当前位置:文档之家› labview的8位逻辑分析仪

labview的8位逻辑分析仪

labview的8位逻辑分析仪
labview的8位逻辑分析仪

目录

引言 (5)

一、LABVIEW和数字逻辑分析仪简介 (6)

1.1 LABVIEW简介 (6)

1.2 数字逻辑分析仪简介 (6)

1.3 实验平台简介 (8)

二、数字逻辑分析仪的总体设计 (8)

三、前面板设计 (11)

四、程序设计 (11)

五、调试及结果 (13)

六、总结心得 (14)

七、参考文献 (15)

引言

数字逻辑分析仪重点在于考察信号高于或低于某一门限电平值,以及这些数字信号与系统时间之间的相对关。逻辑分析仪是一种类似于示波器的波形测试设备,它可以监测硬件电路工作时的逻辑电平(高或低),并加以存储,用图形的方式直观地表达出来,便于用户检测,分析电路设计(硬件设计和软件设计) 中的错误,逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速地定位错误,解决问题,达到事半功倍的效果。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High与Low之间形成数字波形。逻辑分析仪分为两大类:逻辑状态分析仪(Logic State Analyzer,简称LSA)和逻辑定时分析仪(Logic Timing Analyzer)。这两类分析仪的基本结构是相似的,主要区别表现在显示方式和定时方式上。

LabVIEW是目前国际上唯一的编译型图形化编程语言,使用“所见即所得”的可视化技术建立人机界面,使用图标表示功能模块迷失用图标之间的连线表示各模块间的数据传递。同时LabVIEW继承了高级编程语言的结构化和模块化编程的优点,支持模块化与层次化实际,这种结构的实际增强了程序的可读性。

LabVIEW是一种图形化的编程语言和开发环境,它广泛地被工业界、学术界和研究实验室所接收,被公认为是标准的数据采集和仪器控制软件。LabVIEW 是一个功能强大且灵活的软件,利用他可以方便的建立自己的虚拟仪器。以LabVIEW为代表的图形化编程语言,又称为“G”语言。使用这种语编程时,基本上不需要编写程序代码,而是“绘制”程序流程图。LabVIEW尽可能利用工程技术人员所熟悉的术语、图标和概念,因而它是一种面向最终用户的开发工具,可以增强工程人员构建自己的科学和工程系统的能力,可为实现仪器编程和数据采集系统提供便捷途径。

本次课程设计就是在LabVIEW基础上设计一个8位数字逻辑分析仪。并从中学习和了解LabVIEW的运用和编程。

一、LabVIEW和数字逻辑分析仪简介

1.1 LabVIEW简介

虚拟仪器(virtual instrument)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。上面的框图反映了常见的虚拟仪器方案。

LabVIEW(laboratory virtual instrument engineering workbench)是一种图形化的编程语言和开发环境,它广泛地被工业界、学术界和研究实验室所接收,被公认为是标准的数据采集和仪器控制软件。LabVIEW不仅提供了与遵从GPIB,VXI,RS-232和RS-485协议的硬件及数据采集卡通信的全部功能,还布置了支持TCP/IP,ActiveX等软件标准的库函数,而且图形化的编程界面使编程过程变得生动有趣。LabVIEW是一个功能强大且灵活的软件,利用他可以方便的建立自己的虚拟仪器。

LabVIEW是目前国际上唯一的编译型图形化编程语言,使用“所见即所得”的可视化技术建立人机界面,使用图标表示功能模块迷失用图标之间的连线表示各模块间的数据传递。同时,LabVIEW继承了高级编程语言的结构化和模块化编程的优点,支持模块化与层次化实际,这种结构的实际增强了程序的可读性。

LabVIEW语言使用的编程语言通常称为G语言。G语言与传统文本编程语言的主要区别在于:传统文本编程语言是根据语句和指令的先后顺序执行,而LabVIEW测采用数据流编程的方式,程序框图中节点之间数据流向决定了程序的执行顺序。G语言用图形表示函数,用连线表示数据流向。从而能够实观的将所要表达的设计理念显示出来。

1.2 数字逻辑分析仪介绍及分类

逻辑分析仪的工作过程就是数据采集、存储、触发、显示的过程,由于它采用数字存储技术,可将数据采集工作和显示工作分开进行,也可同时进行,必要时,对存储的数据可以反复进行显示,以利于对问题的分析和研究。将被测系统接入逻辑分析仪,使用逻辑分析仪的探头(逻辑分析仪的探头是将若干个探极集中

起来,其触针细小,以便于探测高密度集成电路)监测被测系统的数据流,形成并行数据送至比较器,输入信号在比较器中与外部设定的门限电平进行比较,大于门限电平值的信号在相应的线上输出高电平,反之输出低电平时对输入波形进行整形。经比较整形后的信号送至采样器,在时钟脉冲控制下进行采样。被采样的信号按顺序存储在存储器中。采样信息以“先进先出”的原则组织在存储器中,得到显示命令后,按照先后顺序逐一读出信息,按设定的显示方式进行被测量的显示。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High 与 Low之间形成数字波形。逻辑分析仪的作用是利用便于观察的形式显示出数字系统的运行情况,对数字系统进行分析和故障判断。其主要特点如下:有足够多的输入通道

具有多种灵活的触发方式,确保对被观察的数据流准确定位(对软件而言可以跟踪系统运行中的任意程序段,对硬件而言可以检测并显示系统中存在的毛刺干扰)。

具有记忆功能,可以观测单次及非周期性数据信息,并可诊断随机性故障。

具有延迟能力,用以分析故障产生的原因。

具有限定功能,实现对欲获取的数据进行挑选,并删除无关数据。

具有多种显示方式,可用字符、助记符、汇变语言显示程序,用二进制、八进制、十进制、十六进制等显示数据,用定时图显示信息之间的时序关系。

具有驱动时域仪器的能力,以便复显待测信号的真实波形及有利于故障定位。

具有可靠的毛刺检测能力。

逻辑分析仪分为两大类:逻辑状态分析仪(Logic State Analyzer,简称LSA)和逻辑定时分析仪(Logic Timing Analyzer)。这两类分析仪的基本结构是相似的,主要区别表现在显示方式和定时方式上。

逻辑状态分析仪用字符0、1或助记符显示被检测的逻辑状态,显示直观,可以从大量数码中迅速发现错码,便于进行功能分析。逻辑状态分析仪用来对系统进行实时状态分析,检查在系统时钟作用下总线上的信息状态。它的内部没有时钟发生器,用被测系统时钟来控制记录,与被测系统同步工作,主要用来分析数字系统的软件,是跟踪、调试程序、分析软件故障的有力工具。

逻辑定时分析仪用来考察两个系统时钟之间的数字信号的传输情况和时间关系,它的内部装有时钟发生器。在内时钟控制下记录数据,与被测系统异步工作,主

要用于数字设备硬件的分析、调试和维修。

1.3 实验平台简介

NI ELVIS拥有12种精密仪器。这些仪器基于NI LabVIEW 图形化系统设计软件,具有USB即插即用的连接性、版本向下兼容性,同时还有一整套课程资源来帮助教师准备大多数的课程。

NI教学实验室虚拟仪器套件(NI ELVIS)是动手设计与原型设计平台,它集成了最常用的12个仪器—包括示波器、数字万用表、函数发生器、波特图分析仪等等,将它们集成在适合于硬件实验室或课堂的使用中。100 MS/s 的示波器选项可以用于NI ELVIS II+中。基于NI LabVIEW 图形化系统设计软件,带有USB即插即用功能的NI ELVIS提供了虚拟仪器的灵活性,并且允许进行快速简单的测量采集与显示。该硬件平台适用于一年级直至四年级的课程,帮助教师教授不同的课程概念,包括测量与仪器、模拟与数字电路、控制与机电一体化、电信与嵌入式理论等。

二、信号产生

本次课程设计是做出8位数字逻辑分析仪。用555芯片以及7493芯片来产生逻辑信号,来验证逻辑分析仪的准确性。

2.1 555时钟电路

555定时器市一中数字电路与模拟电路相结合的中规模集成电路。该电路使用灵活、方便,只需外接少量阻容原件就可以构成单稳态触发器和多谐振荡器等,因而广泛用于信号的产生、变换、控制与检测。

555芯片为8脚,工作电路如下图一所示。每个引脚的含义如下:

1地GND 2触发

3输出 4 复位

5控制电压 6门限(阈值)

7放电 8电源电压Vcc

图一 555芯片工作电路图

如图一,我们利用555芯片来搭建一个数字时钟电路。使用+5电压源作为Vcc。使用0.1μF电容C,RA=10kΩ,RB=10kΩ。

参照图二,555芯片4脚和8脚和Vcc相连。RA,RB和C连接在Vcc和地之间,1脚接地。3脚作为输出端口连接至DIO0端口。

对于该555定时振荡电路的周期T:

T = 0.695 (RA+ 2 RB) *C (单位:秒seconds)

555定时振荡电路的振荡频率f:

f = 1/T (单位:Hz)

555定时振荡器的持续时间为:

T = 0.695 (RA+ RB) *C (单位:秒seconds)

555定时振荡电路的占空比:

DC = (RA+ RB) / (RA+ 2 RB)

可以使用Digital Reader软面板读取当前555时钟振荡电路所输出的信号高低

状态。也可以使用示波器来观察3脚的输出信号。

2.2数字计数器

7493芯片的内部原理图如图二,7493的主要作用是分频,一片7493可以进行二分频,四分频,八分频,以及十六分频。如果要得到更高的分频效果可以使用多片7493进行连接。

图二 7493芯片原理图

使用一块555芯片以及两块7493组成一个8位数字计数器。原有的555定时振荡电路不变,再加上4位的二进制计数器7493。该7493芯片包含一个二分频和一个八分频计数器。利用这两个计数器可以设计一个256分频电路,在multisim中的仿真图如图三所示,用两个示波器来观察所产生的波形。

图三 8位数字计数器原理图

注意,图三中的电容C=0.1μF。连线时,7493的2脚,3脚,10脚接地;5脚接+5V电源;555芯片的3脚连接7493的14脚。另外,按照如下说明连接7493的引脚至原型板的DIO端口和LED端口。

图四 multisim 仿真结果

从仿真波形图中可以看出信号的频率以2的整数次幂递减,最后一个为2的8次方分频。从中可以看出该设计电路是符合我们的设计要求的

三逻辑分析仪前面板设计

前面板设计如图五,主要包括显示控件示波器和led闪烁灯,数值输入控件来设置采样时间即采样的快慢,数值显示控件用来显示对应的十进制数。停止开关可以随时对程序运行时进行停止操作。图中B0到B78个LED灯依次为八个分频信号

所驱动,其闪烁的快慢和信号频率一致。

图五 8位数字逻辑分析仪前面板

四程序设计

打开LabVIEW软件,新建一个新的VI。使用ELVIS II自带的Exprss VI编

写程序。在程序框图中右击,Measure I/O->NI ELVISmx面板中选择NI ELVISmx Digital Reader这个VI,配置相关通道,与实验原理中所选择的DIO通道相一致。主要包括数组索引控件、簇的捆绑控件、布尔值转换为0.1控件、控制采样时间的定时控件以及while循环结构等。如图六所示为逻辑分析仪程序框图。

图六 8位数字逻辑分析仪程序框图

在原型面包板上搭建的实物连线图如图七所示

图七实物连线图

五调试及结果

修改程序框图中的通道为Dev2,运行程序,从前面板中的示波器中可以看到相应的数字波形及对应的led灯的闪烁,led灯对应为8位二进制数,数值显示控件位对应二进制数转换为的十进制数。如图八所示为当采样时间为50ms、80ms时的波形

图八(1)采样时间为50ms时的调试结果

图八(2)采样时间为80ms时的调试结果

图八(3)采样时间为120ms时的调试结果

从三个不同采样时间所得出的波形以及相应的LED灯的闪烁中可以看出,该波形和实验开始前在multisim中的仿真波形一致,即各个信号的频率为2的整数次幂,最高的为2的8次幂,即实现了8分频。与实验预期结果一致,符合8位数字逻辑分析仪的设计要求

六总结心得

本次课程设计的目的是让我们基于LabVIEW做一些实用的器件,如温度传感器,交通灯,数字逻辑分析仪等。通过做这些器件可以让我们更加深入的掌握和应用LabVIEW。并且,我们也能学到这些器件的工作原理,这对我们的将来是非常有用的。

我们组做的课程设计题目是数字逻辑分析仪的设计,其实刚开始还不知道这个数字逻辑分析是干什么的,有什么用处,通过网上查资料才对其有所了解,知道了其优缺点。这让我学到不少的知识。

回味这次课程设计,最大的收获莫过于对事情或者说是对事件的处理能力的一次锻炼。调试的时候,波形输出不对,失真非常的厉害,以及LED灯不闪烁等问题都要自己一步一步去检查纠正,才发现波形通过示波器观察,其实失真不严重,但到了LabVIEW上就会有这种情况,到后面多次调试才知道,是因为labview里用波形图这个模块式,里面有对波形的一些设置,有的是渐变的,有的是直接跳动的。由于刚开始我们用的是渐变的,所以波形不是方波,而是三角

波。设置好后,终于调试出了完美的方波。还有就是LED灯不闪烁,输出的应该

脉冲波,LED却不闪烁,后面经示波器检测发现,脉冲波没问题,LED应该是有闪烁的,是因为频率太高,肉眼无法感觉出来。通过自己的研究和测试。学到课本上所学不到的东西。

学会问问题是一个最好的收获。老师之所以不亲自指导而是让我们就其存在的问题,学会自己去解决。网络、同学、书本等等都可以自己去寻找答案,而不是处处依赖他人来获得解决,自己不去想,不去思考,不去寻找答案那么最终又有几个能在心底中存留,下次再碰到同样类似的问题时,是否能够真的自己解决。凡事都要自己去体验一番,只有自己做了,尽力了,真的做不出来才向老师提出问题,那样或许学得更多,学得更好。

还有就是用multisim仿真的时候,发现7493芯片是不包含5脚(接电源)和10脚(接地)的,因为系统已经将这两脚默认的接到了Vcc和GND。后来再接555芯片时,要用到一个5V电源,刚开我要用Vcc,但是用Vcc会影响到7493里面的电源,必须和7493里的保持一致。为了保证成功性,我改用了VDD电源给555.这样就不会对7493有影响了。由于是八位的,所以要用到两个四踪示波器,这时候要保证波形的准确性就必须保证两个示波器的参数是一样的,不要出现不同步的情况,这样观察到的波形才会满足2分频的特性。

七参考文献

[1] 吴成东,孙秋野,盛科.LabVIEW虚拟仪器程序设计及应用[M].北京:人民邮电出版社,2008

[2] Jeffrey Travis,Jim Kring[美].LabVIEW大学使用教程.北京:电子工业出版社,2008.6

[3]朱震华,储婉琴.简易逻辑分析仪的设计与实现.出版社:实验室研究与探索.2001.4

[4]顾乃,孙续.逻辑分析仪原理与应用.出版社:人民邮电出版社

[5]百度百科

逻辑分析仪使用手册.pdf

目录 概述 (1) 第1章逻辑分析仪原理及基本概念 (2) 1.1逻辑分析仪原理 (2) 1.2逻辑分析仪基本概念 (2) 1.2.1定时采样 (2) 1.2.2状态采样 (3) 1.2.3动态采样 (3) 1.2.4存储容量 (3) 1.2.5采样时间 (4) 1.2.6测量带宽 (4) 1.2.7门限电压 (5) 1.2.8触发 (5) 1.2.9触发位置优先 (5) 1.2.10触发状态优先 (5) 第2章致远逻辑分析仪 (6) 2.1命名规则 (6) 2.1.1LA系列逻辑分析仪 (6) 2.1.2LAB系列逻辑分析仪 (6) 2.2功能特色 (7) 2.2.1测量线 (7) 2.2.2逻辑笔 (7) 2.2.3频率计 (8) 2.2.4双边沿同步采样 (9) 2.2.5触发方式 (9) 2.2.6数据滤波 (10) 2.2.7数据导出 (11) 2.2.8协议分析 (11) 2.3型号对比 (11) 2.3.1LA系列对比 (11) 2.3.2LAB系列对比 (12) 2.3.3LA系列与LAB系列对比 (13) 第3章如何使用逻辑分析仪 (14) 3.1逻辑分析仪软件安装 (14) 3.1.1安装ZlgLogic软件 (14) 3.1.2安装驱动程序 (18) 3.1.3软件升级 (19) 3.2逻辑分析仪硬件连接 (21) 3.3逻辑分析仪使用步骤 (25) 3.3.1频率测量 (25) 3.3.2总线测量 (28) 3.3.3SPI测量 (31) 3.3.4SPI总线分析 (32) i

3.3.5SPI触发设置 (34) 3.4逻辑分析仪使用注意事项 (36) 3.4.1确保接地良好 (36) 3.4.2合理设置采样频率 (37) 3.4.3合理设置触发方式 (37) 3.4.4合理设置门限电压 (37) 3.4.5使用Timing-State模式 (38) 3.4.6差分信号测量 (38) 第4章逻辑分析仪的应用 (39) 4.1逻辑分析仪队列触发的应用 (39) 4.1.1队列触发在数字通信系统的应用 (39) 4.1.2队列触发在工业自动化领域的应用 (40) 4.2逻辑分析仪数据延迟触发的应用 (42) 4.2.1原理分析 (42) 4.2.2测试步骤 (42) 4.3逻辑分析仪插件触发的应用 (44) 4.4逻辑分析仪外部触发的应用 (44) 4.4.1触发输出在电路调试中的应用 (44) 4.4.2触发输入在电路调试中的应用 (46) 4.4.3其它应用 (47) 4.5逻辑分析仪在数据采集开发系统中的应用 (47) 4.6逻辑分析仪在1-wire总线开发中的应用 (49) 4.7逻辑分析在LIN总线开发中的应用 (51) 4.8逻辑分析仪在DALI总线开发中的应用 (53) 4.9逻辑分析仪在CAN总线开发中的应用 (54) 4.10逻辑分析仪在FPGA开发中的应用 (55) 4.11逻辑分析仪在ACTEL平台中的应用 (57) 4.11.1方案介绍 (58) 4.11.2实现过程 (58) 4.12逻辑分析仪在RFID开发中的应用 (60) 4.12.1方案介绍 (60) 4.12.2方案实现 (60) 4.12.3实现过程 (61) 4.13逻辑分析仪在SDRAM开发中的应用 (62) 4.13.1硬件平台介绍 (62) 4.13.2建立应用平台 (63) 4.13.3逻辑分析仪测量应用 (64) 4.14逻辑分析仪在USB开发中的应用 (65) 4.14.1测量方法 (66) 4.14.2应用实例 (67) 4.15逻辑分析仪在CF卡开发中的应用 (68) 4.15.1CF卡原理 (68) 4.15.2插件解码分析 (69) 4.16逻辑分析仪在SD卡开发中的应用 (71) ii

SALEAE16最新软件的使用说明

Saleae Logic 16 逻辑分析仪使用上手手册 Saleae Logic 16 购买地址:https://www.doczj.com/doc/1b6696676.html,

从2014年六月份开始,Saleae官方开始主推他的1.1.19版本的逻辑分析仪界面。我在这里给大家介绍一下新软件的采集设置,波形查看以及协议解析等功能和操作步骤。 第一节, 软件的安装 SALEAE 官方提供了WINDOWS ,LINUX ,MAC操作系统的软件版本,其中WINDOWS 版本又分32位系统和64位系统。如果您的电脑是XP 或者WIN7 32位,请安装32位软件,如果是WIN8 或者WIN7 64位,请安装64位软件。对于WIN7系统的用户如果不知道自己的系统是32位还是64位,可以右击“我的电脑”之后再属性里面看到红色箭头部分指示的是32位系统,您应该选择安装32位软件: 这里我用的操作系统是WIN7 32 ,选择安装Logic+Setup+1.1.19+(32-bit)这个安装文件。 之后一路回车安装好软件。这里不再截图,安装完毕后,可以开启软件,显示出界面:

在安装软件的同时,驱动程序已经被注册到系统了了,当插入SALEAE 16逻辑分析仪后就可以自动安装安装驱动。 第二节, 软件界面的总体介绍 软件界面基本是左中右的布局,左边主要是采集和显示设置,右边是分析和解析设置,中间是波形显示区域。 软件支持脱机模拟采集,没有实际的硬件也可以感受一下软件的界面和操 作。点,可以在波形区域模拟显示出一些软件生成的数据,如果您设置了解析(解析设置方法在下面讲),可以根据所设置的协议,生成一些符合协议解析要求的模拟数值。 由于默认的演示模式是8通道的,我们可以设置成16通道的。

逻辑分析仪讲义2009

逻辑分析仪实验讲义 大连理工大学 信息技术实验中心

前言 随着电子技术科学的飞速发展,近年来电子电路从模拟、单元电路过渡到数字、集成电路,而且电子技术本身所采用的器件、理论基础、设计方法以及应用技术都在数字化,并已广泛地应用到各个领域。因此,数字信号的检测、数字域测试已成为电子测量的重要分支之一。逻辑分析仪是数字域测试的主要仪器,这就要求未来电子技术设计人员不但要有较强的设计能力,而且还要掌握数字信号检测的主要仪器——逻辑分析仪的使用,国外的新趋势是“每个设计人员都拥有一台逻辑分析仪”。所以,学习并掌握逻辑分析仪的知识,对成为一个合格的电子工程师是必须的。 为了适应未来世界的数字化,跟踪电子技术的发展方向,加强学以致用的思想,我们开发了一套逻辑分析仪实验,将理论与实践相结合,基础与专业相结合,软件与硬件相结合,模拟与数字相结合,并且突出了实验的灵活性与实用性,实验分基础型和提高型两种,根据学生自身能力,自行选择,启发学生思考、探索,在强调普及知识的同时,重点是提高学生的应用能力、实践能力和创新设计能力。 本讲义各部分内容为:逻辑分析仪简介、触发介绍、逻辑分析仪操作说明、逻辑分析仪实验设计。 鉴于水平有限,加之时间仓促,因此本讲义中缺点错误在所难免,敬请各位读者批评指正。 编者 于大连理工大学 2008年3月

目录 第一章逻辑分析仪简介----------------------------------------------------------------4 第二章Agilent1693A逻辑分析仪操作说明---------------------------------------6 第三章触发介绍---------------------------------------17 第四章逻辑分析仪实验---------------------------------------------------------------20

简易逻辑分析仪报告

简易逻辑分析仪 摘要 本系统是由单片机作为主控制器、可编程器件作为辅助控制单元来实现数字信号产生、逻辑信号采集和示波器显示。 由单片机为核心的信号发生器,实现了大范围可控频率、预设码型的信号输出;数据采集模块的输入电路中的程控迟滞比较器,提高了输入信道的抗干扰能力。可编程器件高密度特点在本系统中的应用,大大减少了外围器件,增强了系统的可靠性。带有LCD显示模块为用户控制提供友好的人机界面,实现了设置掉电保护功能,并支持鼠标操作和图形打印。 关键词逻辑分析仪单片机可编程器件程控迟滞比较器一、方案论证及选择

方案一: 利用普通的74系列移位计数器构成数字信号发生器,纯单片机方式实现逻辑分析仪。 图 1-1 方案一结构框图 如图1-1所示,数字信号发生器部分,利用74系列的移位计数器的基本功能,通过拨码开关向置数端预置循环序列,通过TTL 驱动输出数字信号。逻辑分析仪部分的门限电压由电位器控制。这种方法单片机除了完成基本的数据分析外,还需要完成对逻辑数据的采集、存储、显示等大量控制工作。 方案二: 由单片机产生数字信号序列,由另外两片单片机构成逻辑分析仪。 射随器 门限 比较器 电位器 调压电路 单 片 机 Z Y X D/A D/A 预 置 拨码开关 序列 输出 数字信号发生器 简易逻辑分析 100Hz 时钟 键盘 级联74 移位计数器 数码管

图 1-2 方案二结构框图 如图1-2所示,相比方案一在信号产生上方案二采用了单片机方案,数码管显示循环序列码状态,本方案用软件可以实现不同频率、更加复杂数字信号的输出。在逻辑分析仪部分,部分的特点是双单片机结构,二者通过串口通信,下位机单片机3只负责显示,上位机单片机2通过D/A 输出程控的门限电平。本方案解决了显示与数据采集处理不能同时工作的矛盾, 方案三 利用FPGA/CPLD 的高速特点,实现系统并行工作,这是本方案相比于方案二的特色之一。用可编程器件可以高速完成单一功能模块。FPGA/CPLD 的使用弥补了单片机在高速采集和实时显示的弱点,使整个系统的处理能力远超过当前微控制器的水平,这使设计十分具有发挥的空间。而且通过合理地划分软硬件的工作量,将使软件控制和软件编写变得容易。 单 片 机 2 单 片 机 3 单 片 机 1 输出级TTL 驱动 射随器 D/A 门限 比较器 串口 通信 Z Y X D/A D/A 数码管 键盘 数字信号发生简易逻辑分析 键盘 数码管

逻辑分析仪UsbeeAXPro中文说明书

逻辑分析仪UsbeeAXPro中文说 明书

USBEE AX示波器逻辑分析仪 使用说明书 1. 简介 USBEE AX示波器逻辑分析仪是一款基于PC的高性价比的电路分析调试工具。全面兼容和支持“USBee AX Pro”上位机软件。能够实现示波器,逻辑分析仪等等很多功能。 注意:不正确的使用会造成设备损坏和人员伤害!使用中: ●保证GND线与你的目标板地电位相连; ●数字信号地接DGND.数字通道DCH0 - 7,正常测试电压范围为0-8V; ●模拟信号地接AGND.模拟通道ACH1 的电压范围-10到+10V;x10是 +/-100V; x0.2是+/-2V. ●注意ACH1,x10和x0.2不可同时接,比如测5V信号是接AGND和 ACH1,x10和x0.2悬空; ●数字通道DCH0 - 7保护电压(不损坏仪器,但测试结果不正确)最大 为10v; ●模拟通道保护电压为ACH1:+/-100v;x10:+/-300v;x0.2:+/-10v。 但不要长时间保持。 ●D3V3是仪器提供的输出3.3v的接口,可对外提供不超过100mA的电 流输出。

●USBEE AX的数字通道能够驱动输出,在使用前一定不要超过电压和电 流范围; ●先将USBEE AX连接到PC,再运行软件。 电脑系统要求 ●Windows 8.1/7/ XP或者Windows 操作系统; ●Pentium以上处理器; ●USB2.0高速接口,不支持USB1.1全速端口工作; 设备清单 ●USBEE AX设备一台; ●测试杜邦线一排10根(可选带测试夹); ●USB连接线一条; ●光盘(软件和说明文档,也可从商品描述页面提供的链接下载); 设备工作在最高的采样速度时,对USB带宽和处理器资源要求较高,为了保证稳定工作: ●不要在PC上连接其它USB高速设备; ●最好不要在软件采样和输出信号时运行其它的程序。 2.安装USBEE AX PRO 的步骤: 1. 安装软件前请勿连接硬件。 2.安装USBEE AX PRO 软件。注意: a)只有在WIN7 64/WIN8 64下才选择安装axsw64BIT_English文件夹。其余选择32位版本。

labview的8位逻辑分析仪

目录 引言 (5) 一、LABVIEW和数字逻辑分析仪简介 (6) 1.1 LABVIEW简介 (6) 1.2 数字逻辑分析仪简介 (6) 1.3 实验平台简介 (8) 二、数字逻辑分析仪的总体设计 (8) 三、前面板设计 (11) 四、程序设计 (11) 五、调试及结果 (13) 六、总结心得 (14) 七、参考文献 (15)

引言 数字逻辑分析仪重点在于考察信号高于或低于某一门限电平值,以及这些数字信号与系统时间之间的相对关。逻辑分析仪是一种类似于示波器的波形测试设备,它可以监测硬件电路工作时的逻辑电平(高或低),并加以存储,用图形的方式直观地表达出来,便于用户检测,分析电路设计(硬件设计和软件设计) 中的错误,逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速地定位错误,解决问题,达到事半功倍的效果。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。由于逻辑分析仪不像示波器那样有许多电压等级,通常只显示两个电压(逻辑1和0),因此设定了参考电压后,逻辑分析仪将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High与Low之间形成数字波形。逻辑分析仪分为两大类:逻辑状态分析仪(Logic State Analyzer,简称LSA)和逻辑定时分析仪(Logic Timing Analyzer)。这两类分析仪的基本结构是相似的,主要区别表现在显示方式和定时方式上。 LabVIEW是目前国际上唯一的编译型图形化编程语言,使用“所见即所得”的可视化技术建立人机界面,使用图标表示功能模块迷失用图标之间的连线表示各模块间的数据传递。同时LabVIEW继承了高级编程语言的结构化和模块化编程的优点,支持模块化与层次化实际,这种结构的实际增强了程序的可读性。 LabVIEW是一种图形化的编程语言和开发环境,它广泛地被工业界、学术界和研究实验室所接收,被公认为是标准的数据采集和仪器控制软件。LabVIEW 是一个功能强大且灵活的软件,利用他可以方便的建立自己的虚拟仪器。以LabVIEW为代表的图形化编程语言,又称为“G”语言。使用这种语编程时,基本上不需要编写程序代码,而是“绘制”程序流程图。LabVIEW尽可能利用工程技术人员所熟悉的术语、图标和概念,因而它是一种面向最终用户的开发工具,可以增强工程人员构建自己的科学和工程系统的能力,可为实现仪器编程和数据采集系统提供便捷途径。 本次课程设计就是在LabVIEW基础上设计一个8位数字逻辑分析仪。并从中学习和了解LabVIEW的运用和编程。

基于单片机的简易逻辑分析仪毕业设计论文

基于单片机的简易逻辑分析仪 目录 第1节引言 (3) 1.1系统概述 (3) 1.1.1系统的特点 (4) 1.1.2系统的功能 (4) 第2节系统主要硬件电路设计 (5) 2.1 系统结构框图 (5) 2.2 主体控制模块 (5) 2.3 系统硬件的主体实现 (7) 2.3.1 数字信号发生器模块的电路设计与实现 (7) 2.3.2 主控系统模块的电路设计与实现 (8) 2.3.3 LED显示模块的电路设计与实现 (10) 2.3.4 硬件的抗干扰措施 (12) 第3节系统软件设计 (13) 3.1 系统软件流程 (13) 3.2 中断服务子程序 (15) 3.3 AT24C04程序设计 (15) 第4节结束语 (19) 参考文献 (20) 基于单片机的简易逻辑分析仪

第1节引言 信息时代是数字化的时代,数字技术的高速发展,出现了以高性能计算机为核心的数字通信、数字测量的数字系统。在研究这些数字系统产品的应用性能的同时也必须研究在设计、生产和维修他们的过程中,如何验证数字电路设计的合理性、如何协调硬件及其驱动应用软件的工作、如何测量其技术指标以及如何评价其性能。逻辑分析仪的出现,为解决这些问题提供了可能。 随着数字系统复杂程序的增加,尤其是微处理器的高速发展,用示波器测试己显得有些无能为力。1973年在美国应运而生的逻辑分析仪(Logic Analyzer),能满足数字域测试的各种要求。它属于总线分析仪一类的数据域测试仪器*主要用于查找总线(或多线)相关故障.同时对于数据有很强的选择能力和跟踪能力,因此,逻辑分析汉在数字系统的测试中获得了广泛的应用。 逻辑分析仪(Logic Analyzer)是以逻辑信号为分析对象的测量仪器。是一种数据域仪器,其作用相当于时域测量中的示波器。正如在模拟电路错误分析中需要示波器一样,在数字电路故障分析中也需要一种仪器,它适应了数字化技术的要求,是数字、逻辑电路、仪器、设备的设计、分析及故障诊断工作中不可按少的工具。在测试数字电路、研制和维修电子计算机、微处理器以及各种集成化数字仪表和装置中具有广泛的用途;还是数字系统设计、侦错、软件开发和仿真的必备仪器;作为硬件设计中必不可少的检测工具,还可将其引入实验教学中,建立直观感性的印象,提升学生的硬件设计能力,可以全面提高教学质量;随着科技的发展,LA在多通道、大存储量、高采样速率、多触发功能方面得到更快的发展,在航天、军事、通信等数字系统领域得到越来越广泛的应用。 我们从上面可以看出逻辑分析仪在各个领域的广泛应用。那么我们在学习、应用的同时设计并制作一个简易的逻辑分析仪就显的意义重大了,这样这个过程既可以让我们更加深入理解其原理,又可以提高动手设计并制作整个系统电路的能力,还可以将其作为简易仪器应用于以后的实验中。 1.1系统概述 因在本节中,我们将对简易逻辑分析仪的应用进行分析。给出它的特点,能实现的功能以及系统的简单操作 1.1.1 系统的特点 逻辑分析仪也称逻辑示波器,它是用来分析数字系统逻辑关系的一种仪器。逻辑分析仪的主要作用有二个:一是用于观察的形式显示出数字系统的运行情况,相当于扩展了人们的视野,起一个逻辑显示器的作用;二是对系统运行进行分析和故障诊断。

简易逻辑分析仪

安阳工学院电子信息与电气工程学院 《EDA技术》课程大作业 题目:简易逻辑分析仪 班级: 2011级电子信息工程一班 评分标准: 1、题目难易度。 10% 2、设计和结论正确,分析清晰合理。 40% 3、大作业报告阐述清晰,格式规范。 20% 4、陈述清晰,回答问题正确。 30% 大作业成绩 总成绩=T+J*40%+(J+J*(X-1/N))*30% T为回答问题成绩,J为教师成绩,X为学生自评分值,N为小组人数

简易逻辑分析仪 1. 设计任务 逻辑分析仪可以将数字系统中的脉冲信号、逻辑控制信号、总线数据甚至毛刺脉冲都能同步高速的采集进该仪中的高速RAM中暂存,以备显示和分析。我们所设计的简易逻辑分析仪是一个8通道的逻辑数据采集电路,它可以将输入到RAM中的计数结果通过输出线完整地按地址输出出来,其中CLK(时钟信号),CLK_EN(时钟使能信号),CLR(清零端),WREN(写入允许控制)和DIN(7..0)(写入允许控制),OUTPUT(八位数据输出)。预期可以将输入到简易逻辑分析仪中的数据可以完整的读取出来。 2.设计方案 我们所设计的简易逻辑分析仪主要有三个功能模块构成:一个8位LMP_RAM0,存储1024个字节,有十根地址线;一个十位计数器LMP_COUNTER和一个锁存器74244。设计思路框图如下图一: 图一设计思路框图 3. 方案实施 3.1、LPM计数器模块的设计 首先打开一个原理图编辑窗,存盘取名为 eda1,然后建成工程,在进入本工程的原理图,单击Mega Wizard Plug-In Manger 管理器按钮,然后进入如图二所示的窗口,选择LPM-COUNTER模块,再选择CycloneⅢ和VHDL;文件名为CONT10B。

简易逻辑分析仪

简易逻辑分析仪 一、方案论证及选择 1、系统总体框图如下: 整个系统由信号发生器部分、信号调理部分、ARM软件控制部分以及输出显示部分组成。 2、数字信号发生器模块 方案一:采用555定时器和可预置移位寄存器。用两片74LS194A接成8位可预置循环移位寄存器,方波发生器提供一时钟信号给移位寄存器,预置数用8个按键接入(即循环序列),此方案简单可靠。 方案二:用PC 通过软件编程可以从并行口输出信号波形,不需要硬件电路,且设计灵活,但是不适合电子设计竞赛,并且PC体积大,携带不方便。 方案三:采用中规模FPGA,使用VHDL语言设计移位寄存器。此方案可以实现精确定时产生信号,且信号频率可调,体积小, 但其显示电路占用资源多,这样设计出来的电路系统将大且复杂。 方案四:采用一片AT89C2051单片产生波形序列。用单片机产生数字信号,设计简单,设置灵活,频率调节方便。 综合分析上述各方案,比较其优缺点,本系统有其固定的频率要求,故选用最简单的方案一。 3、门限电压分级部分 方案一、采用单片机软件控制分级输出不同的电压值,给到比较器的反相端。该方案简单、且输出电压精确。 方案二、用单片机产生一路PWM波,再经过两级RC低通滤波可得到直流电压,通过控制PWM波的占空比来改变电压值,达到分级效果。该方案RC滤波得到的电压不稳定,且有纹波。

方案三、直流电源供5V电压,采用电阻、电位器进行一级一级的分压,以实现分级效果。该方案电路复杂,且电位器调节比较难。 方案四、采用数字式电位器,由单片机结合相应的外围电路进行控制,以实现分压。采用程控方式,得到的电压精确且稳定。 鉴于本系统软件程序较多,ARM内部仅两个DA,故选择方案四以避免使用单片机内部DA。 二、硬件部分单元电路 1、数字信号发生器电路 该部分采用了555定时器产生一定频率的时钟信号,通过改变滑动变阻器阻值可实现频率在一定范围内可变,定时器后接一个非门以增强后级驱动能力。定时器产生的方波信号作为双向移位寄存器74LS194的输入时钟,利用74LS194的两个控制端(S0,S1)来产生八路可预置的循环移位逻辑信号序列。当按键SW2按下时,74LS194将按键的逻辑状态输入移位寄存器,送入移位寄存器的这组数值便在时钟的控制下循环移位。 2、信号调理部分 由移位寄存器产生的逻辑信号经过电压比较器LM339,与一可调门限电压进行比较,并输出TTL逻辑电平。这些电平信号输入到单片机与用户自己设置的触发状态字进行比较进而输出题目要求采集的信号。由于LM339输出的信号电平为5V,而单片机可承受的电压最大为3.3V,故需在LM339后进行光耦隔离以防止外部设备给过大的电流给单片机,同时也达到降压的效果。

逻辑分析仪(萧奋洛)

简易逻辑分析仪 作者:萧奋洛王元祥杨志专(华中科技大学)编号:1-59 赛前辅导教师:黄瑞光文稿整理辅导教师:肖看 摘要 本简易逻辑分析仪主要由数据信号发生器、程控逻辑门限设定、数据采集、触发控制、数据处理、波形存储、示波器显示控制和操作面板等功能模块组成。本逻辑分析仪以单片机AT89C55和FPGA(ACEX1K50)为控制核心,除了实现题目要求的全部功能以外,还采用240×128点阵型液晶实现波形显示和全程菜单操作,采用红外键盘实现全数字控制,使得系统智能化和人性化。此外,本系统还提供掉电保存和时钟显示等功能,使得系统更加实用。在软件方面,本系统以多机通信为基础,让多个处理器协调工作,使得系统稳定可靠。 一总体方案论证与设计 1 方案比较与选择 方案一:采用单片机作为系统控制核心。这种方案要求单片机除了完成基本处理分析以外,还需要完成8路TTL数据的采集与普通模拟示波器的显示控制。单片机虽然具备灵活的控制方式,但受工作速率的影响,可能会使示波器显示屏幕抖动和出现明显的回扫线,难以达到题目的要求。 方案二:采用CPLD/FPGA(或带有IP核的CPLD/FPGA)作为系统控制核心。即用CPLD/FPGA完成信号采集、触发控制与示波器的显示控制,由IP核实现人机交互和信号处理分析。本方案优点在于系统结构紧凑,有很高的工作速率,但是调试过程繁琐,不利于实现友善的用户交互界面。 方案三:采用单片机与FPGA结合的方式。即用单片机作为主处理器,完成人机界面、系统控制和触发控制。用FPGA作为协处理器,完成8路TTL数据的采集与普通模拟示波器的显示控制。这种方案兼顾了上述两种方案的优点,可以在硬、软件的结合上,使设计达到整体优化的效果。因此,我们采用方案三。 2 系统设计方案 本系统以单片机为主处理器,以FPGA为协处理器,其中FPGA主要完成8路TTL数据的采集与普通模拟示波器的显示控制。在系统结构上,我们采用总线方式实现单片机对FPGA的控制流传输,使用双口RAM实现大量高速数据流的交换,使系统非常稳定、可靠。图1给出了本系统的总体框图。

基于单片机的简易逻辑分析仪的毕业设计论文

基于单片机的简易逻辑分析仪毕业设计论文 目录 第1节引言 (3) 1.1系统概述 (3) 1.1.1系统的特点 (4) 1.1.2系统的功能 (4) 第2节系统主要硬件电路设计 (5) 2.1 系统结构框图 (5) 2.2 主体控制模块 (5) 2.3 系统硬件的主体实现 (7) 2.3.1 数字信号发生器模块的电路设计与实现 (7) 2.3.2 主控系统模块的电路设计与实现 (8) 2.3.3 LED显示模块的电路设计与实现 (10) 2.3.4 硬件的抗干扰措施 (12) 第3节系统软件设计 (13) 3.1 系统软件流程 (13) 3.2 中断服务子程序 (15) 3.3 AT24C04程序设计 (15) 第4节结束语 (19) 参考文献 (20)

基于单片机的简易逻辑分析仪 第1节引言 信息时代是数字化的时代,数字技术的高速发展,出现了以高性能计算机为核心的数字通信、数字测量的数字系统。在研究这些数字系统产品的应用性能的同时也必须研究在设计、生产和维修他们的过程中,如何验证数字电路设计的合理性、如何协调硬件及其驱动应用软件的工作、如何测量其技术指标以及如何评价其性能。逻辑分析仪的出现,为解决这些问题提供了可能。 随着数字系统复杂程序的增加,尤其是微处理器的高速发展,用示波器测试己显得有些无能为力。1973年在美国应运而生的逻辑分析仪(Logic Analyzer),能满足数字域测试的各种要求。它属于总线分析仪一类的数据域测试仪器*主要用于查找总线(或多线)相关故障.同时对于数据有很强的选择能力和跟踪能力,因此,逻辑分析汉在数字系统的测试中获得了广泛的应用。 逻辑分析仪(Logic Analyzer)是以逻辑信号为分析对象的测量仪器。是一种数据域仪器,其作用相当于时域测量中的示波器。正如在模拟电路错误分析中需要示波器一样,在数字电路故障分析中也需要一种仪器,它适应了数字化技术的要求,是数字、逻辑电路、仪器、设备的设计、分析及故障诊断工作中不可按少的工具。在测试数字电路、研制和维修电子计算机、微处理器以及各种集成化数字仪表和装置中具有广泛的用途;还是数字系统设计、侦错、软件开发和仿真的必备仪器;作为硬件设计中必不可少的检测工具,还可将其引入实验教学中,建立直观感性的印象,提升学生的硬件设计能力,可以全面提高教学质量;随着科技的发展,LA在多通道、大存储量、高采样速率、多触发功能方面得到更快的发展,在航天、军事、通信等数字系统领域得到越来越广泛的应用。 我们从上面可以看出逻辑分析仪在各个领域的广泛应用。那么我们在学习、应用的同时设计并制作一个简易的逻辑分析仪就显的意义重大了,这样这个过程既可以让我们更加深入理解其原理,又可以提高动手设计并制作整个系统电路的能力,还可以将其作为简易仪器应用于以后的实验中。 1.1系统概述 因在本节中,我们将对简易逻辑分析仪的应用进行分析。给出它的特点,能实现的功能以及系统的简单操作 1.1.1 系统的特点 逻辑分析仪也称逻辑示波器,它是用来分析数字系统逻辑关系的一种仪器。逻辑

逻辑分析仪使用教程

声明: 本文来自 另外,将68013制作逻辑分析仪的原理说明简单整理了一下,大家可以看看,如果想DIY也就不难了。点击此处下载ourdev_578200.pdf(文件大小:203K)(原文件名:逻辑分析仪开发手册.pdf) 前言 一、什么是逻辑分析仪 二、使用介绍 三、安装说明 四、Saleae软件使用方法 五、逻辑分析仪硬件安装 六、使用Saleae分析电视红外遥控器通信协议 七、使用Saleae分析UART通信 八、使用Saleae分析IIC总线通信 九、使用Saleae分析SPI总线通信 十、Saleae逻辑分析仪使用问题和注意事项 https://www.doczj.com/doc/1b6696676.html,/item.htm?id=6293581805

淘宝地址:https://www.doczj.com/doc/1b6696676.html,/item.htm?id=6293581805 (原文件名:21.jpg) 前言: 工欲善其事,必先利其器。逻辑分析仪是电子行业不可或缺的工具。但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。 原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。 由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。 一、什么是逻辑分析仪: 逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。 如果在你的工作中有数字逻辑信号,你就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。而Saleae就是一种低端的,比较适合大众化的逻辑分析仪,价格便宜,而且常用的逻辑分析功能足够,人机界面人性化,非常适合实用。 以下是一个Saleae分析I2C时序的一个典型例子:从图中我们可以清晰的看到,起始信号start,从地址是0x50的器件中去读取数据,第一个字节是0xc0,第二个字节是0x50,有了逻辑分析仪,我们可以快捷的找出我们的I2C时序读写数据的正确与否,可以很快将问题解决。后边的讲解中,我会详细讲解逻辑分析仪分析红外遥控器,UART时序,I2C 时序的具体方式方法。

简易逻辑分析仪

简易逻辑分析仪 摘要 本系统基于逻辑分析仪原理,以AT89C系列单片机为核心,设计制作完成了简易逻辑分析仪。本系统主要由数字信号发生器模块、采集存储和示波器显示模块、人机交互模块三部分组成。基于题目要求,本系统对触发方式、信号采集存储、示波器显示波形和时间标志线、友好的人机界面等功能进行了重点设计。经测试,各项指标均满足基本部分和发挥部分的要求,并且有些指标超出题目要求。 关键字:逻辑分析仪;单片机;液晶 Abstract: Keywords: Signal Oscilloscope;MCU;LCM 1、 总体方案设计 1. 方案比较和选择 方案一:纯FPGA/CPLD(可带IP核)或FPGA/CPLD与单片机结合方式。即由FPGA/CPLD产生数字序列信号,判断单、三级触发信号,设定门限电压,采集、存储、显示被测信号;由IP核实现人机交互及信号测量分析等功能;或由单片机完成IP核实现的功能。此方案优点是速度快、精度高。缺点是软硬件复杂、调试困难、程序不易控制、性价比极低;而且体现不出本方案的优势。 方案二:纯单片机方式。即由多片单片机分别完成数字序列发生器,判断触发信号、数据采集、存储、显示,人机交互、门限电压设定

等功能。优点是操作方便、软件结构清晰、控制灵活、调试容易、性价比较高。本系统对速度的要求不是很高,所以单片机完全能够胜任。 2. 系统设计方案 本系统以三片单片机AT89C51为核心,将设计任务分解为数字信号发生器模块、采集存储和示波器显示模块、人机交互模块三部分。其中核心和关键部分是采集存储和示波器显示模块,另外两个模块起辅助作用。总体系统框图如图1所示。 图1 2、 电路设计与分析 1.可预置的8路数字信号发生器 本模块用于产生8路可预置的重复循环移位逻辑信号序列,输出信号为TTL电平,序列时钟频率为100Hz。输出数字信号如图2示例所示。

keil的软件逻辑分析仪使用教程

keil的软件逻辑分析仪(logic analyzer)使用教程 在keil MDK中软件逻辑分析仪很强的功能,可以分析数字信号,模拟化的信号,CPU的总线(UART、IIC等一切有输出的管脚),提供调试函数机制,用于产生自定义的信号,如Sin,三角波、澡声信号等,这些都可以定义。 以keil里自带的stm32的CPU为例,对PWM波形跟踪观测,打开 C:\Keil\ARM\Boards\Keil\MCBSTM32\PWM_2目录下的stm32的Dome,第一步:进行仿真配置,如图: (原文件名:1.jpg) 把开工程中的Abstract.txt文件有对工程的描述,PWM从PB0.8和PB0.9输出,稍后将它加入软件逻辑分析仪里。 The 'PWM' project is a simple program for the STM32F103RBT6 using Keil 'MCBSTM32' Evalua tion Board and demonstrating the use of PWM (Pulse Width Modulation) with Timer TIM4 . Example functionality: - Clock Settings: - XTAL = 8.00 MHz - SYSCLK = 72.00 MHz - HCLK = SYSCLK = 72.00 MHz - PCLK1 = HCLK/2 = 36.00 MHz - PCLK2 = HCLK = 72.00 MHz - ADCLK = PCLK2/6 = 12.00 MHz

- SYSTICK = HCLK/8 = 9.00 MHz - TIM4 is running at 100Hz. LEDs PB8, PB9 are dimmed using the PWM function of TIM4 channel3, channel4 The Timer program is available in different targets: Simulator: - configured for software Simulator MCBSTM32: - runs from Internal Flash located on chip (used for production or target debugging) 第二、选择软件仿真 (原文件名:2.jpg)

逻辑分析仪使用

泰克逻辑分析仪文章 ------------------------------------------------- 最大限度地利用逻辑分析仪 Chris Loberg,泰克公司 逻辑分析仪是一种多功能工具,可以帮助工程师进行数字硬件调试、设计检验和嵌入式软件调试。然而,许多工程师在应该使用逻辑分析仪时,却使用了数字示波器,其主要原因是工程师比逻辑分析仪更熟悉示波器。但逻辑分析仪在过去几年中已经取得了很大的进步,对许多应用,它们将比其它仪器帮助您用更少的时间找到麻烦的漏洞的根本原因。 当然,示波器和逻辑分析仪之间有很多类似的地方,但也有一些重要的差异。为了更好地了解两台仪器可以怎样满足您的特定需求,我们有必要先比较一下它们的各种功能。 数字示波器是一种通用的查看信号的基础工具。其高采样率和高带宽,可以在时间跨度内捕获许多数据点,测量信号跳变(边沿)、瞬态事件和小时间增量。示波器当然也能查看与逻辑分析仪相同的数字信号,但示波器一般用于模拟测量,如上升时间、下降时间、峰值幅度及边沿间经过的时间。 示波器一般有最多四条输入通道。但在您需要同时测量五个数字信号时,或您的数字系统拥有一条32位数据总线和一条64位地址总线时,该怎么办呢?这时需要工具中有多得多的输入。逻辑分析仪一般有34-136条通道。每条通道输入一个数字信号。某些复杂的系统设计要求数千条输入通道。市场上也为这些任务提供了近似规模的逻辑分析仪。 与示波器不同,逻辑分析仪不测量模拟细节,而是检测逻辑门限电平。逻辑分析仪只查找两个逻辑电平。在输入高于门限电压(V)时,我们把这个电平称为“高”或“1”。相反,我们把低于Vth的电平称为“低”或“0”。在逻辑分析仪对输入采样时,它存储一个“1”或一个“0”,具体视相对于电压门限的信号电平而定。 逻辑分析仪的波形定时显示与产品技术资料中找到的或仿真器生成的定时图类似。所有信号都时间相关,以便能够查看建立时间和保持时间、脉宽、外来数据或丢失数据。除高通道数外,逻辑分析仪提供了许多重要功能,支持数字设计检验和调试,包括: ?完善的触发功能,您可以指定逻辑分析仪采集数据的条件 ?高密度探头和适配器,简化与被测系统(SUT)的连接 ?分析功能,把捕获的数据转换成处理器指令,并关联到源代码 使用逻辑分析仪与使用其它仪器类似。下面几节将介绍四个主要步骤:连接,设置,采集,分析。 连接被测系统

逻辑分析仪的应用

第1章逻辑分析仪的应用 逻辑分析仪是分析数字系统逻辑关系的仪器。逻辑分析仪是属于数据域测试仪器中的一种总线分析仪,即以总线(多线)概念为基础,同时对多条数据线上的数据流进行观察和测试的仪器,这种仪器对复杂的数字系统的测试和分析十分有效。逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要作用在于时序判定。 一、逻辑分析仪的应用场合 通常在电子仪器行业,我们在以下情况下需要使用逻辑分析仪: ●调试并检验数字系统的运行; ●同时跟踪并使多个数字信号相关联; ●检验并分析总线中违反时限的操作以及瞬变状态; ●跟踪嵌入软件的执行情况。 二、逻辑分析仪的使用步骤 使用逻辑分析仪与数字信号相连、捕获数字信号并进行分析,一般有以下4个步骤: ●用逻辑探头与被测系统(DUT)相连; ●设置时钟模式和触发条件; ●捕获被测信号; ●分析与显示捕获的数据。 三、逻辑探头 在使用逻辑分析仪测试中,首先选择合适的逻辑探头与被测系统(DUT)相连,探头利用内部比较器将输入电压与门限电压相比较,确定信号的逻辑状态(1或0)。门限值由用户设定,范围由逻辑分析仪本身决定,常用的逻辑电平为TTL电平、CMOS电平、ECL电平等等。 逻辑分析仪的探头有各种各样的形状、大小,用户可以根据自己的需要,选择合适的探头夹具。常用的探头有用于点到点故障查找的“夹子状”,有用在电路板上专用的连接器高密度、多通道型探头。逻辑探头应能够捕获高质量的信号,并且对被测系统的影响最小。另外,逻辑分析仪的探头应能提供高质量信号并传递给逻辑分析仪,并且对被测系统造成的负载最小,而且要适合与电路板及设备以多种方式连接。 四、设置时钟模式和触发条件 在逻辑分析仪与被测系统连接好之后,需要设置时钟模式与触发条件。逻辑分析仪的数据捕获方式不同于示波器,它有两种捕获方式,分别是异步捕获,获取信号的时间信息和同步捕获,用于获取被测系统的状态信息。其中异步分析更类似于示波器的数据捕获方式,其中采样率、波形捕获率等概念都与示波器的相关概念类似。 1.异步捕获模式 在这个模式中,逻辑分析仪用内部时钟进行数据采样,采样速度越快,测试分辨率越高。采样速率对于异步定时分析非常重要,例如,当采样间隔为2ns时,即每隔2ns捕获新的数据存入存储器中,在采样时钟到来之后改变的数据不会被捕获,直到下一个采样时钟到来,由于无法确定2ns中不会被捕获的数据,直到下一个采样时钟到来,由于无法确定2ns中数据是否发生变化,所以最终分辨率是2ns。这种异步捕获模式常用在目标设备与分析仪捕获的数据之间没有固定的时间关系,而且被测系统的信号间的时间关系为主要考虑因素时,通常使用这种捕获模式。

逻辑分析仪基础知识

逻辑分析仪基础知识 1.1 什么是逻辑分析仪 何为逻辑分析仪?逻辑分析仪是分析数字系统逻辑关系的仪器,属于数据域测试的一种总线分析仪。逻辑分析仪以总线为基础,同时对多条是数据线上的数据进行观察和存储,利用时钟从测试是设备上采集和显示数字信号的仪器,最主要是作用于时序判定。由于逻辑分析仪不像示波器一样能够测量电流电压,通常只是显示两个电压,0或者1,因此设定了参考电压以后,逻辑分析仪讲被测信号通过比较器进行判定,从而确定时序关系。 1.2 逻辑分析仪的构成 逻辑分析仪的构成如图1.2所示。逻辑分析仪主要的作用是采样和存储。在组成部分上,逻辑分析仪由采样部分、触发控制部分、存储部分、和显示部分组成。其中最重要的是捕获和数据显示部分。逻辑分析仪一般采用先进行数据采集并存储,然后进行数据分析显示处理。 图错误!文档中没有指定样式的文字。.1逻辑分析仪的架构图 数据捕获部分包括信号输入、比较采样、触发控制、数据存储和时钟电路等。外部被测信号通过探头送到信号输入电路,在比较器中与设定的阀值电平(也称门限电压)进行比较,大于阀值电平的信号为高电平,反之为低电平。采样电路在采样时钟(外时钟和内时钟)控制下对信号进行采样,并将数据流送到触发模块中,产生触发信号。数据存储电路在触发信号的作用下进行相应的数据存储控制。数据捕获完成之后,由分析显示电路将存储的数据处理之后以相应的方式显示出来。 1.3 测试软件 测试软件相当于是逻辑分析仪的显示屏,可以将逻辑分析仪的采集的信号在PC端显示出来,然后通过对应的软件进行观察和分析,得出关于总线通讯是否异常的结论。首先在PC端安装Zlglogic_V5,然后通过USB正确连接PC段,这样就可以将逻辑分析仪采集的信息通过USB方式在PC端显示。 1.4 相关名词及功能 采样方式; 采样方式分为定时采样和状态采样。 定时采样也称异步采样,是使用逻辑分析仪内部时钟作为数据抽样时钟的采样模式,每个抽样点占用一个存储单元。而状态采样也称同步采样,是使用外部时钟作为数据抽样时钟的采样模式,每个外部时钟的有效沿对应的抽样点占用两个存储单元。

相关主题
文本预览
相关文档 最新文档