fa a F a F M Az 245cos 45cos 42=?+?= 。 用解析式表示为:()k j M +-= Fa A 2。因为,0'=?A R M F ,所以,主矢和主矩可以进一步简 化为一个力,即力系的合力。合力的大小和方向与主矢相同,'R R F F =;合力作用点的矢径为 () i M F r a F R R =?=2'', 所以,合力大小为2F ,方向沿对角线DH 。 2-2三力321,F F ,F 分别在三个坐标平面内,并分别与三坐标轴平行,但指向可正可负。距离 c b a ,,为已知。问:这三个力的大小满足什么关系时力系能简化为合力?又满足什么关系时能简化为 力螺旋? 解:这力系的主矢为 k j i 321'F F F F R ++=; 对O 点的主矩为 k j i a F c F b F M O 213++=。 当主矢与主矩垂直时,力系能简化为合力。即从 0'=?O R M F 得, 0231231=++a F F c F F b F F , 简化为 03 21=++F c F b F a 。 当主矢与主矩平行时,力系能简化为力螺旋,即从0=?O R M F ' 得, 2 31231aF F cF F bF F ==。 题2.2图

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化 2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。 答:F/2;62F/5。 2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩 M x(F)= 。 答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ) 图2-40 图2-41 2-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。 答:-60N; 2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE的一个力F,图中α=30°,则此力对各坐标轴之矩为: M x(F)= ;M Y(F)= ;M z(F)= 。 答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/4 2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。 答:M x(F)=160 N·cm;M z(F)=100 N·cm

图2-42 图2-43 2-6.试求图示中力F 对O 点的矩。 解:a: M O (F)=F l sin α b: M O (F)=F l sin α c: M O (F)=F(l 1+l 3)sin α+ F l 2cos α d: ()22 21l l F F M o +=αsin 2-7.图示力F=1000N ,求对于z 轴的力矩M z 。 题2-7图 题2-8图 2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。试求其合力,并画在图上(图中长度单位为米)。 解:将力系向O 点简化 R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N 主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m 合力的方向:cos (R ,)=,cos (R ,)=-

清华大学-理论力学-习题解答-2-03

2-3 圆盘绕杆AB 以角速度rad/s 转动,AB 杆及框架则绕铅垂轴以角速度 100=?10=ωrad/s 转动。已知mm ,当140=R °=90θ,rad/s ,时,试求圆盘上两相互垂直半径端点C 点及D 点的速度和加速度。 5.2=θ 0=θ 解:圆盘的运动是由三个定轴转动组成的复合运动,且三个轴交于O 点。取O 点为基点,建立动坐标系Oxyz ,Oxyz 绕铅垂轴以角速度ω转动,则牵连角速度e ω=?ωk 。圆盘相对于动坐标系的运动是由框架绕Ox 轴的转动和圆盘绕Oy 轴的转动组成,则圆盘的相对角速度为: r θ =?+?ωi j 所以圆盘的绝对角速度为: r θω′=?+??e ω=ω+ωi j k C 点及 D 点的矢径分别为: 0.140.5()C m =?+r i j 0.50.14()D m =+r j k 由公式可得C 点及D 点的速度: =×v ωr 5 1.412.75(/)C C m s ′=×=++v ωr i j k 190.35 1.25(/)D D m s ′=×=+?v ωr i j k 下面来求加速度。首先求圆盘相对于动系的相对角加速度ε,在动系中,我们可以步将 框架绕Ox 轴的转动看作牵连运动,牵连加速度为r 1e θ=?ωi 1r ,牵连角加速度为ε;将圆盘绕Oy 轴的转动看作相对运动,相对角速度为1e = θ =?j 0ωθ ,相对角加速度为。则根据角加速度合成公式并由此时1r 0==ε? e e r r =+×+εεωωε= 可得: 211250(/)r e r rad s θ =×=?×?=?εωωi j k 接下来求圆盘的绝对角加速度,再次利用角加速度合成公式,并由0e =ε可得: 2100025250(/)e r r rad s ′=×+=+?εωωεi j k 利用公式a 可得C 点及D 点的加速度 : (=×+××εr ωωr )

理论力学第二章

第2章 力系的等效与简化 2-1试求图示中力F 对O 点的矩。 解:(a )l F F M F M F M M y O y O x O O ?==+=αsin )()()()(F (b )l F M O ?=αsin )(F (c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2 22 1sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF 2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。 解:)(2 )()(j i k i F r F M +-? +=?=F a A O m kN )(36.35) (2 ?+--=+--= k j i k j i Fa m kN 36.35)(?-=F x M 2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm , α = 30°。试求力F 对x 、y 、z 轴之矩。 解: )cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--?-=?=F D A k j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-= 力F 对x 、y 、z 轴之矩为: m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(?-=+-=+-=ααF x M m N 10sin 40)(2?-=-=αF y M m N 5.7sin 30)(2?-=-=αF z M 2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。 习题2-1图 A r A 习题2-2图 (a ) 习题2-3图

同济大学理论力学课程考核试卷(B卷)

同济大学课程考核试卷(B 卷) 2007 — 2008学年第 2学期 命题教师签名: 审核教师签名: 课号:45003900 课名:理论力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√)、重考( )试卷 一、 填空题(每题5分,共30分) 一空间任意力系向一点A 简化后,得主矢0≠R F ,0≠A M ,则最终可简化为合力的条件为 ;最终可简化为力螺旋的条件为 ;合力或力螺旋的位置是否过点A 。 2. 物块重力为P =50N ,与接触面间的静摩擦角? f ?=30,受水平力F 的作用,当F =50N 时物块处于 ________________(只要回答处于静止或滑动)状态。当F =_____________N 时,物块处于临界状态。 3. 半径为R 的圆轮,沿直线轨道作纯滚动, 若轮心O 为匀速运动,速度为v ,则B 点加速度的大小为___________,方向____________。 4. 已知OA =AB =L ,ω=常数,均质连杆AB 的质量为m ,曲柄OA ,滑块B 的质量不计。则图示瞬时,相对于杆AB 的质心C 的动量矩的大小为___________________________________________。 5. 均质圆盘半径为R ,质量为m ,沿斜面作纯滚动。已 知轮心加速度a O ,则圆盘各质点的惯性力向O 点简化的结果是:惯性力系主矢量的大小为_______________________; 惯性力系主矩的大小为______________________________ (方向应在图中画出)。

6. 某摆锤的对称面如图所示,质心为C ,转轴为O 。受冲击时轴承O 的碰撞冲量为零的条件是______________________________。 二、计算题(15分) 如图所示结构,已知:q =20N /m ,M=20N ·m ,F =20N ,L =1m ,B ,D 为光滑铰链。试求: (1)固定铰支座A 的约束力; (2)固定端C 的约束力。 三、计算题(10分) 在图示机构中,已知:AC=BC=EC=FC=FD=DE=L ,力1F 及 角。试用虚位移原理求机构平衡时,2F 力大小。

清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂 线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时, 轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

理论力学(3.7)--空间任意力系-思考题

第三章 空间力系 3-1 在正方体的顶角A 和B 处,分别作用力1F 和2F ,如图所示。求此两力在x ,y ,z 轴上的投影和对x ,y ,z 轴的矩。试将图中的力1F 和2F 向点O 简化,并用解析式计算其大小和方向。 3-2 图示正方体上A 点作用一个力F ,沿棱方向,问: (1)能否在B 点加一个不为零的力,使力系向A 点简化的主矩为零? (2)能否在B 点加一个不为零的力,使力系向B 点简化的主矩为零? (3)能否在B ,C 两处各加一个不为零的力,使力系平衡? (4)能否在B 处加一个力螺旋,使力系平衡? (5)能否在B ,C 两处各加一个力偶,使力系平衡? (6)能否在B 处加一个力,在C 处加一个力偶,使力系平衡?

3-3 图示为一边长为a的正方体,已知某力系向B点简化得到一合力,向C?点简化也得一合力。问: (1)力系向A点和'A点简化所得主矩是否相等? (2)力系向A点和'O点简化所得主矩是否相等? 3-4 在上题图中,已知空间力系向'B点简化得一主矢(其大小为F)及一主矩(大小、方向均未知),又已知该力系向A点简化为一合力,合力方向指向O点试: (1)用矢量的解析表达式给出力系向'B点简化的主矩; (2)用矢量的解析表达式给出力系向C点简化的主矢和主矩。

3-5 (1)空间力系中各力的作用线平行于某一固定平面;(2)空间力系中各力的作用线分别汇交于两个固定点。试分析这两种力系最多能有几个独立的平衡方程。 3-6 传动轴用两个止推轴承支持,每个轴承有三个未知力,共6个未知量。而空间任意力系的平衡方程恰好有6个,是否为静定问题? 3-7 空间任意力系总可以由两个力来平衡,为什么? 3-8 某一空间力系对不共线的三点主矩都为零,问此力系是否一定平衡? 3-9 空间任意力系向两个不同的点简化,试问下述情况是否可能? (1)主矢相等,主矩相等。 (2)主矢不相等,主矩相等。 (3)主矢相等,主矩不相等。 (4)主矢、主矩都不相等。 3-10 一均质等截面直杆的重心在哪里?若把它弯成半圆形,重心位置是否改变?

同济大学理论力学07-08试卷a

同济大学试卷统一命题纸 (A 卷) 20 07-2008学年第一学期 课号:12500400 课名:理论力学 此卷选为:期中考试( )、期终考试(√)、补考( )试卷 年级 专业 重修 学号 姓名 得分 一、填空题(每小题5分,共30分) 1.边长为2a 的匀质正方形簿板,截去四分之一后悬挂在点A ,今欲使边BC 保持水平,则点A 距右端的距离x =_______________。 2. 已知:力F =100N ,作用位置如图,则 F x =___________________________; F y =__________________ __ ; M z =___________________ _。 3. 已知力P =40kN ,F =20kN ,物体与地面间的静摩擦因数f s =0.5,动摩擦因数f d =0.4,则物体所受的摩擦力的大小为________________。 4. 边长为L 的等边三角形板在其自身平面内运动,已知点A 相对 于点B 的加速度AB a 的大小为a ,方向平行于边CB ,则此瞬时三角形板的角加速度 =__________________。 5.一匀质杆置于光滑水平面上,C 为其中点,初始静止,在图示各受力情况下,图(a )杆作____________;图(b )杆作____________;图(c )杆作__________。

6. 半径为R 的圆盘沿水平地面作纯滚动。一质量为m ,长 为R 的匀质杆OA 如图固结在圆盘上,当杆处于铅垂位置瞬时, 圆盘圆心有速度v ,加速度a 。则图示瞬时,杆OA 的惯性力系向杆中心C 简化的结果为____________________________(须将结果画在图上)。 二、计算题(15分) 在图示机构中,已知:匀质轮O和匀质轮B的质量均为m 1,半径均为r ,物 C的质量为m 2,物A的质量为m 3,斜面倾角β=30?;系统开始静止,物A与斜面间摩擦不计,绳与滑轮间不打滑,绳的倾斜段与斜面平行;在O轮上作用力偶矩为M的常值力偶。试求: (1)物块A下滑的加速度a A ; (2)连接物块A的绳子的张力(表示成a A 的函数); (3)ED段绳子的张力(表示成a A 的函数)。

重庆大学理论力学教(学)案考点

大学 《理论力学》课程 教案 2006版 机械、土木等多学时各专业用 2006年8月 使用教材:《理论力学》,祥东主编,大学2006年第二版 《理论力学》,工业大学,高等教育2004年 《Engineering Mechanics理论力学》,昌棋等缩编, 大学2005年

参考文献 [1]同济大学理论力学教研室,理论力学,同济大学,2001年 [2]乔宏洲,理论力学,中国建筑工业,1997年 [3]华东水利学院工程力学教研室,理论力学,高等教育,1984年 [4]理论力学(第六版)工业大学理力教研室编. 普通高等教育“十五”国家级规划教材高等教育.2002年8月 [5]理论力学(第3版)郝桐生编.教育科学“十五”国家规划课题研究成果高等教育.2003年9月 [6]理论力学(第1版)武清玺奇主编. 教育科学“十五”国家规划课题研究成果高等教育.2003年8月 第1篇静力学 第1章静力学基本知识与物体的受力分析 一、目的要求 1.深入地理解力、刚体、平衡和约束等基本概念。 2.深入地理解静力学公理(或力的基本性质)。 3.明确和掌握约束的基本特征及约束反力的画法。 4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。

二、基本容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下或运动过程中不变形的物体。刚体是理论力学中的理想化力学模型。 3)约束:对非自由体的运动预加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的一种相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力(体分布力、面分布力、线分布力) 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系;按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。 9)力的合成与分解:若力系与一个力F R等效,则力F R称为力系的合力,而力系中的各力称为合力F R的分力。用一个比原力系简单但作用效果相同的力系代替原力系称为力系的合成(简化);反之,一个力F R用其分力代替,称为力的分解。 2.静力学公理及其推论 公理1:力的平行四边形法则 给出了最简单的力系的简化规律,也是较复杂力系简化的基础。另外,它也给出了将一个力分解为两个力的依据。 公理2:二力平衡条件

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

理论力学第三章空间力系习题解答

习 题 3-1 在边长为a 的正六面体上作用有三个力,如图3-26所示,已知:F 1=6kN ,F 2=2kN ,F 3=4kN 。试求各力在三个坐标轴上的投影。 图3-26 kN 60 1111====F F F F z y x 0kN 245cos kN 245cos 2222== ?=-=?-=z y x F F F F F kN 3 3 433kN 3 3 433kN 3 34333 33 33 3==-=-===F F F F F F z y x 3-2 如图3-27所示,已知六面体尺寸为400 mm ×300 mm ×300mm ,正面有力F 1=100N ,中间有力F 2=200N ,顶面有力偶M =20N ·m 作用。试求各力及力偶对z 轴之矩的和。 图3-27 203.034 44.045cos 2 1-?+??-=∑F F M z m N 125.72034 240220?-=-+ -= 3-3如图3-28所示,水平轮上A 点作用一力F =1kN ,方向与轮面成a=60°的角,且在过A 点与轮缘相切的铅垂面内,而点A 与轮心O '的连线与通过O '点平行于y 轴的直线成b=45°角, h =r=1m 。试求力F 在三个坐标轴上的投影和对三个坐标轴之矩。 图3-28 N 354N 225045sin 60cos 1000sin cos ==????==βαF F x N 354N 225045sin 60cos 1000cos cos -=-=????-=-=βαF F y

N 866350060sin 1000sin -=-=??-=-=αF F z m N 25845cos 18661354cos ||||)(?-=???-?=?-?=βr F h F M z y x F m N 96645sin 18661354sin ||||)(?=???+?=?+?=βr F h F M z x y F m N 500160cos 1000cos )(?-=???-=?-=r F M z αF 3-4 曲拐手柄如图3-29所示,已知作用于手柄上的力 F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,a=30°。试求力F 对 x 、y 、z 轴之矩。 图3-29 N 2530sin 100sin sin 2=??==ααF F x N 3.43N 32530cos 30sin 100cos sin -=-=????-=-=ααF F y N 6.8635030cos 10030cos -=-=??-=?-=F F z 3 .03504.0325)(||||)(?-?-=+?-?-=CD AB F BC F M z y x F m N 3.43325?-=-= m N 104.025||)(?-=?-=?-=BC F M x y F m N 5.73.025)(||)(?-=?-=+?-=CD AB F M x z F 3-5 长方体的顶角A 和B 分别作用力F 1和F 2,如图3-30所示,已知:F 1=500N ,F 2=700N 。试求该力系向O 点简化的主矢和主矩。 图3-30 N 4.82114100520014 25 221R -=--=? -?-='F F F x N 2.561141501432R -=-=?-='F F y N 7.4101450510014 15 1 21R =+=? +?='F F F z N 3.10767.410)2.561()4.821(222R =+-+-='F

同济大学--理论力学期中考2009.10

同济大学课程期中考核试卷(A 卷) 课号: 课名:理论力学 考试考查:考查 此卷选为:期中考试( ),期终考试( ),重考( )试卷 年级 专业 学号 姓名 得分 (一)、概念题(每题5分) (1)图示系统受力F 作用而平衡。若不计各物体重量,试分别画出杆AC ,CB 和圆盘C 的示力图,并说明C 处约束力间的关系。 (2)半径r =100mm ,重P =100N 的滚子静止于 水平面上,滑动摩擦因数f =0.1,滚动摩擦系数δ=0.5mm ,若作用在滚子上的力偶的矩为mm N 30?=M ,则滚子受到的滑动摩擦力的大小为__________,滚子受到的滚动摩擦力偶矩的大小为_____________。 (3)直角刚杆AO =2m ,BO =3m ,已知某瞬时A 点的速度v A =6m/s ,而B 点的加速度与BO 成?=60θ角。则该瞬时刚杆的角速度 =_____ ________rad/s ,角加速度 =____________rad/s 2。 (1)3; (2)3; (3)53; (4)93。 (4)小球M 沿半径为R 的圆环以匀速v r 运动。圆环沿直线以匀角速度ω顺时针方向作纯滚动。取圆环为动参考系,则小球运动到图示位置瞬时:(1)牵连速度的大小为_______________;(2)牵连加速度的大小为______________;(3)科氏加速度的大小为________________(各矢量的方向应在图中标出)。

(二)、 (10分)图示桁架中,杆(1)的内力为___________________________;杆(2)的内力为________________________。 (20分)图示结构由不计自重的折梁AC与直梁CD构成。已知:q C=2kN/m,(三)、 F=12kN,m = M,θ =300,L=6m。试求支座A、B的约束力。 10? kN

理论力学第二章力系的简化习题解

1 F 2 F 3 F 0 1350 90O 第二章 力系的简化习题解 [习题2-1] 一钢结构节点,在沿OA,OB,OC 的方向上受到三个力的作用,已知kN F 11=, kN F 41.12=,kN F 23=,试求这三个力的合力. 解: 01=x F kN F y 11-= )(145cos 41.102kN F x -=-= )(145sin 41.102kN F y == kN F x 23= 03=y F )(12103 0kN F F i xi Rx =+-==∑= 00113 =++-==∑=i yi Ry F F 12 2=+=Ry Rx R R F F 作用点在O 点,方向水平向右. [习题2-2] 计算图中已知1F ,2F ,3F 三个力分别在z y x ,,轴上的投影并求合力. 已知 kN F 21=,kN F 12=,kN F 33=. 解: kN F x 21= 01=y F 01=z F )(424.053 7071.01cos 45sin 022kN F F x =??==θ)(567.05 4 7071.01sin 45sin 022kN F F y =??==θ )(707.0707.0145sin 022kN F F z =?== 03=x F 03=y F kN F z 33= )(424.20424.023 0kN F F i xi Rx =++==∑= )(567.00567.003 0kN F F i yi Ry =++==∑= )(707.33707.003 kN F F i zi Rz =++==∑= 合力的大小: )(465.4707.3567.0424.22222 22kN F F F F Rz Ry Rx R =++=++= 方向余弦: 4429.0465.4424 .2cos === R Rx F F α 1270.0465 .4567 .0cos ===R Ry F F β

清华大学2004至2005年理论力学本科期末考试试卷

清华大学2004至2005年理论力学本科期末考试试卷 考试课程:理论力学 2004 年 1 月 班级姓名学号成绩 一、填空题( 20 分,每小题 5 分) 1. 平面内运动的组合摆,由杆OA、弹簧及小球m组成(如图 1 示)。此系统的自由度数是 3 。 2. 质量为m1的杆OA 以匀角速度ω绕O 轴转动,其A 端用铰链与质量为 m、半径为r的均质小圆盘相连,小圆盘在半径为的固定2 圆盘的圆周表面作纯滚动,如图 2 所示。系统对O 轴的动量矩的大小为 系统的动能为。

3. 图 3 所示半径为R 的圆环在力偶矩为M 的力偶作用下以角速度ω匀速转动,质量为m的小环可在圆环上自由滑动。系统为理想、完整、非定常、双面约束系统,自由度数为 1 。 4.均质细杆AB 长L,质量为m,与铅锤轴固结成角α = 30°,并以匀角速度ω转动,如图 4 所示。惯性力系的合力的大小等于 。

二、判断题(每题 2 分,共 20 分):请在每道题前面的括号内画×或√ ( √ )1. 在定常约束下质系的一组无穷小真实位移就是虚位移。( √ )2. 任意力系都可以用三个力等效代替。 ( × )3. 首尾相接构成封闭三角形的三个力构成平衡力系。 ( √ )4. 速度投影定理既适用于作平面运动的刚体,也适用于作一般运动的刚体。 ( √ )5. 如果一个两自由度系统的第二类拉格朗日方程存在两个独立的第一积分, 则其中至少有一个是广义动量积分。 ( × )6. 如果刚体的角速度不为零,在刚体或其延拓部分上一定存在速度等于零的点。 ( × )7. 作定轴转动的刚体的动量矩向量一定沿着转动轴方向。( √ )8. 刚体只受力偶作用时,其质心的运动不变。 ( × )9. 如果系统存在广义能量积分,不一定机械能守恒;而如果

2016同济大学理论力学期中试题及答案

1.沿长方体的不相交且不平行的棱边作用三个大小相等的力,问边长 a ,b ,c 满足什么条件,该力系才能简化为一个力。 解:向O 点简化: R F ' 的投影:F F F F F F Rz Ry Rx ='='=',, k F j F i F F R ++='∴ [3分] 主矩O M 投影:0,,=-=-=O z O y O x M aF M cF bF M ()j aF i cF bF M O --=∴ [6分] ∵当0=?'O R M F 时才能合成为力, ∴应有()()[] 0=--?++j aF i cF bF k F j F i F 即()00==-FaF cF bF F 或 ∴b=c ,或a=0时,力系才能合成为一个力。 [10分]

2. 图示不计自重的水平梁与桁架在B 点铰接。已知:载 荷1F 、F 均与BH 垂直,F 1=8kN ,F=4kN ,M=6m kN ?, q=1kN/m ,L=2m 。试求: (1)支座A 、C 的约束力; (2)杆件1、2、3的内力。 解: (1)取AB 杆为研究对象 () ∑=0F M B 02 12 =+-M LF qL Ay kN 4=Ay F (2)取整体为研究对象 () ∑=0F M C 02sin 2 sin cos 2cos 21112=-?-?--?+?++ L F L F L F L F L F L F qL M Ay Ax θθθθ

kN 37.5=Ax F ∑=0x F 0cos 2cos 1=--+θθF F F F Cx Ax 0=∑y F 0sin 2sin 1=---+θθF F qL F F Cy Ay kN .F Cx 948= kN 165.F Cy =[6分] (3)取D 点为研究对象 ∑=0x F 01=F [7分] (4)取H 点为研究对象 ∑=0x F 0cos 5=--θF F kN 525-=F [8分] (5)取C 点为研究对象 ∑=0x F 0sin 35=++θF F F Cx kN 12.103-=F 0=∑y F 0cos 32=++θF F F Cy kN 90.32=F [10分]

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

理论力学(哈工大版):力系的简化

第一章 力系的简化 1-1 静力学基本概念与静力学公理 一、静力学基本概念 1.力的概念 (1)定义:力是物体间的相互机械作用,这种作用可以改变物体的运动状态。 (2) 力的效应: ①运动效应(外效应) ②变形效应(内效应)。 (3) 力的三要素:大小,方向,作用点 (4)力的单位: 国际单位制:牛顿(N) 、千牛顿(kN) 力系:是指作用在物体上的一群力。 力系的分类:1.按力的作用线的空间位置:平面、空间 2.按力的作用线的相对位置:汇交、平行、一般 平衡力系:物体在力系作用下处于平衡。 2.刚体 在力的作用下,大小和形状都不变的物体。 3.平衡 指物体相对于惯性参考系保持静止或作匀速直线运动的状态。 二、静力学公理 公理1 二力平衡公理 作用于刚体上的两个力,使刚体平衡的必要与充分条件是: 1、大小相等 | F 1 | = | F 2 | 2、方向相反 F 1 = –F 2 3、作用线共线, 4、作用于同一个物体上 公理2 加减平衡力系原理 在已知力系上加上或减去任意一个平衡力系,并不改变原力系对刚体的作用。 推论1:力的可传性。 作用于刚体上的力可沿其作用线移到同一刚体内的任一点,而不改变该力对刚体的效应。 必须注意:力的可传性只能用于单个刚体,如果将其用于刚体系统,则会改变刚体的受力。 公理3 力的平行四边形法则 作用于物体上同一点的两个力可合成一个合力,此合力也作用于该点,合力的大小和方向由以原两力矢为邻边所构成的平行四边形的对角线来表示。21F F R += 推论2:三力平衡汇交定理 刚体受三力作用而平衡,若其中两力作用线汇交于一点,则另一力的作用线必汇交于同一点,且三力的作用线共面。 公理4 作用力和反作用力定律 等值、反向、共线、异体、且同时存在。 公理5 刚化原理 变形体在某一力系作用下处于平衡,如将此变形体变成刚体(刚化为刚体),则平衡状态保持不变。 1-2 力的投影、力矩与力偶 一、力在空间轴上的投影与分解: 1.力在空间的表示:

清华大学版理论力学课后习题答案大全第12章虚位移原理和应用习题解

第12章 虚位移原理及其应用 12-1 图示结构由8根无重杆铰接成三个相同的菱形。试求平衡时,主动力F 1与F 2的大小关系。 解:应用解析法,如图(a ),设OD = l θsin 2l y A =;θsin 6l y B = θθδcos 2δl y A =;θθδcos 6δl y B = 应用虚位移原理:0δδ12=?-?A B y F y F 02612=-F F ;213F F = 12-2图示的平面机构中,D 点作用一水平力F 1,求保持机构平衡时主动力F 2之值。已知:AC = BC = EC = DE = FC = DF = l 。 解:应用解析法,如图所示: θcos l y A =;θsin 3l x D = θθδsin δl y A -=;θθδcos 3δ l x D = 应用虚位移原理:0δδ12=?-?-D A x F y F 0cos 3sin 12=-θθF F ;θcot 312F F = 12-3 图示楔形机构处于平衡状态,尖劈角为θ和β,不计楔块自重与摩擦。求竖向力F 1与F 2的大小关系。 解:如图(a ),应用虚位移原理:0δδ2211=?+?r F r F 如图(b ): β θtan δδtan δ2 a 1r r r ==;12 δ tan tan δr r θ β = 0δtan tan δ1211=? -?r θβF r F ;θ β tan tan 21?=F F 12-4 图示摇杆机构位于水平面上,已知OO 1 = OA 。机构上受到力偶矩M 1和M 2的作用。机构在可能的任意角度θ下处于平衡时,求M 1和M 2之间的关系。 习题12-1图 (a ) 习题12-2解图 习题12-3 (a ) r a (b )

清华大学理论力学试题

清华大学理论力学试题专用纸 考试类型:期中考试 考试时间:2006年11月12日 班级:__________ 姓名:__________ 学号:_________ 成绩:________ 一.判断下列说法是否正确,并简要说明理由(共5题,15分) 1. 速度投影定理给出的刚体上两点速度间的关系只适用于作平面运动的刚体。 2. 圆轮沿曲线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。 3. 在复合运动问题中,相对加速度是相对速度对时间的绝对导数。 4. 虚位移是假想的、极微小的位移,它与时间、主动力以及运动的初条件无关。 5. 气象卫星在北半球上空拍摄到的旋风的旋转方向为顺时针方向。 二.填空题(共3题,25分) 1. (5分) 图1所示滑道连杆机构由连杆BC 、滑块A 和曲柄OA 组成。已知BO = OA = 0.1 m ,滑道连杆BC 绕轴B 按10rad t ?=的规律转动。滑块A 的速度为 ,加速度为 。 2. (5分) 点P 沿空间曲线运动,某瞬时其速度43(m/s)=+v i j ,加 速度的大小为210m/s ,两者之间的夹角为030。该瞬时点的轨迹在密切面内的曲率半径为 ,P 点的切线加速度为 。 3. (15分) 图2所示曲柄压榨机构,已知OA = r ,BD = DC = ED = l ,∠OAB = 90°,α = 30°。 记OA 杆的转动虚位移为δ?,则A r δ= ,B r δ= ,C r δ= , D r δ= ,并请在图中标出它们的方向。 图1

三、计算题(25分) 在图3所示机构中,连杆AB 以 2.5rad/s ω=的匀角速度转动,杆BD 可沿与杆EF 固连的套筒滑动。求在图示位置时杆EF 的角速度和角加速度。 四、计算题(20分)图4所示起重机左侧履带较右侧履 带快,使机身在圆弧形轨道上前进。如已知起重机机臂的根部A 点在半径为15 m 的圆弧上 以速度v = 2 m/s 运动,机臂仰角arcsin 0.6θ=,角速度4rad/s θ=? ,角加速度20.5rad/s θ= ,机臂长AB = 30 m 。试求: 1. 机臂的绝对角速度和角加速度。 2. 机臂端点B 的速度和加速度。 五、计算题(15分) 图5中OA 杆以等角速度0ω绕O 轴转动,半径为r 的滚轮在OA 杆上作纯滚动, 已知1O B =,图示瞬时O 、B 在同一水平线上,1O B 在铅垂位置,30AOB ∠=°,求在此瞬时1O B 杆的角速度与角加速度以及滚轮的角速度与角加速度 提示:依次采用点的复合运动理论和刚体复合运动理论。 δ? 图2 B n 图5 图4

相关主题
文本预览
相关文档 最新文档