当前位置:文档之家› 麦克斯韦方程组的平面波解

麦克斯韦方程组的平面波解

麦克斯韦方程组的平面波解
麦克斯韦方程组的平面波解

【麦克斯韦方程组的平面波解】

令0ρ=,0J =

,可得自由空间(真空)中的Maxwell 方程组

0,E ??=

(1)

0,B ??=

(2)

,B E t ???=-?

(3)

00,E B t

με???=?

(4)

其中真空介电常数(Permittivity constant )1208.8510F m ε-=?,真空磁导率(Permeability constant )60 1.2610H m μ-=?由实验测定。按照现行计量方案,确保光在真空中的传播速度

299 792 458 m/s.c =

=

利用矢量分析公式

()()

2

,A A A ????=???-?

可以推导出电磁场的波动方程

2222

2222

01100.E B E B c t c t

???-=?-=?? , (5)

这是6个独立的线性齐次微分方程;即电场强度矢量E 或磁感应强度矢量B

的任意分量都

满足微分方程

22222222210.A A A A

x y z c t

????++-=???? 若以平面电磁波传播方向为x 轴,波阵面平行于yz 平面,则场分量(,)A A x t =与位置坐标y 和z 无关,并满足如下简单微分方程

2222210,A A

x c t

??-=?? (6)

作为练习,读者可以证明任何形如

(,)(),A x t A t kx ω=-

的函数都是波动方程(6)的解,只要其中的参数ω和k 满足

.c k

ω

显然,简谐平面波

()0(,),i t kx A x t A e ω-=

(7)

是波动方程(6)的特殊解,其中2ωπ=和2k π

λ=分别是简谐平面波的园频率和波矢量。

值得指出的是,电场强度矢量E 或磁感应强度矢量B

的6个分量必须同时满足Maxwell 方程组(1.15-18)四个微分方程。这就要求简谐平面波

()()

00(,),(,)i t k r i t k r E r t E e B r t B e ωω-?-?==

还必须满足一些附加条件,即

000000000,0,,,k E k B k E B k B E ωμεω?=?=?=?=-

(8)

从而自由空间中沿x 轴正方向传播的简谐平面电磁波可以写作

()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω--==e e

(9)

并且

0.E B c

=

(10)

类似地,沿x 轴负方向传播的简谐平面电磁波可以写作

()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω++==-e e .

简谐平面电磁波具有显著的横波特性,即

()

0.k E B ??=

对麦克斯韦方程组的理解

对麦克斯韦方程组的理解 摘要:理解麦克斯韦方程组的内在含义。并且麦克斯韦方程组有优美的对称性和协 变性,因此用洛伦兹变换及电磁场量验证麦克斯韦方程组在洛伦兹变换下为不变式。 关键词:麦克斯韦方程组 对称性 协变性 1、引言:数学是研究物理的有力工具,数学描述的概括性和抽象性令人敬畏,也 令人敬佩,物理是一门定量的科学,必然大量的使用数学;物理上出现的数学公式反映自然现象的规律和本质,学习物理时,既要弄清楚数学公式的数学意义,更要弄清楚物理内涵,这样才能对数学公式由敬畏变成敬佩,并产生学习的愉悦,以下谈谈自己对麦克斯韦方程组的一点浅浅的体会。 麦克斯韦于1865年完成了他的论文“电磁场的一个动力学理论”。在这篇论文中提出了电磁场的八个基本方程,全面概括了电磁场运动的特征。并非常敏锐的引入了位移电流。指出了电磁场的存在及传播规律。这些光辉的预言,在1888年被德国的科学家赫兹在实验上证实了。 麦克斯韦方程组充分表现了电场和磁场的对称性和协变性,从而体现了自然世界优美的对称性和协变性。 麦克斯韦方程组因为其的优美,被认为是上帝书写的。 2、麦克斯韦方程组的的对称性 麦克斯韦方程组可以概括整个电磁学规律,它具有优美的对称性; t B E ??- =?? (1) t E J u B ??+=??000εμ (2) ερ = ??E (3) 0=??B (4) 麦克斯韦方程组反映普遍情况下电荷电流激发电磁阀以及电磁场内部矛盾运动的规律。它的主要特点是揭示了变化电磁场可以相互激发的运动规律,从而在理论上预言了电磁场的存在,并指出光就是一种电磁波,麦克斯韦方程组不仅揭示了电磁场的运动规律,更揭示了电磁场可以独立于电荷之外单独存在,这就更加深了我们对电磁场物质性的认识。 麦克斯韦方程组是宏观电磁现象的理论基础,它的应用范围极其广泛,利用它原则上可以解决各种宏观电磁现象。因此电磁场的计算都可以归结为对这组方程的求解过程。比如,稳恒磁场就是 0=??t B ,0=??t E 的特殊情况下 的麦克斯韦方程;在讨论电磁波及在真空中 的传播问题时,就是令0,0==J ρ,就可以得到关于E 和B 的完全对称的波动方程: 012222 =??-?t E c E ;012222 =??=-?t B c B

波动方程的简谐平面波解

波动方程的简谐平面波解 在建立了波动方程之后,我们来讨论其解的形式及其特性。 1、 简谐平面波 (1)波动方程的简谐平面波解 声波在空间中传播,其传播方向和波阵面垂直。平面波是波阵面是平面的声波,而简谐平面波是波阵面(对简谐波而言,波阵面也是等相位面)是平面的简谐声波。具有任意波形的声波可以通过付里叶变换分解为多个具有不同频率的简谐平面波的叠加。因此,简谐波传播是波动传播的基础。 一般简谐平面波的声压幅值在等相面上有一定的分布。这里只讨论声压幅值在等相面上处处相同(均匀平面波)的简单情况,较为复杂的非等声压幅值平面波(非均匀平面波)在后面的学习中会遇到。 对一维均匀简谐平面波,声压幅值可以只用一个坐标来描述。若取平面波的传播方向为x 轴正方向,假设波动方程中c 为常数,则波动方程的均匀简谐平面波解可以分离变量有如下形式: (,)()()p x t p x T t =, (2-23) 其中,()p x 和()T t 分别为(,)p x t 的空间坐标相关因子和时间相关因子。将(2-23)式代入到 (2-15)中,并分离变量,得 222222 1()() ()()d T t c d p x T t dt p x dt ω==-, (2-24) 其中,2ω-为分离常数。由(2-24)式可得两个方程: 22 2 ()()0d T t T t dt ω+=, (2-25) 222 () ()0d p x k p x dt +=。 (2-26) 其中,222k c ω=,为常数。 (2-25)式的两个特解为j t e ω和()j t e ω-,后者描述具有“负频率”的振动,无实际意义,只保留j t e ω;(2-26) 式的两个特解为jkx e 和jkx e -。由此得到波动方程的简谐平面波解为 j[t-kx] j[t+kx] (,)(,)(,) =Ae e p x t p x t p x t B ωω+-=++ 。 (2-27) 对推导过程中几个量物理意义的讨论: ① 由(2-25)的解j t e ω可以看出,ω是简谐波的圆频率,也可以理解为:在简谐波

麦克斯韦方程组的平面波解

【麦克斯韦方程组的平面波解】 令0ρ=,0J = ,可得自由空间(真空)中的Maxwell 方程组 0,E ??= (1) 0,B ??= (2) ,B E t ???=-? (3) 00,E B t με???=? (4) 其中真空介电常数(Permittivity constant )1208.8510F m ε-=?,真空磁导率(Permeability constant )60 1.2610H m μ-=?由实验测定。按照现行计量方案,确保光在真空中的传播速度 299 792 458 m/s.c = = 利用矢量分析公式 ()() 2 ,A A A ????=???-? 可以推导出电磁场的波动方程 2222 2222 01100.E B E B c t c t ???-=?-=?? , (5) 这是6个独立的线性齐次微分方程;即电场强度矢量E 或磁感应强度矢量B 的任意分量都 满足微分方程 22222222210.A A A A x y z c t ????++-=???? 若以平面电磁波传播方向为x 轴,波阵面平行于yz 平面,则场分量(,)A A x t =与位置坐标y 和z 无关,并满足如下简单微分方程 2222210,A A x c t ??-=?? (6) 作为练习,读者可以证明任何形如 (,)(),A x t A t kx ω=- 的函数都是波动方程(6)的解,只要其中的参数ω和k 满足

.c k ω =± 显然,简谐平面波 ()0(,),i t kx A x t A e ω-= (7) 是波动方程(6)的特殊解,其中2ωπ=和2k π λ=分别是简谐平面波的园频率和波矢量。 值得指出的是,电场强度矢量E 或磁感应强度矢量B 的6个分量必须同时满足Maxwell 方程组(1.15-18)四个微分方程。这就要求简谐平面波 ()() 00(,),(,)i t k r i t k r E r t E e B r t B e ωω-?-?== , 还必须满足一些附加条件,即 000000000,0,,,k E k B k E B k B E ωμεω?=?=?=?=- (8) 从而自由空间中沿x 轴正方向传播的简谐平面电磁波可以写作 ()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω--==e e , (9) 并且 0.E B c = (10) 类似地,沿x 轴负方向传播的简谐平面电磁波可以写作 ()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω++==-e e . 简谐平面电磁波具有显著的横波特性,即 () 0.k E B ??=

对麦克斯韦方程组的几点新认识

对麦克斯韦方程组的几点新认识 水悦 (安徽大学物理与材料科学学院,安徽合肥 230039) 摘要:经过上学期对《电动力学》和这学期《电磁场与电磁波》课程的学习,使我们认识到麦克斯韦方程组的重要性,麦克斯韦方程组是电磁理论的核心方程组,它是深刻理解好整个电磁理论的基础。在原有学习的基础上,查阅大量资料,现从麦克斯韦方程组所蕴涵的物理简单美、对称美与统一美角度重新审视麦克斯韦方程组,并从审美的角度加深对它的理解。最后,再结合上述分析简单探讨一下麦克斯韦方程组中所透露出的哲学思想,从学科相互渗透的角度进一步加深理解。 关键词:麦克斯韦方程组;简单美;对称美;统一美;哲学 1865年,麦克斯韦在英国皇家学会上宣读了其举世瞩目的论文——《电磁场的动力学理论》,在这篇论文中,他提出了伟大的麦克斯韦方程组。这个方程的伟大之处体现在三个方面,首先,它对电磁理论做出了正确地描述,体现了科学的“真”。其次,利用它可以造福人类,又有“善”的一面;同时,它被誉为“19世纪最美的方程”,有人甚至称之为“像诗一样美的方程组”,可见它还是“美”的。因此,它是“真”、“善”、“美”的统一。同时,将物理学与哲学相结合,我们还可以看到麦克斯韦方程组所蕴含着的哲学规律,这正是学科间的相互渗透,作为一名理科学生,也同样很值得我们仔细去思考、去品味。 1 麦克斯韦方程组的美 1.1 简单美 麦克斯韦方程组在历史上的建立过程非常复杂,但它的逻辑基础却很简单。它是由麦克斯韦在3个基本电磁实验定律(库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律)的基础上,引出涡旋电场与位移电流的2个假设,并将这些定律与假设加以整合与推广而得到。由库仑定律与毕奥一萨伐尔定律可以导出静态场的麦克斯韦方程组,而动态场的麦克斯韦方程组是在此基础上作了两个重大改进。第一个改进是从法拉第电磁感应定律出发,可以得出处于变化磁场中的导体会产生感应电场,麦克斯韦进一步将它推广,认为只要有变化的磁场就会产生感应电场,并将它称为涡旋电场,涡旋电场的产生与是否存在导体无关,只不过有导体存在时,在涡旋电场的作用下会产生涡旋电流。引入涡旋电场的概念后就可以得到动态场电场的旋度方程。因此,从逻辑上看,涡旋电场既是法拉第电磁感应定律的一个引申和推广,它并不是一个独立的逻辑基础。第二个改进是由麦克斯韦一个人完成的,他为了协调当时的磁场旋度方程与电荷守恒定律间的矛盾,天才地提出了位移电流的假设,认为位移电流也是产生磁场的源,于是就得到了动态场磁场的旋度方程。因此,位移电流假设相当于一个定律,是与三大实验定律并列的一个定律。综上所述,从麦克斯韦方程组建立过程来看,库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律、位移电流假设构成了麦克斯韦方程组简单的逻辑基础。 麦克斯韦方程组的数学形式也具有简单性,而且从麦克斯韦方程组的发展历史来看,它是逐渐变得简单的。麦克斯韦方程最初给出的是20个方程与20个变量,如下式所示:

麦克斯韦方程组的几种推导方法的比较

麦克斯韦方程组的几种推导方法及其比较 摘要:介绍麦克斯韦方程组的几种推导方法。从经典、能量守恒、拉格朗日方程的 方面推导得出现有的麦克思维方程组,从侧面说明了麦克斯韦的普遍适用性和有其他一些普遍存在的定理定律的等价性。通过分析三种方法的优缺点,从而加深对麦克斯韦方程组的物理意义的理解,培养科学求真的探索精神。 关键词:拉格朗日方程、麦克思维方程组、能量守恒定律

目录 引言: (4) 1_用经典方法推导麦克斯韦方程组的方法 (4) 1.1 第一方程式的推导 (4) 1.2第二方程式的推导 (5) 1.3第三方程式的推导 (6) 1.4第四方程式的推导 (7) 2_从电磁场能量和能流形式推导麦克斯韦方程组 (8) 3_用拉格朗日方程推导麦克斯韦方程组的方法。 (10) 4_三种方法的比较 (14) 4.1经典方法的优势 (14) 4.2能量方法推导的优缺点 (14) 4.3拉格朗日方程推导的特点 (15) 结束语: (15) 参考文献: (15)

引言: 麦克斯韦方程组是电磁理论的基本方程,在电磁学中有很重要的地位,在与很多工业领域有很多应用。关于它的推导建立,有我们熟知的经典方法,还有后来的根据拉格朗日方程等分析力学方法推导,以及由能量守恒的方法推导等诸多方法。下面我们来一一推导证明 1_用经典方法推导麦克斯韦方程组的方法 1.1 第一方程式的推导 电荷的库仑定律: F =0ε41πr r q q 3 ' 此电荷的场强为: E =0ε41πr r q 3 对电荷的场强沿着球面求面积分,得到: ? S dS E =∑0εi Q =? V 1 dV ρε 电场强度通过面元d S 的通量为: dS E ? =Ecos θds= 2 04r Q πεcos θds 。 θ是d S 与E 的夹角,cos θds/2r 位球面的立体角元。所以包裹电荷的闭合曲面和球面的积分是相同的。由于对电荷的场强求面积分只与包裹着的电荷有关系,所以积分的面没有关系。 又因为电荷的体密度的定义: ρ=V q 根据斯托克斯公式可以把面积分化成散度的体积分:

关于麦克斯韦方程组

麦克斯韦方程组▽-----乐天10518 关于热力学的方程,详见“麦克斯韦关系式”。麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。 麦克斯韦方程组Maxwell's equations 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与的四个基 本方程。 方程组的微分形式,通常称为麦克斯韦方程。在方程组中,电场和磁场已经成 为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了 电磁波的存在。 麦克斯韦提出的涡旋电场和假说的核心思想是:变化的磁场可以激发涡旋电场, 变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激 发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立 了完整的体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方 程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的的完美 统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统 一的。另外,这个理论被广泛地应用到技术领域。 [] 历史背景

1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。 1855年至1865年,麦克斯韦在全面地审视了、—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 [] 积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 时, 方程组就还原为静电场和稳恒磁场的方程:

真空中的麦克斯韦方程组的推导

真空中的麦克斯韦方程组的推导 一、电磁学的基本定律与定理 电荷:正负电荷同性相斥,异性相吸 1、库仑定律:真空点电荷之间相互作用力 122014r q q F e r πε= 电场:我们假定电荷与电荷之间的相互作用是通过场来传递的。 电场是一种物质 电场强度:反应了电场力的性质 F E q = (定义式,任何情况下都成立) 对于真空中的点电荷Q 产生的电场有 2 014r Q E e r πε= (只适合于真空中的点电荷) 电场线:世上本来没有电场线,有好事者发明它,它是一种形象描述电场而引进的假想的曲线,它的密度代表电场强度的大小,它的切线方向代表电场的方向。 电场强度:等于垂直于电场方向单位面积的电场线的条数,代表着电场线的密度 dN E dS ⊥ = 电场强度E ??? 大小:电场线密度方向:正电荷受力的方向 2、高斯定理:电通量与电荷的关系的定理 电通量:S =E dS Φ? ,通过某一曲面S 的电场线的条数 如果该曲面为闭合的曲面,则有 q E dS εΦ==? 由库仑定律可以推导高斯定理,

法拉弟电磁感应定律:变化的磁场产生电场 d d B dS dt dt ξΦ=-=-? 电荷守恒定律 q j dS t ?=-?? 下面我们来总结一下得到的定理定律 1、库仑定律可推出与高斯定理和安培环路定理:因此库仑定律可以由高斯定理 和安培环路定理取代 000 ()()q E dS E dV dV E ρρεεε=??=??=??? 2、静电场环路定理:0()00E dl E dS E =???=???=?? 由于毕奥萨伐尔定律可以推导出磁场的安培环路定理和高斯定理,因此毕奥萨伐尔定律的内容可以由安培环路定理和高斯定理取代 3、磁场的安培环路定理00B dl I B j μμ=???=? 4、磁场高斯定理0=0B dS B =??? 5、法拉弟电磁感应定律 d d B B dS E dl B dS E dt dt t ξ?=-?=-???=-???? 6、电荷守恒定律 q j dS j t t ρ??=-??=-???

关于麦克斯韦方程组的建立

本科毕业论文 题目:关于麦克斯韦方程组的建立

目录 1.引言 (1) 2.麦克斯韦电磁场理论的建立 (1) 3.麦克斯韦方程组 (2) 3.1涡旋电场假说,位移电流假说 (2) 3.2麦克斯韦方程组的简易推导 (3) 3.3麦克斯韦方程组的微分形式 (5) 4.建立麦克斯韦方程组的其他途径 (6) 4.1根据能量原理和近距作用原理建立麦克斯韦方程组 (6) 4.2根据库仑定律和洛论磁力变换建立麦克斯韦方程组 (11) 5.麦克斯韦方程组的物理意义 (15) 6.结束语 (15) 7.参考文献 (16) 8.致谢............................................ 错误!未定义书签。

关于麦克斯韦方程组的建立 摘要:本文中阐述麦克斯韦电磁场理论的历史发展及运用涡旋电场和位移电流的概念,推导出麦克斯韦方程组的基本形式,并麦克斯韦方程组较深刻的进行讨论,推导出符合在任意时变电磁场的麦克斯韦方程组。 关键词:麦克斯韦方程组;电磁场;涡旋电场;位移电流

1.引言 麦克斯韦电磁场理论是十九世纪物理学中最伟大的成就之一,是继牛顿力学之后物理学史上又一次划时代的伟大贡献。麦克斯韦全面总结了电磁学研究的成果。并在此基础上提出了“涡旋电场”和“位移电流”的假说,建立了完整的电磁理论体系,不仅科学地预言了电磁波的存在。而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础,麦克斯韦方程组不仅揭示了电磁场的运动规律。更揭示了电磁场可以独立于电荷之外单独存在,这样就加深了我们对电磁场物质性的认识。 2.麦克斯韦电磁场理论的建立 麦克斯韦首先从论述力线着手,初步建立起电与磁之间的数学关系。1855年,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,用数学语言表述了法拉第的电紧张态和力线概念,引进了感生电场概念,推导出了感生电场与变化磁场的关系。 1862年他发表了第二篇论文《论物理力线》,不但进一步发展了法拉第的思想,扩充到磁场变化产生电场,而且得到了新的结果:电场变化产生磁场。由此预言了电磁波的存在,并证明了这种波的速度等于光速,揭示了光的电磁本质。这篇文章包括了麦克斯韦电磁理论研究的主要成果。 1864年他的第三篇论文《磁场的动力学理》,从几个基本实验事实出发,运用场论的观点,引进了位移电流概念,按照电磁学的基本原理(高斯定理、电荷守恒定律)推导出全电流定理,最后建立起电磁场的基本方程。 麦克斯韦在总结库仑、高斯、欧姆、安培、毕奥、萨伐尔、法拉第等前人的一系列发现和实验成果的基础上。结合自己提出的涡旋电场和位移电流的概念,建立了第一个完整的电磁理论体系。这个重要的研究结果以论文的形式发表在1865年的英国皇家学会的会报上。论文中列出了最初形式的方程组,由20个等式和20个变量组成,包括麦克斯韦方程组的分量形式。

麦克斯韦方程组浅析

麦克斯韦方程 摘要:本文对麦克斯韦方程组作了全面的分析和阐述,主要包括:麦克斯韦方程组的建立与推导,麦克斯韦方程组的表现形式及其意义,麦克斯韦方程组的应用等三个方面的内容。 关键词:麦克斯韦方程组 库仑定律 毕奥—萨伐尔定律 法拉第定律 引言:麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在1865年英国皇家学会上发表的《电磁场的动力学理论》中提出来的。麦克斯韦在全面深入的审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,经过长达十年的研究后才得到的成果。可以说,麦克斯韦方程组概括了电磁场的基本性质和规律,构成完整的经典电磁场理论体系。它与洛伦磁力方程共同组成经典电磁学的基础方程,其重要性不言而喻。 一 、麦克斯韦方程组的建立与推导 1、麦克斯韦方程组的建立 麦克斯韦方程组是经典电磁学理论的核心,因此麦克斯韦方程组的建立过程实际上就是经典电磁学理论的建立过程。 到1845年,关于电磁现象的三个基本实验定律:库仑定律、毕奥—萨伐尔定律和法拉第定律已经被总结出来,这为麦克斯韦方程组的建立提供了理论基础。此外,19世纪30年代,法拉第创造性的提出了场和场线的概念,结束了长期以来科学历史上关于超距作用与近距作用的争论。随后,场的思想逐渐完善,科学家们建立了较为成熟的电磁场概念,这对麦克斯韦的工作具有极大的帮助。 1855年,麦克斯韦开始了电磁学基础理论方面的研究。在随后的十年里,他相继发表了《论法拉第力线》、《论物理力线》、《电磁场的动力学理论》等三篇论文。麦克斯韦建立电磁理论的过程大致可分为三步:第一步,麦克斯韦分析总结了电磁学已有的成果,提出感生电场的概念;第二步,他设计了电磁作用的力学模型,对已经确立的电学量和磁学量之间的关系给以物理解释。第三步,他把近距作用理论引向深入,明确地提出了电磁场的概念,并且全面阐述了电磁场的含义,建立了电磁场的普遍方程即麦克斯韦方程组。【1】 2、麦克斯韦方程组的推导 我们先来考察一下库仑定律: r e F 2 00 14r q q πε= 因为q F E =,所以E = r e 2 004r q πε。 (1)电场高斯定律推导 (a) 对于真空中静止的单个点电荷,作任意的高斯面,电荷位于面内。则有:

深入浅出讲解麦克斯韦方程组

深入浅出讲解麦克斯韦方程组 前一段时间给大家发过一篇《世界上最伟大的十个公式》,排在第一位的是麦克斯韦方程,它是电磁学理论的基础,也是相对论假定光速不变的依据,可见排在十大公式之首,理所应当!为了让大家更好地理解该方程,我们找到了一篇由孙研发表在知乎上的关于麦克斯韦方程的非常完美的讲解,呈现个大家。在文章的最后,我们还为大家附上了一段讲解麦克斯韦方程的英文动画视频,如果你英文比较好,不妨看一下。以下是正文: 有人要求不讲微积分来讲解一下麦克斯韦方程组?感觉到基本不太可能啊,你不知道麦克斯韦方程组里面每个方程都是一个积分或者微分么??那既然这样,我只能躲躲闪闪,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。 1. 力、能、场、势 经典物理研究的一个重要对象就是力force。比如牛顿力学的核心就是F=m a这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。很多时候,从能量的角度出发反而问题会变得简单很多。能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。 在电磁学里,我们通过力定义出了场field的概念。我们注意到洛仑兹力总有着F=q(E+v×B) 的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。具体到两个电荷间的库仑力的例子,就可以理解为一个电荷制造了电场,而另一个电荷在这个电场中受到了力,反之亦然。类似地我们也可以对能量做相同的事情,刨去能量中的电荷(或电荷×速度),剩下的部分便是势potential。 一张图表明关系: 积分 力--->能 || 场<---势 微分

麦克斯韦方程组的推导及说明

13-6麦克斯韦方程组 关于静电场和稳恒磁场的基本规律,可总结归纳成以下四条基本定理: 静电场的高斯定理: 静电场的环路定理: 稳恒磁场的高斯定理: 磁场的安培环路定理: 上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。 麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念: 1.麦克斯韦提出的涡旋电场的概念,揭示出变化的磁场可以在空间激发电场,并通过法拉第电磁感应定律得出了二者的关系,即 上式表明,任何随时间而变化的磁场,都是和涡旋电场联系在一起的。 2.麦克斯韦提出的位移电流的概念,揭示出变化的电场可以在空间激发磁场,并通过全电流概念的引入,得到了一般形式下的安培环 路定理在真空或介质中的表示形式,即 上式表明,任何随时间而变化的电场,都是和磁场联系在一起的。综合上述两点可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。这就是麦克斯韦电磁场理论的基本概念。 在麦克斯韦电磁场理论中,自由电荷可激发电场,变化磁场也可激发电场,则在一般情况下,空间任一点的电场强度应该表示为 又由于,稳恒电流可激发磁场,变化电场也可激发磁场,则 一般情况下,空间任一点的磁感强度应该表示为 因此,在一般情况下,电磁场的基本规律中,应该既包含稳恒电、磁场的规律,如方程组(1),也包含变化电磁场的规律,

根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。变化电磁场的规律是: 1.电场的高斯定理在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。通过场中任何封闭曲面的电位 移通量等于零,故有: 2.电场的环路定理由本节公式(2)已知,涡旋电场是非保守场,满足的环路定理是 3.磁场的高斯定理变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。因此,磁场的高斯定理仍适用,即 4.磁场的安培环路定理由本节公式(3)已知,变化的电场和它所激发的磁场满足的环路定理为 在变化电磁场的上述规律中,电场和磁场成为不可分割的一个整体。 将两种电、磁场的规律合并在一起,就得到电磁场的基本规律,称之为麦克斯韦方程组,表示如下 上述四个方程式称为麦克斯韦方程组的积分形式。 将麦克斯韦方程组的积分形式用高等数学中的方法可变换为微分形式。微分形式的方程组如下

麦克斯韦方程组讨论

对麦克斯韦方程组的理解 学生姓名:吴汉 学号:20093380 指导教师:黄维 课程名称:电磁波原理 二0一一年十二月

摘要 麦克斯韦(Maxwell)的电磁场理论是继牛顿之后又一次划时代的伟大成就,它的建立标志着电磁学的研究发展到了一个新阶段,并开拓了广泛的研究领域。麦克斯韦在总结了电磁现象的实验规律和提出位移电流假设之后,把电磁理论总结为麦克斯韦方程组。它既有实验基础,又是经科学分析和实验检验过的方程。麦克斯韦方程组是研究电磁问题的基石,对于不同方向的研究所采用方程组的形式也不同。同时,麦克斯韦方程组中蕴含着深刻的哲学思想。 关键词:电磁场理论,麦克斯韦方程组,积分,微分,复数,哲学思想

目录 摘要 ................................................................................................................................................ II 1麦克斯韦方程组的提出过程 . (4) 1.1 力线与恒定流速场类比的提出 (4) 1.2 电磁以太力学模型的提出 (1) 1.3 电磁场动力学理论的提出 (1) 2 麦克斯韦方程组的三种形式 (6) 2.1 麦克斯韦方程组的微分形式.......................................................... 错误!未定义书签。 2.1.1 麦克斯韦方程组的非限定形式 (3) 2.1.2 麦克斯韦方程组的完备性 (3) 2.2 麦克斯韦方程组的积分形式.......................................................... 错误!未定义书签。 2.3 麦克斯韦方程组的复数形式.......................................................... 错误!未定义书签。 3 麦克斯韦方程组中蕴含的哲学思想 (5) 3.1 麦克斯韦方程组中的演绎与归纳 (5) 3.2 麦克斯韦方程组建立在客观实在的物质基础上 (5) 3.3 麦克斯韦方程组真理性的实践检验 (5) 致谢 (6) 参考文献 (7)

大学物理平面简谐波波动方程

§4-2平面简谐波的波动方程 振动与波动 最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。任何复杂的波都可看成是若干个简谐波的叠加。 对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。需要定量地描述出每个质点的振动状态。 波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。 一、平面简谐波的波动方程 设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点 参考点原点的振动方程为 x 区别 联系 振动研究一个质点的运动。 波动研究大量有联系的质点振动的集体表现。 振动是波动的根源。 波动是振动的传播。

()00cos y A t ω?=+ 任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢? 沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π 现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x π πλ λ = P 点的振动方程为 02cos P y A t x πω?λ? ?=+- ?? ? 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉 02cos y A t x πω?λ? ?=+- ?? ? 就是沿 x 轴正向传播的平面简谐波的波动方程。 如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π λ 沿 x 轴负向传播的波动方程为 x

02cos y A t x πω?λ??=++ ??? 利用 2ωπν=, u λν= 沿 x 轴正向传播的平面简谐波的波动方程又可写为 02cos y A t x πω?λ??=-+ ??? 02cos A t x u πνω??? =-+ ??? 0cos x A t u ω??? ??=-+ ??????? 即 0cos x y A t u ω??? ??=-+ ??????? 原点的振动状态传到 P 点所需要的时间 x t u ?= P 点在 t 时刻重复原点在 x t u ?? - ??? 时刻的振动状态 波动方程也常写为 02cos y A t x πω?λ??=-+ ??? ()0cos A t kx ω?=-+ 其中 2k π λ = 波数,物理意义为 2π 长度所具有完整波的数目。 ☆ 波动方程的三个要素:参考点,参考点振动方程,传播方向 二、波动方程的物理意义 1、固定x ,如令0x x = ()002cos y t A t x πω?λ? ?=+- ?? ? 振动方程

麦克斯韦方程的理解

.麦克斯韦方程组 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。麦克斯韦的四个方程分别表达了:电荷是如何产生电场的(高斯定理);验证了磁单极子的不存在(高斯磁场定律);电流和变化的电场是怎样产生磁场的(安培定律),以及变化的磁场是如何产生电场(法拉第电磁感应定律)。 1865年,麦克斯韦建立了最初形式的方程组,由20个等式和20个变量组成。他在1873年尝试用四元数来表达,但未成功。当代使用的数学表达式是由奥利弗·亥维赛和威拉德·吉布斯于1884年使用矢量分析的形式重新表达的 二.国际单位制下的麦克斯韦方程组 在国际单位制下,真空中的麦克斯韦方程组(微分形式)可以表示成: 介质中的麦克斯韦方程组可以表示成: 另外,还有两个辅助方程经常用到: 其中, ?是电通量密度(单位:库伦/平方米,C/m2); ?是磁通量密度(单位:特斯拉,T),也称磁感强度; ?是电场强度(单位:伏特/米,V/m); ?是磁场强度(单位:安/米,A/m); ?ρ是自由电荷体密度(单位:库伦/立方米,C/m3); ?是自由电流面密度(单位:安/平方米,A/m2);

?是真空介电常数; ?μ0是真空磁导率; ?是介质的极化强度; ?是介质的介电常数; ?是介质的相对介电常数; ?是介质的磁化强度; ?μ是介质的磁导率; ?μr是介质的相对磁导率。 三.麦克斯韦方程组的含义 第一个方程表示电场是有源的。(单位电荷就是它的源) 第二个方程表示变化的磁场可以产生电场。(这个电场是有旋的) 第三个方程表示磁场是无源的。(磁单极子不存在,或者说到现在都没发现) 第四个方程表示变化的电场可以产生磁场。(这个磁场是有旋的) 2009-12-115:25上传 提起电磁波,我们脑海里立刻会浮现出众多科学家的身影,库仑,安培,法拉第,赫姆赫兹,但是,缔造这个帝国大厦的三个代表性人物绝对是麦克斯韦(Maxwell),赫兹(Hertz)和马可尼。其中,麦克斯韦奠定了电磁场的理论基础,人们把他称为电磁波之父。麦克斯韦大约于1855年开始研究电磁学,抱着给法拉第的理论“提供数学方法基础”的愿望,对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组(Maxwell's equations)。

麦克斯韦方程组的理解

麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: (in matter) 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 其中:(1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 变化场与稳恒场的关系 时, 方程组就还原为静电场和稳恒磁场的方程: (in matter) 在没有场源的自由空间,即q=0, I=0,方程组就成为如下形式:

(in matter) 麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。 编辑本段 微分形式 麦克斯韦方程组微分形式:在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。利用矢量分析方法,可得: (in matter) 注意:(1)在不同的惯性参照系中,麦克斯韦方程有同样的形式。 (2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在各向同性介质中,电磁场量与介质特性量有下列关系: 在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。 编辑本段 科学意义 (一)经典场论是19世纪后期麦克斯韦在总结电

波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中:

麦克斯韦方程组

麦克斯韦方程组 梁梦秋(0671014)摘要:麦克斯韦方程组是在基本实验定律的基础上经过推广建立起来的,是麦克斯韦以完美的数学形式对电磁场规律的概括和总结,它深刻反映了电磁场运动的实质和全部特性,并预见了电磁波的存在。 关键字:麦克斯韦麦克斯韦方程组电磁波 引言:19世纪中叶,描述电磁现象的基本实验规律:库仑定律、毕-萨定律、安培定律、欧姆定律、法拉第电磁感应定律等已经先后得出,建立统一电磁理论的课题摆在了物理学家面前。 詹姆斯〃克拉克〃麦克斯韦是伟大的英国物理学家,他由于列出了表达电磁基本定律的四元方程组而闻名于世。在麦克斯韦以前的许多年间,人们就对电和磁这两个领域进行了广泛的研究,人们都知道这两者是密切相关的。适用于特定场合的各种电磁定律已被发现,但是在麦克斯韦之前却没有形成完整、统一的学说。麦克斯韦用列出的简短四元方程组(但却非常复杂),就可以准确地描绘出电磁场的特性及其相互作用的关系。这样他就把混乱纷纭的现象归纳成为一种统一完整的学说。麦克斯韦方程在理论和应用科学上都已经广泛应用一个世纪了。 以W.韦伯、F.E.诺埃曼为代表的超距作用电磁理论把各种电磁作用归结为库仑力和运动电荷之间的作用力(韦伯力),认为是超越空间无需媒质传递也无需传递时间的直接作用。这种理论虽然统一地

解释了静电现象、电流相互作用和电磁感应,但是既未能提出任何有价值的预言,又存在机制上的根本困难,终于成为历史的遗迹。 J.C. 麦克斯韦继承了M.法拉第的近距作用观点,认为电磁作用是以场为媒介传递的,需要传递时间,把客观存在的场作为研究对象,从而开辟了物理学研究的新天地。麦克斯韦审查了当时已知的全部电磁学定律、定理的基础,提取了其中带有普遍意义的内容,拓宽了它们的成立条件。麦克斯韦提出了的有旋电场概念和位移电流的假设,揭示了电磁场的内在联系和相互依存,完成了建立电磁场理论的关键性突破。麦克斯韦熟练地运用了当时正在发展的矢量分析,找到了表述电磁场(空间连续分布的客体)的适当数学工具。1865年麦克斯韦终于建立了包括电荷守恒定律、介质方程以及电磁场方程在内的完备方程组。后经H.R.赫兹、O.亥维赛、H.A.洛伦兹等人进一步的加工,得出了下述电磁场方程组——麦克斯韦方程组(采用国际单位 制):式中上、下列分别是方程组的积分、微分形式; E、B、D、H分别是描述电场(指带电体产生的电场与变化磁场产生的有旋电场之和)和磁场(指电流产生的磁场与变化电场即位移电流产生的磁场之和)的电场强度、磁感应强度、电位移、磁场强度;q、ρ为自由电荷、自由电荷体密度;I、J为传导电流强度和传导电流密度。四个公式分别是电场、磁场的高斯定理、电磁感应定律以及安培

麦克斯韦Maxwell方程组各个物理量介绍

麦克斯韦方程组乃是由四个方程共同组成的: ?高斯定律描述电场是怎样由电荷生成。电场线开始于正电荷,终止于负电荷。计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。 ?高斯磁定律表明,磁单极子实际上并不存在于宇宙。所以,没有磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个螺线矢量场。 ?法拉第感应定律描述含时磁场怎样生成(感应出)电场。电磁感应在这方面是许多发电机的运作原理。例如,一块旋转的条形磁铁会产生含时磁场,这又接下来会生成电场,使得邻近的闭循环因而感应出电流。 ?麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项)。在电磁学里,麦克斯韦修正项意味着含时电场可以生成磁场,而由于法拉第感应定律,含时磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间(更详尽细节,请参阅条目电磁波方程)。 自由空间: 在自由空间里,不需要考虑介电质或磁化物质的问题。假设源电流和源电荷为零,则麦克斯韦方程组变为:、 、 、 。

对于这方程组,平面行进正弦波是一组解。这解答波的电场和磁场相互垂直,并且分别垂直于平面波行进的方向。电场与磁场同相位地以光速传播: 。 仔细地观察麦克斯韦方程组,就可以发现这方程组很明确地解释了电磁波怎样传播于空间。根据法拉第感应定律,时变磁场会生成电场;根据麦克斯韦-安培定律,时变电场又生成了磁场。这不停的循环使得电磁波能够以光速传播于空间。 第一种表述: 将自由电荷和束缚电荷总和为高斯定律所需要的总电荷,又将自由电流、束缚电流和电极化电流总合为麦克斯韦-安培定律内的总电流。这种表述采用比较基础、微观的观点。这种表述可以应用于计算在真空里有限源电荷与源电流所产生的电场与磁场。但是,对于物质内部超多的电子与原子核无法纳入计算。事实上,经典电磁学也不需要这么精确的答案。 第二种表述: 以自由电荷和自由电流为源头,而不直接计算出现于介电质的束缚电荷和出现于磁化物质的束缚电流和电极化电流所给出的贡献。由于在一般实际状况,能够直接控制的参数是自由电荷和自由电流,而束缚电荷、束缚电流和电极化电流是物质经过极化后产生的现象,采用这种表述会使得在介电质或磁化物质内各种物理计算更加简易[7]。 注意:麦克斯韦方程组中有B、E两个矢量未知量,共6个未知分量;方程个数是8个(散度是标量,所以两个高斯定律是两个方程;旋度是矢量,法拉第电磁感应定律和安培定律是6个方程;加起来共8个方程)

相关主题
文本预览
相关文档 最新文档