当前位置:文档之家› 实验十六 可逆电池电动势的测定

实验十六 可逆电池电动势的测定

实验十六 可逆电池电动势的测定
实验十六 可逆电池电动势的测定

实验报告

一、数据记录和处理

1. 室温时各电池的电池电动势测定

T室温= 289.15K

表1 室温时各电池的电池电动势

2. 数据处理

(1)写出a、b、c、d各被测电池的表达式、电极反应和电池反应。

a. 电池的表达式:Hg│Hg2Cl2 (s)│KCl(饱和)‖AgNO3(0.0100 mol/L)│Ag

电极反应: Hg + Cl-(饱和) + Ag + = 1/2 Hg2Cl2 + Ag

负极:Hg + Cl-(饱和)= 1/2 Hg2Cl2 + e-

正极:Ag ++ e-= Ag

b. 电池的表达式:Hg│Hg2Cl2 (s)│KCl(饱和)‖Q,QH2,H+│Pt

电极反应: C6H4O2(醌)+ 2H+ + 2e- = C6H4(OH)2(氢醌)

负极:2Hg+ 2Cl- - 2e- → Hg2Cl2

正极:Q + 2H+ + 2e- → QH2

c. 电池的表达式:Hg │Hg 2Cl 2(s)│KCl(饱和)‖AgNO 3(0.100 mol/L)│Ag 电极反应: Hg + Cl -(饱和) + Ag +

= 1/2 Hg 2Cl 2 + Ag 负极:Hg + Cl -(饱和)= 1/2 Hg 2Cl 2 + e - 正极:Ag +

+ e - = Ag

d. 电池的表达式:Ag │AgCl (s)│HCl (0.1 mol/L)‖AgNO 3(0.100 mol/L)│Ag 电极反应: Ag +

+ Cl - = Ag

负极:Ag + Cl - - e -

→ AgCl

正极:Ag + + e -

→ Ag

(2)由电池(a )的电动势计算银电极电势。根据能斯特公式计算银电极的标准电极电势。与文献值比较,求相对误差(已知0.01001

-?kg mol AgNO 3溶液的离子平均活度系数±γ=0.90)

。饱和甘汞电极电势和银电极的标准电极电势文献值见附表9-17。 查附表9-17计算饱和甘汞电极的电极电势和银电极的标准电极电势:

=饱和甘汞?0.24735 V

θ?Ag

Ag

+

=0.80773 V

由饱和甘汞??-=+Ag

Ag E 得:

=+

Ag

Ag ?0.70267 V

再由能斯特方程+

++

-=Ag Ag

Ag Ag

Ag F RT α??θ1ln

得θ

?Ag Ag + θ

?Ag

Ag

+

=0.70267 + 8.314*289.15/96500*ln(1/0.01) =0.81739 V

并计算银电极标准电极电势的相对误差:

相对误差=(0.81739-0.80773)/0.80773*100%=1.20%

(3)由电池(b )的电动势求醌氢醌电极的电极电势和缓冲溶液pH 。醌氢醌电极的标准电极电势见附表9-17。

根据缓冲溶液的浓度和醋酸的电离常数(查附表9-15),计算缓冲溶液pH 的理论值,与上面用电动势法测得的pH 相比较,求相对误差。已知25℃时0.13

-?dm mol NaAc 的离子平均活度系数(±γ=0.791)。

查附表9-17计算醌氢醌电极的标准电极电势:

=θ?2

QH

Q 0.6994 – 0.00074*(t -25) = 0.70606 V

由饱和甘汞2

??-=QH Q E 得:

2

QH Q ?=0.200575 + 0.24735=0.44793 V

再由+

-

=H QH Q QH Q F RT α??θ

1

22ln 得缓冲溶液的pH pH = (0.70606 – 0.44793)*96500/8.314/2.303/289.15=4.50

根据缓冲溶液浓度和醋酸的电离常数(查附表9-15),计算缓冲溶液pH 的理论值 查附表9-15得醋酸的电离常数?

a K =1.745*10-5

再由

NaAc

HAc

a pK pH αα?

lg

-= pH=-lg (1.745*10-5

)- lg0.1/(0.1*0.791)= 4.656

并计算醋酸溶液pH 的相对误差:

相对误差=(4.656-4.50)/4.656*100%=3.35%

(4)*由电池(c )的电动势计算0. 10001

-?kg mol AgNO 3溶液的离子平均活度系数。银电极标准电极电势用附表9-17中的关系式求得。

由饱和甘汞??-=+

Ag

Ag E 得:

=+

Ag

Ag

?0.500416 + 0.24735=0.74777 V

再由银电极的能斯特方程+

++

-=Ag Ag

Ag Ag

Ag F RT α??θ1

ln

得+Ag α +

Ag α=RT

F Ag Ag Ag

Ag e

)(||++--

??θ

=

15

.289314.8)

74777.0807730.(96500?--e

=0.090095

由()

??

? ??

?===±±±+?

γαααb b AgNO AgNO Ag 2

3

3, 则3AgNO ,±γ =0.090095/0.100=0.90095

(5)*由电池(a )、(c )的电动势计算下列浓差电池

()()

Ag kg mol AgNO kg mol AgNO Ag 13131000001000--??..

的电动势,与用能斯特公式计算结果相比较,0. 10001

-?kg mol AgNO 3溶液的

±γ=0.734。

由饱和甘汞??-=+

a

Ag Ag a E ,得:=+a Ag Ag ,?0.70267 V

饱和甘汞??-=+c Ag Ag c E ,得:=+c Ag Ag ,?0.74777 V

再由a Ag Ag c

Ag Ag E ,,++

-=??浓差=0.0451 V

该浓差电池的负极反应:Ag(s) - e - → Ag +

(aq) 正极反应:Ag +

( aq) + e -

→ Ag(s)

电池反应:Ag +

(0.1000mol ·Kg -1

) → Ag +

(0.0100mol ·Kg -1

) 由浓差电池的能斯特方程求浓差E

浓差E =)

(,|)(|l F RT a Ag Ag c Ag Ag n ++αα=9623.001.0734

.01.0l 96500289.158.314???n

=0.050615 V

(6)*由电池(d )的电动势计算氯化银溶度积?

sp K 。已知0.101

-?kg mol HCl 溶液离子平均活度系数±γ=0.796。

由电池d 的电池反应写出能斯特方程求氯化银的?sp K :

-+?-

=cl Ag F RT E E ααθln ?

θsp

K F

RT E ln -= 由于θ

αθE RT

F K ln =

此电池反应的标准平衡常数为氯化银溶度积的倒数 θ

αθsp

K 1K =

经简化得?

sp K ln = E RT

F

)(ln -

?-+cl Ag αα = 0.443925289.15

8.31496500

)796.01.0734.01.0(ln ??-

???

= -22.96

所以?

sp K = 1.065×10-10

二、 回答问题及讨论

1. 测定电池电动势为什么要用补偿法?本实验的测定过程中,在找到光点不偏转的

位置之前,仍有电流通过被测定电池,对测量会带来什么影响?如何减少这些影响?

答:热力学可逆电池的条件之一就是必须非常接近平衡状态,即通过的电流无限小,所以因此要用补偿法来削减电流,使待测电池工作在可逆状态。

影响:有电流通过时会使电极极化,使测得的电动势偏小。

措施:减少电流通过电池的时间,可以实现预估电池电动势的大小,然后迅速调节。

2. 在测量时找到平衡点后(即检流计光点不偏转时),附图4-3中C C '段电阻中有

无电流通过?电流方向如何?BGC C '段线路中有无电流通过?电流方向如何? 答:CC ’段有电流通过,方向由C 到C ’, BGC C '段无电流通过。

3. UJ25型电位差计中Ⅰ~Ⅳ测量盘线路(见附图4-4)对应附图4-3中的哪部分线

路?

答:对应CC ’段电阻。

4. 若检流计光点只向一边偏转,因而找不到光点不发生偏转的平衡点,试分析可能

的原因是什么?

答:待测电池的正负极接反了;工作电池的电压太低。

5.盐桥的作用是什么?一般物理化学教科书中介绍的比较理想的盐桥用电解质是KCl与NH4NO3。本实验中为什么不用这两种电解质,而用饱和KNO3溶液制备盐桥?答:盐桥作用:降低液面接触电势,并且连通电路。本实验中由于Cl-及NH4+都会与Ag+发生反应,分别生成沉淀和络合物,影响电极电势测定,故选用饱和KNO3溶液制备盐桥。

6.检流计的使用及维护中最重要的注意事项是什么?标准电池及工作电池的作用有什么不同?使用标准电池时应注意哪些问题?

答:检流计注意事项:①检流计使用时不能剧烈震动;②通过检流计的电流在额定的围并且时间尽量短;③检流计使用后将量程调节至短路档位。

标准电池作用:电位差测量实验中的标准量具,在直流电位差实验中提供标准的参考电位差。

工作电池作用:在实验中为实验电路提供工作电压,充当工作电源。

使用标准电池时应注意:①避免震动和倒置;②通过标准电池的电流严格限制在围;

③绝对避免两极短路或者长时间与外电路通电;④温度不超过40℃,不低于0℃。

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

原电池电动势的测定实验报告

原电池电动势的测定实验报告范本(完整版) After Completing The Task According To The Original Plan, A Report Will Be Formed To Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas?

互惠互利共同繁荣

原电池电动势的测定实验报告范本 (完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提岀今后设想。文档可根据实际情况进行修改和使用。 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的 操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池 (或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;⑵电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时 通过电池的电流应为无限小。

因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法, 可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为e+,负极电势为e-,则电池电动势 E = e+ - e-。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测岀,具体的电极电位可参考相关文献资料。

可逆电池练习题

第九章可逆电池练习题 一、判断题: 1.电池(a) Ag,AgCl|KCl(aq)|Hg2Cl2,Hg与电池(b) Hg,Hg2Cl2|KCl(aq)|AgNO3(aq)|Ag 的电池反应可逆。 2.恒温、恒压下,ΔG > 0的反应不能自发进行。 3.电池Zn|ZnCl2(aq)|AgCl(s)|Ag在25℃、pф下可逆放电2F时放热23.12 kJ,则该电池反应: Zn + 2AgCl(s)→ZnCl2 + 2Ag 的Δr H mф(298K) = -23.12 kJ·mol-1。 4.Zn2+ + 2e →Zn ,E1ф,Δr G mф(1);?Zn2++e →?Zn,E2ф,Δr G mф(2)。因E1ф= E2ф,所以有Δr G mф(1) =Δr G mф(2)。 5.Fe2++ 2e → Fe,E1ф,Δr G mф(1) ;Fe3++ e→Fe2+,E2ф,Δr G mф(2);(1) + (2),得: Fe3++ 3e→Fe,E3ф,Δr G mф(3)。则:Δr G mф(3) =Δr G mф(1) +Δr G mф(2),E3ф=E1ф+ E2ф。6.2H++ 2e →H2,E1ф与2H2O + 2e→H2 + 2OH-,E2ф,因它们都是氢电极反应,所以φ1ф=φ2ф。 7.对于电极Pt |Cl2(p)|Cl- 其还原电极电势为: φ(Cl-/Cl2)=φф(Cl-/Cl2)-(RT/2F)ln{[p(Cl2)/[pфa2(Cl-)]} 。 8.对于电池Pt|H2|H2SO4(aq)|O2|Pt ,其电池反应可表示为: H2(g)+ ?O2(g)→H2O(l),E1ф,Δr G mф(1) 或2H2(g)+O2(g)→2H2O(l),E2ф,Δr G mф(2)。因2Δr G mф(1) =Δr G mф(2),所以2E1ф= E2ф。 9.电池(1) Ag|AgBr(s)|KBr(aq)|Br2|Pt ,电池(2) Ag|AgNO3(aq)|| KBr(aq)|AgBr(s)|Ag的电池电动势E1、E2都与Br-浓度无关。 10.在有液体接界电势的浓差电池中,当电池放电时,在液体接界处,离子总是从高浓度向低浓度扩散。 11.对于电池Zn|ZnSO4(aq)||AgNO3(aq)|Ag,其中的盐桥可以用饱和KCl溶液。 二、单选题: 1.丹聂尔电池(铜- 锌电池)在放电和充电时锌电极分别称为:() (A)负极和阴极; B)正极和阳极;(C)阳极和负极; (D)阴极和正极。 2.韦斯登标准电池放电时正极上发生的反应为:() (A) Cd2++2e→Cd ;(B) PbSO4(s)+2e→Pb + SO42-; (C)Hg2SO4(s)+2e→2Hg(l)+SO42-;(D)Hg2Cl2(s)+2e→2Hg(l) + 2Cl-。 3.下列说法不属于可逆电池特性的是:() (A)电池放电与充电过程电流无限小;(B)电池的工作过程肯定为热力学可逆过程;

(二) 可逆电池电动势

(二) 电化学热力学与可逆电池电动势 将锌板浸入硫酸锌溶液,将铜板浸入硫酸铜溶液,中 间用多孔陶瓷隔开,就构成了丹尼尔(Daniell)电池。该 电池中发生的反应Zn + Cu2+?→ Zn2+ + Cu是一个典型的 氧化还原反应(redox reaction),当其在电池中发生时,则 可在正负极间形成约1.5 V的电势差,并对外输出电能。 化学反应与电化学反应两者为什么不同?如何将一 个反应设计成电池而使之对外输出电功?电极间的电势 差是如何形成的?输出的电功与体系化学能变化之间有 何关系?这些问题都要由电化学来回答。所谓电化学 (electrochemistry)就是研究化学现象与电现象之间的关系, 以及电能与化学能之间相互转化规律的科学。 电化学反应需在电化学装置中才能发生。将化学能转 化为电能的装置称为原电池(galvanic cell),将电能转化成电能的装置称为电解池(electrolytic cell)。无论原电池还是电解池通常的均由2个电极和对应的电解质溶液构成。电极的命名有2种,即正负极和阴阳极。其中,电势高的一极称为正极,电势低的为负极;发生氧化反应的一极是阳极,而发生还原反应的是负极。例如,图7.15中,Zn电极电势低,为负极,发生氧化反应Zn ?→ Zn2+ +2e-,是阳极;而Cu电极电势高,是正极,发生还原反应Cu2+ +2e-?→ Cu,所以是阴极。对于原电池和电解池,电极名称的对应关系如表7.7 所示。 表7.7 原电池和电解池的电极名称对应关系 原电池电解池 电势高低高低 正极负极正极负极 反应还原氧化氧化还原 阴极阳极阳极阴极 §7.6 可逆电池的设计 1.原电池设计的原理 通常的氧化还原反应在电池中发生时,会拆成单纯的氧化反应(oxidation reaction)和还原反应(reduction reaction)在两个电极上分别发生,如上例: 负极:Zn ?→ Zn2+ + e2- 正极:Cu2+ + e2-?→ Cu 总反应:Zn + Cu2+?→ Zn2+ + Cu 在电极上发生的反应称为电极反应(electrode reaction),也称半反应(half reaction),因为它们仅是完整氧化还原反应的一半。上述反应发生时,在负极Zn变成Zn2+进入溶液并将电子留在极板上,导致极板电子过剩,电势变负;在正极,溶液中的Cu2+到电极上夺取电子,导致铜板带正电,电势变正。可见,电极间电势差的形成是电极上分别发生氧化、还原反应的必然结果。因此,只要将一个反应拆成氧化和还原两个半反应,让它们在两个电极上 solution 4 partition 图7.15 丹尼尔电池示意图

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22() ()2Zn Zn s Zn a e ++-+ 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+ 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++ 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6) 22,1 ln 2Zn Zn Zn RT F a ??+ + -= - (9-7) 式中2,Cu Cu ? +和2,Zn Zn ?+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

物理化学试卷(手动组卷)第9章可逆电池选择

题目部分,(卷面共有25题,47.0分,各大题标有题量和总分) 一、选择(25小题,共47.0分) 1.(2分)电极 Tl 3+,Tl +/Pt 的电势为φ1$ =1.250 V,电极 Tl +/Tl 的电势 φ2$=-0.336 V 则电极 Tl 3+/Tl 的电势 φ3$为: ( ) A 、 0.305 V B 、 0.721 V C 、 0.914 V D 、 1.568 V 2.(2分)以下关于玻璃电极的说法正确的是: ( ) A 、 玻璃电极是一种不可逆电极 B 、 玻璃电极的工作原理是根据膜内外溶液中被测离子的交换 C 、 玻璃电极易受溶液中存在的氧化剂、还原剂的干扰 D 、 玻璃电极是离子选择性电极的一种 3.(2分)反应 Cu 2+(a 1)─→Cu 2+(a 2), 已知 a 1>a 2, 可构成两种电池 (1) Cu(s)│Cu 2+(a 2)‖Cu 2+(a 1)│Cu(s) (2) Pt │Cu 2+(a 2),Cu +(a ')‖Cu 2+(a 1),Cu +(a ')│Pt 这两个电池电动势 E 1与E 2的关系为: ( ) A 、 E 1=E 2 B 、 E 1=2 E 2 C 、 E 1= 1 2 E 2 D 、 无法比较 4.(2分)298 K 时,在下列电池的右边溶液中加入 0.01 mol ·kg -1的 Na 2S 溶液, 则电池的电动势将: ( ) Pt │H 2(p ?)│H +(a =1)‖CuSO 4(0.01 mol ·kg -1)│Cu(s) A 、 升高 B 、 下降 C 、 不变 D 、 无法判断 5.(1分)已知 φ? (Zn 2+,Zn)=-0.763 V, 则下列电池反应的电动势为:Zn(s)+2 H +(a =1)=Zn 2+(a =1)+H 2(p ?) ( ) A 、 -0.763 V B 、 0.763 V C 、 0 V D 、 无法确定 6.(2分)已知 φ? (Cl 2/Cl -)=1.36 V, φ? (Br 2/Br -)=1.07 V, φ? (I 2/I -)=0.54 V, φ? (Fe 3+/Fe 2+)=0.77 V 。请判断在相同温度和标准态下说法正确的是: ( ) A 、 只有 I - 能被 Fe 3+ 所氧化 B 、 Br - 和Cl - 都能被 Fe 3+ 所氧化 C 、 卤离子都能被 Fe 3+ 所氧化 D 、 卤离子都不能被 Fe 3+ 所氧化 7.(2分)298 K 时,已知 φ? (Fe 3+,Fe 2+)=0.77 V, φ? (Sn 4+,Sn 2+)=0.15 V, 当这两个电极组成自发电池时, E ?为: ( ) A 、 1.39 V B 、 0.62 V C 、 0.92 V D 、 1.07 V 8.(2分)在 298 K 时,浓度为 0.1 mol ·kg -1和 0.01 mol ·kg -1 HCl 溶液的液接电势为E J (1),浓度为 0.1 mol ·kg -1和 0.01 mol ·kg -1 KCl 溶液的液接电势 E J (2) 则: ( ) A 、 E J (1) = E J (2) B 、 E J (1) > E J (2)

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定 一、实验目的 1) 掌握电位差计的测量原理和测量电池电动势的方法; 2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用; 5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池 反应的热力学函数△G 、△S 、△H 。 二、实验原理 1.用对消法测定原电池电动势: 原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。 2.电池电动势测定原理: Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位: 其中)25(00097.0799.0Ag /Ag --=+ t ?;而+ ++-=Ag Ag /Ag Ag /Ag 1 ln a F RT ?? 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 而电池电动势 饱和甘汞理论—??+=Ag /Ag E ;可以算出该电池电动势的理论值。与测定值 比较即可。 3.电动势法测定化学反应的△G 、△H 和△S : 如果原电池内进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

傅献彩物理化学选择题———第八章 可逆电池的电动势及其应用 物化试卷(二)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一) 第二章热力学第二定律物化试卷(二) 第三章统计热力学基础 第四章溶液物化试卷(一) 第四章溶液物化试卷(二) 第五章相平衡物化试卷(一) 第五章相平衡物化试卷(二) 第六章化学平衡物化试卷(一) 第六章化学平衡物化试卷(二) 第七章电解质溶液物化试卷(一) 第七章电解质溶液物化试卷(二) 第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用 第十章化学动力学基础(一)物化试卷(一) 第十章化学动力学基础(一)物化试卷(二) 第十一章化学动力学基础(二) 物化试卷(一) 第十一章化学动力学基础(二) 物化试卷(二) 第十二章界面现象物化试卷(一) 第十二章界面现象物化试卷(二) 第十三章胶体与大分子溶液物化试卷(一) 第十三章胶体与大分子溶液物化试卷(二) 参考答案

1. 某一反应,当反应物和产物的活度都等于1 时,要使该反应能在电池内自发进行,则: ( ) (A) E 为负(B) Eθ为负(C) E 为零(D) 上述都不是 2. 298 K 时,φθ(Au+/Au) = 1.68 V,φθ(Au3+/Au) = 1.50 V,φθ(Fe3+/Fe2+) = 0.77 V 则反应2Fe2++Au3+=2Fe3++Au+的平衡常数Kθ值为:( ) (A) 4.33×1021(B) 2.29×10-22 (C) 6.61×1010(D) 7.65×10-23 3. 25℃时,电池反应 Ag +1/2Hg2Cl2= AgCl + Hg 的电池电动势为0.0193V,反应时所对应的Δr S m为32.9 J/(K·mol),则电池电动势的温度系数(αE/αT) 为:( ) (A) 1.70×10-4 V/K (B) 1.10×10-6 V/K (C) 0.101 V/K (D) 3.40×10-4 V/K 4. 已知298.15 K 及101325 Pa 压力下,反应 A(s) + 2BD(aq) = AD2(aq) + B2(g) 在电池中可逆地进行,完成一个单位的反应时,系统做电功150 kJ ,放热80 kJ,该反应的摩尔等压反应热为: ( ) (A) -80 kJ/mol (B) -230 kJ/mol (C) -232.5 kJ/mol (D) -277.5 kJ/mol 5. 某电池在298 K、pθ下可逆放电时,放出 100 J 的热量,则该电池反应的焓变值Δ H m为:( ) r (A) 100J (B) >100J (C) <-100J (D) -100J 6. 298 K时,反应为Zn(s)+Fe2+(aq)=Zn2+(aq)+Fe(s) 的电池的Eθ为0.323 V,则其平衡常数 Kθ为:( )

可逆电池的电动势及其应用习题

第九章可逆电池的电动势及其应用习题一、选择题 1.某电池的电池反应可写成: (1)H 2 (g)+ 2 1 O 2 (g)→ H 2 O(l) (2)2H 2 (g)+ O 2 (g)→ 2H 2 O(l) 相应的电动势和化学反应平衡常数分别用E 1,E 2 和K 1 ,K 2 表示,则 (A)E 1=E 2 K 1 =K 2 (B)E 1 ≠E 2 K 1 =K 2 (C)E 1=E 2 K 1 ≠K 2 (D)E 1 ≠E 2 K 1 ≠K 2 2.通过电动势的测定,可以求难溶盐的活度积。欲测AgCl(s)的活度积K SP ,应设计的电池是: (A)Ag|AgCl(s)|HCl(aq)|Cl 2 (g,pθ)|Pt (B)Pt| Cl 2 (g,pθ)| HCl(aq)||AgNO 3 (aq)|Ag (C)Ag |AgNO 3 (aq)| HCl(aq)|AgCl(s)|Ag (D)Ag|AgCl(s)| HCl(aq)||AgNO 3 (aq)|Ag 3.下列电池中,电动势E与Cl-的浓度无关的是 (A)Ag|AgCl(s)|KCl(aq)| Cl 2 (g,100kPa)| Pt (B)Ag|Ag+(aq)|| Cl- (aq)| Cl 2 (g,100kPa)| Pt (C)Ag|Ag+(aq)|| Cl- (aq)| AgCl(s) |Ag (D)Ag|AgCl(s) |KCl(aq)|Hg 2Cl 2 (s)|Hg 4.在电池Pt| H2 (g,pθ)| HCl (1mol·kg-1)||CuSO4(0.01 mol·kg-1)|Cu 的阴极中加入下面四种溶液,使电池电动势增大的是 (A)0.1 mol·kg-1CuSO 4 (B)0.1 mol·kg-1Na 2 SO 4 (C)0.1 mol·kg-1Na 2 S (D)0.1 mol·kg-1氨水 5.298K时,电池Zn|ZnCl2(m=0.5mol·kg-1)|AgCl(s)-Ag的电动势E=1.015V,其温度系数为-4.92×10-3V·K-1,若电池以可逆方式输出2法拉第的电量, 则电池反应的Δ r H m (单位:kJ·mol-1)应为 (A)–196 (B)–95 (C)224 (D)–224 6.在298K时,为了测定待测液的pH值而组成电池: Pt,H 2 (p?)|pH(x)溶液|甘汞电极

实验一原电池电动势测定

实验一 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”

可逆电池练习题

第九章 可逆电池练习题 一、判断题: 1.电池(a) Ag,AgCl|KCl(aq)|Hg 2Cl 2,Hg 与电池(b) Hg,Hg 2Cl 2|KCl(aq)|AgNO 3(aq)|Ag 的电 池反应可逆。 2.恒温、恒压下,ΔG > 0的反应不能进行。 3.电池Zn|ZnCl 2(aq)|AgCl(s)|Ag 在25℃、p 下可逆放电2F 时放热 kJ ,则该电池 反应:Zn + 2AgCl(s) ZnCl 2 + 2Ag 的m r H ?(298K) = kJ·mol -1。 4.Zn 2+ + 2e Zn ,E 1,m r G ?(1);?Zn 2++e ?Zn ,E 2 ,m r G ?(2)。因 E 1= E 2,所以有:m r G ?(1) = m r G ?(2)。 5.Fe 2+ + 2e Fe ,E 1,m r G ?(1) ;Fe 3+ + e Fe 2+ ,E 2 ,m r G ?(2); (1) + (2),得:Fe 3+ + 3e Fe ,E 3,m r G ?(3)。 则:m r G ?(3) = m r G ?(1) + m r G ?(2),E 3=E 1 + E 2。 6.2H + + 2e H 2,E 1与2H 2O + 2e H 2 + 2OH -,E 2,因它们都是氢电极反应, 所以φ1 = φ2。 7.对于电极Pt |Cl 2(p )|Cl - 其还原电极电势为: φ(Cl -/Cl 2) = φ(Cl -/Cl 2) - (RT /2F )ln{[p (Cl 2)/[p a 2(Cl -)]] 。 8.对于电池Pt|H 2|H 2SO 4(aq)|O 2|Pt , 其电池反应可表示为:H 2(g) + ?O 2(g) H 2O(l),E 1,m r G ?(1) 或2H 2(g) + O 2(g) 2H 2O(l),E 2,m r G ?(2)。 因2m r G ?(1) = m r G ?(2),所以2E 1= E 2。 9.电池(1) Ag|AgBr(s)|KBr(aq)|Br 2|Pt ,电池(2) Ag|AgNO 3(aq)||KBr(aq)|AgBr(s)|Ag 的电 池电动势E 1、E 2都与Br - 浓度无关。 10.在有液体接界电势的浓差电池中,当电池放电时,在液体接界处,离子总是从高浓 度向低浓度扩散。 11.对于电池Zn|ZnSO 4(aq)||AgNO 3(aq)|Ag ,其中的盐桥可以用饱和KCl 溶液。 12. 电池Ag | Ag +(aq)||Cl -(aq)|Cl 2(g),Pt 与Ag(s),AgCl(s)|Cl -(aq)|Cl 2(g),Pt 对应 一个电池反应. 二、单选题: 1.丹聂尔电池(铜 - 锌电池)在放电和充电时锌电极分别称为: (A) 负极和阴极 ; (B) 正极和阳极 ; (C) 阳极和负极 ; (D) 阴极和正极 。 2.韦斯登标准电池放电时正极上发生的反应为: (A) Cd 2+ + 2e Cd ; (B) PbSO 4(s) + 2e Pb + SO 42- ; (C) Hg 2SO 4(s) + 2e 2Hg(l) + SO 42- ;(D) Hg 2Cl 2(s) + 2e 2Hg(l) + 2Cl - 。 3.下列说法不属于可逆电池特性的是: (A) 电池放电与充电过程电流无限小; (B) 电池的工作过程肯定为热力学可逆过程; (C) 电池内的化学反应在正逆方向彼此相反; (D) 电池所对应的化学反应Δr G m = 0 。 4.电池在下列三种情况:(1)I→0;(2)有一定电流;(3)短路。忽略电池内电阻,下列说 法正确的: (A) 电池电动势改变 ; (B) 电池输出电压不变 ; (C) 对外输出电能相同 ; (D) 对外输出电功率相等 。

【实验报告】原电池电动势的测定实验报告

原电池电动势的测定实验报告 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常

用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到“内标”档,用1.00000 V电压进行“采零”。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。 4. 原电池的制作:向一个50 mL 烧杯中加入约1/2 杯饱和氯化钾溶液,将制备好的两个电极管的弯管挂在杯壁上,要保证电极管尖端上没有气泡,以免电池断路。

物理化学试卷第9章可逆电池选择

题目部分,(卷面共有25题,分,各大题标有题量和总分) 一、选择(25小题,共分) 1.(2分)电极 Tl 3+,Tl +/Pt 的电势为 1$= V,电极 Tl +/Tl 的电势 2$= V 则电极 Tl 3+/Tl 的电势 3$ 为: ( ) A 、 V B 、 V C 、 V D 、 V 2.(2分)以下关于玻璃电极的说法正确的是: ( ) A 、 玻璃电极是一种不可逆电极 B 、 玻璃电极的工作原理是根据膜内外溶液中被测离子的交换 C 、 玻璃电极易受溶液中存在的氧化剂、还原剂的干扰 D 、 玻璃电极是离子选择性电极的一种 3.(2分)反应 Cu 2+(a 1)─→Cu 2+(a 2), 已知 a 1>a 2, 可构成两种电池 (1) Cu(s)│Cu 2+(a 2)‖Cu 2+(a 1)│Cu(s) (2) Pt │Cu 2+(a 2),Cu +(a ')‖Cu 2+(a 1),Cu +(a ')│Pt 这两个电池电动势 E 1与E 2的关系为: ( ) A 、 E 1=E 2 B 、 E 1=2 E 2 C 、 E 1=12E 2 D 、 无法比较 4.(2分)298 K 时,在下列电池的右边溶液中加入 mol ·kg -1的 Na 2S 溶液, 则电池的电动 势将: ( ) Pt │H 2(p )│H +(a =1)‖CuSO 4 mol ·kg -1)│Cu(s) A 、 升高 B 、 下降 C 、 不变 D 、 无法判断 5.(1分)已知 (Zn 2+,Zn)=- V, 则下列电池反应的电动势为:Zn(s)+2 H +(a =1)= Zn 2+(a =1)+H 2(p ) ( ) A 、 V B 、 V C 、 0 V D 、 无法确定 6.(2分)已知 (Cl 2/Cl -)= V, (Br 2/Br -)= V, (I 2/I -)= V, (Fe 3+/Fe 2+) = V 。请判断在相同温度和标准态下说法正确的是: ( ) A 、 只有 I - 能被 Fe 3+ 所氧化 B 、 Br - 和Cl - 都能被 Fe 3+ 所氧化 C 、 卤离子都能被 Fe 3+ 所氧化 D 、 卤离子都不能被 Fe 3+ 所氧化 7.(2分)298 K 时,已知 (Fe 3+,Fe 2+)= V, (Sn 4+,Sn 2+)= V, 当这两个电极组成 自发电池时, E 为: ( ) A 、 V B 、 V C 、 V D 、 V 8.(2分)在 298 K 时,浓度为 mol ·kg -1和 mol ·kg -1 HCl 溶液的液接电势为E J (1), 浓度为 mol ·kg -1和 mol ·kg -1 KCl 溶液的液接电势 E J (2) 则: ( ) A 、 E J (1) = E J (2) B 、 E J (1) > E J (2)

可逆电池的电动势及其应用物理化学

第九章可逆电池的电动势及其应用 (12学时) 物理化学教研室

第九章 可逆电池的电动势及其应用(教学方案) 章节名称 第九章 可逆电池的电动势及其应用 备 注 授课方式 理论课(√);实验课( );实习 ( ) 教学时数12 教学目的及要求1、掌握形成可逆电池的必要条件、可逆电极的类型和电池的书面表示方法, 2、了解对消法测电动势的基本原理和标准电池的作用 3、学会所给电池、电极写出有关的化学反应方程,以及根据所给化学反应设计原电池。 4、掌握热力学与电化学之间的联系,了解电动势产生的原因。 5、熟悉电极电势的一套惯用符号和掌握标准电极电势表的应用。 6、掌握能斯特方程及其应用.熟悉电动势测定的主要应用 7、理解浓差电池产生的机理及盐桥的作用。 教学内容提要 时间分配 9.1、可逆电池和可逆电极 9.2、电动势的测定: 对消法测电动势、标准电池 9.3、可逆电池的书写方法及电动势的取号 9.4、可逆电池的热力学:能斯特方程、可逆电池热力学 9.5、电动势产生的机理 9.6、电极电势和电池的电动势 标准氢电极与参比电极 可逆电池电动势的计算 9.7、电动势测定的应用: 电解质平均活度系数的计算、微溶盐的活度积、溶液PH值的测定、电势滴定、电势-pH图的绘制及应用 1 1.5 2 2 1 2.5 2 重点 难点 重点:1.可逆电池的条件;2.电极反应、电池反应与电池表示式的互译 3.电极电势、电池电动势的数值、符号的规定,标准电极电势、标准电池电动势的意义; 4.能斯特方程; 5.电动势测定的应用 难点:1.电池电动势和电极电势的符号;2.双电层理论 讨论 思考 作业 讨论题目:1、可逆电池的条件是什么?为什么要提出可逆电池来讨论? 2、电池反应与电池表示式之间的互相转化? 3、可逆电池的设计方法? 思考题目:为什么不能用伏特计直接测量电池的电动势? 练习作业:习题:1(2、4、6、8)、2(2、4、6、8、10)、5、6、8(1、3、5)、9、11、13、14、16、21、(2、4、6)、25、26、28、29、32、34、37、38 教学手段 课堂讲授 参考 文献 1.王绪。物理化学学习指导。陕西人民教育出版社,1992 2.物理化学——概念辨析解题方法。中国科学技术大学出版社.2002

大学物理化学实验报告-原电池电动势的测定.docx

大学物理化学实验报告-原电池电动势的测 定 篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势e。 如图所示,电位差计就是根据补偿法原理的,它由工作电流回路、标准回路和测量电极回路组成。 ① 工作电流电路:首先调节可变电阻rp,使均匀划线ab上有一定的电势降。 ② 标准回路:将变换开关sw合向es,对工作电流进行标定。借助调节rp 使得ig=0来实现es=uca。③ 测量回路:sw扳回ex,调节电势测量旋钮,直到ig=0。读出ex。 uj-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中sw,指在n处,即sw接通en,指在x1,即接通未知电池ex。 2、电计按钮:原理图中的k。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻rp。

-1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100ml容量瓶5个,50ml滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0.200mol·lkcl溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0.200 mol·l的kcl溶液分别稀释成0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 -1-1 mol·l,0.0900 mol·l各100ml。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至n处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,hg |hg2cl2,kcl(饱和)‖kcl(c)|agcl |ag 5、将转换开关拨至x1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 mol·l,0.0900 -1 mol·l,测各不同浓度下的电极电势ex。

相关主题
文本预览
相关文档 最新文档