当前位置:文档之家› 高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析
高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析

一、高中物理精讲专题测试牛顿运动定律的应用

1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:

(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;

(3)小球向下运动到最低点时,物块M 所受的拉力大小T

【答案】(1)53F Mg mg =- (2)

65M m = (3)()85mMg T m M =+(4855

T mg =或8

11T Mg =

) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得5

3

F Mg mg =

- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得

65

M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T

牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma

解得85mMg T m M =

+()(488

5511

T mg T Mg =

=或) 【点睛】

本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.

2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:

(1)开始时B离小车右端的距离;

(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:

【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒

解得:,

A离左端距离,运动到左端历时,在A运动至左端前,木板静止

,,

解得

B离右端距离

(2)从开始到达共速历时,,,

解得

小车在前静止,在至之间以a向右加速:

小车向右走位移

接下来三个物体组成的系统以v共同匀速运动了

小车在6s内向右走的总距离:

【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.

3.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.

(1)若木板固定,求小滑块在木板上滑过的距离.

(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.

【答案】(1)20

3.6m 2v x a

==(2)t=1s (3)121x x m +=

【解析】 【分析】 【详解】

试题分析:(1)2

25m /s a g μ==

20 3.6m 2v x a

==

(2)对m :2

125/a g m s μ==,

对M :221()Ma mg m M g μμ=-+,

221m /s a =

012v a t a t -=

t=1s

(3)木板共速前先做匀加速运动2

110.52

x at m == 速度121m /s v a t ==

以后木板与物块共同加速度a 3匀减速运动

231/a g m s μ==,

2231

0.52

x vt a t m =+=

X=121x x m +=

考点:牛顿定律的综合应用

4.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,

作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)

(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;

(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;

(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;

(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。 【解析】 【详解】

(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2D

mv mg R

=

可得:D 5m /s v =

(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2C

mv F mg R

-=

代入数据可得:F =6.3N

由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N

(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2

y 2gh v = 得:v y =3m/s

小球沿切线进入圆弧轨道,则:3

5m/s 370.6

y B v v sin =

=

=?

(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:

3750.84/A B v v cos m s =?=?=

小球在水平面上做加速运动时:1F mg ma μ-=

可得:2

18/a m s =

小球做减速运动时:2mg ma μ=

可得:2

22/a m s =-

由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222

m m A v v v

x t t +=

?+? 联立可得:0.6t s =

5.如图所示,在足够高的光滑水平台面上静置一质量为m 的长木板A ,木板A 右端用轻绳绕过光滑的轻质定滑轮与质量也为m 的物体C 连接.当C 从静止开始下落距离h 时,在木板A 的最右端轻放一质量为4m 的小铁块B (初速度为0,可视为质点),最终B 恰好未从A 上滑落,A 、B 间的动摩擦因数μ=0.25.最大静摩擦力等于滑动摩擦力,重力加速度为g .计算:

(1)C 由静止下落距离h 时,木板A 的速度大小v A ; (2)木板A 的长度L ;

(3)若当铁块B 轻放在木板A 最右端的同时,对B 加一水平向右的恒力F =7mg ,其他条件不变,计算B 滑出A 时B 的速度大小v B .

【答案】(1gh (2)2h (35

2

gh 【解析】 【详解】

(1)对A 、C 分析,有

mg =2ma 1

212A v a h =

解得

A v gh =

(2)B 放在A 上后,设A 、C 仍一起加速,则

mg -4μmg =2ma 2

解得

a 2=0

即B 放在A 上后,A 、C 以速度v A 匀速运动.此时,B 匀加速运动,加速度

a B 1=

444

mg g

m μ=

设经过时间t 1,B 的速度达到v A ,且B 刚好运动至木板A 的左端 则有

v A =a B 1t 1

木板A 的长度

L =S AC -S B =v A t 1-

11

2

A v t 解得

L =2h

(3)加上力F 后,B 的速度达到v A 前,A 和C 仍匀速,B 仍加速,此时 B 的加速度

a B 2=

424F mg

g m

μ+= 加速时间

22A B v t a =

= B 相对A 的位移

22124

A B A A h

S S S v t v t ?=-=-=

A 、

B 共速后都向右加速,设经时间t 3,B 滑出A .有 对B 有

a B 3=

4342F mg g m μ-= 对A 有

a AC =

42mg mg

g m

μ+=

B 相对A 的位移

22

3333311()()22

B A A B A A

C S S S v t a t v t a t '?==+-+'-

解得

3t =

= B 滑出A 时的速度

v B =v A +a B 3·t 3

6.如图所示,BC 为半径

r =

m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时

速度大小不变,小球冲出C 点后经过

9

8

s 再次回到C 点。(g =10m/s 2)求:

(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多大? (2)小球第一次过C 点时轨道对小球的支持力大小为多少?

(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。

【答案】(1)2m/s (2)20.9N (3)2N 【解析】 【详解】

(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0

gt v =

解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ?+?

=

=g sin45°+μg cos45°=22

小球沿斜面向下滑动的加速度: a 24545mgsin mgcos m

μ?-?

=

=g sin45°﹣μg cos45°=2m/s 2

设小球沿斜面向上和向下滑动的时间分别为t 1、t 2,

由位移关系得:12

a 1t 121

2=a 2t 22

又因为:t 1+t 29

8

=s

解得:t 138

=

s ,t 234=s

小球从C 点冲出的速度:v C =a 1t 1=2m/s

在C 点由牛顿第二定律得:N ﹣mg =m 2

C

v r

解得:N =20.9N

(3)在B 点由运动的合成与分解有:v B 0

45v sin =

=?

22m/s 因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。设细管对小球作用力大小为F

由牛顿第二定律得:F =m 2B

v r

解得:F =52N

由牛顿第三定律知小球对细管作用力大小为52N ,

7.如图所示,在倾角为的光滑物块P 斜面上有两个用轻质弹簧相连的物块A 、B ;C 为一垂直固定在斜面上的挡板、C 总质量为M ,A 、B 质量均为m ,弹簧的劲度系数为k ,系统静止于光滑水平面现开始用一水平力F 从零开始增大作用于P .

物块B 刚要离开C 时力F .

从开始到此时物块A 相对于斜面的位移物块A 一直没离开斜面,重力加速度为

【答案】(1) (2)

【解析】 【分析】

先对斜面体和整体受力分析,根据牛顿第二定律求解出加速度,再分别多次对物体A 、B 或AB 整体受力分析,然后根据牛顿第二定律,运用合成法列式分析求解。 【详解】

整体做为研究对象,刚要离开C 瞬间与C 的作用力为0,受力情况如图:

根据力的平衡知识有:,

对P 、A 、B 整体分析受力有:

联立解得:

开始时弹簧压缩,有:

分析可知加速度为

对B 分析可知要离开时弹簧处于原长,弹力为0 ;所以物块A 的位移:

【点睛】

解决本题的关键能够正确地进行受力分析,运用牛顿第二定律进行求解,注意整体法和隔离法的运用。

8.某粮仓为了把大米送到一定高度处的储藏间,铺设如图所示的传输装置,其中 AB 为长度 L1=4m 的水平传送带,CD 为长度 L2=9m 、倾角θ=37°的倾斜传送带,两传送带的运行速度可调。现将一 袋大米无初速地放在 A 端,设米袋从 B 转移到 C 时速度大小不变,已知米袋与两传送带之间的动 摩擦因数均为μ=0.5,最大静摩擦力与滑动摩擦力大小相等,重力加速度 g=10m/s2,sin37°=0.6, cos37°=0.8。现在对设备按照如下两种方式进行调试:

(1)使水平传送带以 v1=5m/s 的速度顺时针匀速转动,倾斜传送带不转动。求: ①米袋在水平传送带上加速运动的距离; ②米袋沿倾斜传送带所能上滑的距离。

(2)使两条传送带以相同的速度 v2 顺时针匀速转动,为了使米袋能被运送到 D 端,试通过分析计算 v2 的最小值。

【答案】(1)①2.5m ;②1.25m (2)6m/s 【解析】 【详解】

(1)①对米袋,根据牛顿第二定律得

1mg ma μ=

加速阶段,当米袋速度增加到和传送带一样时,根据运动学公式得

21112v a s =

解得1 2.5m s =

②倾斜传送带不动,米袋沿传送带向上做匀减速运动,根据牛顿第二定律得

2sin cos mg mg ma θμθ+=

因11s L <,故米袋到达C 时速度大小为1v ,设米袋在CD 所能上滑的距离为2s ,则有

21222v a s =

解得2 1.25m s =

可见,22s L <,故米袋沿倾斜传送带所能上滑的距离为1.25m 。

(2)sin cos mg mg θμθ>,所以无论如何调节倾斜传送带速度,米袋所受合力均沿传送带向下。为使米袋能到达D 端且在C 端所需速度最小,应使其向上运动过程中所受滑动摩擦力始终沿传送带向上,此时对米袋应用牛顿第二定律得

3sin cos mg mg ma θμθ-=

22322v a L =

解得26m/s v =

在水平传送带上,当米袋速度增加到等于26m/s v =时,其加速距离为3s ,则

22132v a s =

可见,31s L <,故米袋在水平传送带上能被加速到26m/s v =,所以2v 最小值为

26m/s v =

9.如图所示,质量为M =2 kg 的长木板静止在光滑水平面上,现有一质量m =1 kg 的小滑块(可视为质点)以v 0=3.6 m/s 的初速度从左端沿木板上表面冲上木板,带动木板一起向前滑动.已知滑块与木板间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2

.求:

(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小f 和方向; (2)滑块在木板上滑动过程中,滑块加速度大小;

(3)若长木板长L 0=4.5m ,试判断滑块与长木板能达到的共同速度v ,若能,请求出共同速度大小和小滑块相对长木板上滑行的距离L ;若不能,请求出滑块滑离木板的速度和需要的时间.

【答案】(1)f=1N ,方向向右;(2)a=1m/s 2;(3)能,v=1.2m/s 【解析】 【分析】 【详解】

(1)木板所受摩擦力为滑动摩擦力: f=μmg=1N 方向向右;

(2) 由牛顿第二定律得:μmg=ma 得出:a=μg=1m/s 2 ;

(3) 以木板为研究对象,根据牛顿第二定律:μmg=Ma′ 可得出木板的加速度为:a′=0.5m/s 2

设经过时间t ,滑块和长木板达到共同速度v ,则满足: 对滑块有:v=v 0-at 对长木板有:v=a′t

由以上两式得:滑块和长木板达到的共同速度:v=1.2m/s ,t=2.4s 在2.4s 内木板前进的位移为:1 1.2 2.4 1.4422

v x t m m ==?= 木块前进的位移为:02 3.6 1.2 2.4 5.7622

v v x t m m ++=

=?= 木板的长度最短为:L=x 2-x 1=4.32m<4.5m ,所以两者能达到共同速度.

10.如图所示,在倾角θ=30°的固定斜面上,跨过定滑轮的轻绳一端系在小车的前端,另一端被坐在小车上的人拉住,已知人的质量m=60kg ,小车的质量M=10kg ,绳及滑轮的质量,滑轮与绳间的摩擦均不计,斜面对小车的摩擦阻力为小车总重的0.1倍,斜面足够长,当人以280N 的力拉绳时,求:

(1)人与车一起运动的加速度的大小; (2)人所受的摩擦力的大小和方向;

(3)某时刻人和车沿斜面向上的速度大小为3m/s ,此时人松手,则人和车一起滑到最高点时所用的时间.

【答案】(1)2m/s 2(2)140N (3)0.5s 【解析】 【详解】

(1)将人和车看做整体,受拉力为280×2=560N ,总重为(60+10)×10=700N ,受阻力为700×0.1=70N ,重力平行于斜面的分力为 700×sin30°=350N ,则合外力为F=560-70-350=140N 则根据牛顿第二定律,加速度为a=

=2m/s 2

即人与车一起运动的加速度的大小为2m/s 2。

(2)人与车有着共同的加速度,所以人的加速度也为2m/s 2,对人受力分析,受重力、支持力、拉力和摩擦力,假设静摩擦力沿斜面向上,根据牛顿第二定律,有 ma=T+f-mgsin30° 代入数据解得:f=140N

即人受到沿斜面向上的140N 的摩擦力。

(3)失去拉力后,对人和车整体受力分析,受到重力、支持力和沿斜面向下的摩擦力,根据牛顿第二定律,沿斜面的加速度为 a ′=

=?6m /s 2

根据速度时间公式,有

即人和车一起滑到最高点时所用的时间为0.5s。

【点睛】

本题关键是对小车和人整体受力分析,然后根据牛顿第二定律求解出加速度,再对人受力分析,根据牛顿第二定律列式求解出车对人的摩擦力。

高中物理专题训练洛伦兹力

磁场对运动电荷的作用力 1.在以下几幅图中,对洛伦兹力的方向判断不正确的是( ) 2.如图所示,a是带正电的小物块,b是一不带电的绝缘物块,A,B叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F 拉b物块,使A,B一起无相对滑动地向左加 速运动,在加速运动阶段( ) A.A,B一起运动的加速度不变 B.A,B一起运动的加速度增大C.A,B物块间的摩擦力减小 D.A,B物块间的摩擦力增大 3.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是( ) A.油滴必带正电荷,电荷量为 B.油滴必带正电荷,比荷= C.油滴必带负电荷,电荷量为 D.油滴带什么电荷都可以,只要满足q = 4.(多选)在下列各图所示的匀强电场和匀强磁场共存的区域内,电子可能 沿水平方向向右做直线运动的是( ) 5. (多选)在图中虚线所示的区域存在匀强电场和匀强磁场.取坐标如图, 一带电粒子沿x轴正方向进入此区域,在穿过此区域的过程中运动方始终不 发生偏转,不计重力的影响,电场强度E和磁感应强度B的方向可能是 ( ) A.E和B都沿x轴方向 B.E沿y轴正向,B沿z轴正向 C.E沿z轴正向,B沿y轴正向 D.E,B都沿z轴方向 6. (多选)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端 安装了如图7所示的流量计,该装置由绝缘材料制成,长,宽,高分别为 a,b,c,左右两端开口,在垂直于上,下底面方向加磁感应强度为B的匀 强磁场,在前,后两个内侧固定有金属板作为电极,污水充满管口从左向右 流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单 位时间内排出的污水体积),下列说法中正确的是( ) A.若污水中正离子较多,则前表面比后表面电势高 B.前表面的电势一定低于后表面的电势,与哪种离 子多少无关 C.污水中离子浓度越高,电压表的示数将越大 D.污水流量Q与U成正比,与a,b无关 7.(多选)如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量 为m,带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向且 相互垂直的匀强磁场和匀强电场中,设小球的电荷量不变,小球由静止下滑 的过程中( ) A.小球加速度一直增大 B.小球速度一直增大,直到最后匀速 C.棒对小球的弹力一直减小 D.小球所受洛伦兹力一直增大,直到最后不变 8.一个质量为m=0.1 g的小滑块,带有q=5×10-4C的电荷量,放置在倾 角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5 T的匀强磁场中, 磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,斜面足 够长,小滑块滑至某一位置时,要离开斜面(g取10 m/s2).求: (1)小滑块带何种电荷? (2)小滑块离开斜面时的瞬时速度多大? (3)该斜面长度至少多长? 9.光滑绝缘杆与水平面保持θ角,磁感应强度为B 的匀强磁场充满整个空间,一个带正电q、质量为 m、可以自由滑动的小环套在杆上,如图所示,小 环下滑过程中对杆的压力为零时,小环的速度为________. 10.如图所示,质量为m的带正电小球能沿着竖直的绝缘墙竖 直下滑,磁感应强度为B的匀强磁场方向水平,并与小球运动 方向垂直.若小球电荷量为q,球与墙间的动摩擦因数为μ.则 小球下滑的最大速度为____________,最大加速度为____________. 11.如图所示,各图中的匀强磁场的磁感应强度均为B,带电粒子的速率均 为v,带电荷量均为q.试求出图中带电粒子所受洛伦兹力的大小,并指出洛 伦兹力的方向.

高中物理相互作用专题训练答案及解析

高中物理相互作用专题训练答案及解析 一、高中物理精讲专题测试相互作用 1.如图所示,质量的木块A套在水平杆上,并用轻绳将木块与质量的小球B相连.今用跟水平方向成角的力,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取.求: (1)运动过程中轻绳与水平方向夹角; (2)木块与水平杆间的动摩擦因数为. (3)当为多大时,使球和木块一起向右匀速运动的拉力最小? 【答案】(1)30°(2)μ=(3)α=arctan. 【解析】 【详解】 (1)对小球B进行受力分析,设细绳对N的拉力为T由平衡条件可得: Fcos30°=Tcosθ Fsin30°+Tsinθ=mg 代入数据解得:T=10,tanθ=,即:θ=30° (2)对M进行受力分析,由平衡条件有

F N=Tsinθ+Mg f=Tcosθ f=μF N 解得:μ= (3)对M、N整体进行受力分析,由平衡条件有: F N+Fsinα=(M+m)g f=Fcosα=μF N 联立得:Fcosα=μ(M+m)g-μFsinα 解得:F= 令:sinβ=,cosβ=,即:tanβ= 则: 所以:当α+β=90°时F有最小值.所以:tanα=μ=时F的值最小.即:α=arctan 【点睛】 本题为平衡条件的应用问题,选择好合适的研究对象受力分析后应用平衡条件求解即可,难点在于研究对象的选择和应用数学方法讨论拉力F的最小值,难度不小,需要细细品味.

2.一架质量m 的飞机在水平跑道上运动时会受到机身重力、竖直向上的机翼升力F 升、发动机推力、空气阻力F 阻、地面支持力和跑道的阻力f 的作用。其中机翼升力与空气阻力均与飞机运动的速度平方成正比,即2 2 12,F k v F k v ==阻升,跑道的阻力与飞机对地面的压力成正比,比例系数为0k (012m k k k 、、、均为已知量),重力加速度为g 。 (1)飞机在滑行道上以速度0v 匀速滑向起飞等待区时,发动机应提供多大的推力? (2)若将飞机在起飞跑道由静止开始加速运动直至飞离地面的过程视为匀加速直线运动,发动机的推力保持恒定,请写出012k k k 与、的关系表达式; (3)飞机刚飞离地面的速度多大? 【答案】(1)2 220 10 ()F k v k mg k v =+-;(2)2202 1F k v ma k mg k v --=-;(3)1mg v k = 【解析】 【分析】 (1)分析粒子飞机所受的5个力,匀速运动时满足' F F F =+阻阻推,列式求解推力;(2) 根据牛顿第二定律列式求解k 0与k 1、k 2的关系表达式;(3)飞机刚飞离地面时对地面的压力为零. 【详解】 (1)当物体做匀速直线运动时,所受合力为零,此时有 空气阻力 2 20F k v 阻= 飞机升力 2 10F k v =升 飞机对地面压力为N ,N mg F =-升 地面对飞机的阻力为:' 0F k N =阻 由飞机匀速运动得:F F F =+, 阻阻推 由以上公式得 22 20010()F k v k mg k v =+-推 (2)飞机匀加速运动时,加速度为a ,某时刻飞机的速度为v ,则由牛顿第二定律: 22201-()=F k v k mg k v ma --推 解得:2202 1-F k v ma k mg k v -=-推

高中物理动量守恒专题训练

1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向 射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统, 则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中() A. 动量守恒,机械能守恒 B. 动量守恒,机械能不守恒 C. 动量不守恒,机械能不守恒 D. 动量不守恒,机械能守恒 2.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为() A. mv/M,向前 B. mv/M,向后 C. mv/(m M),向前 D. 0 3.质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是( ). A. 0.6v B. 0.4v C. 0.3v D. v 4.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg·m/s,B球的动量是6kg·m/s,A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能为 A. p A=0,p B=l4kg·m/s B. p A=4kg·m/s,p B=10kg·m/s C. p A=6kg·m/s,p B=8kg·m/s D. p A=7kg·m/s,p B=8kg·m/s 5.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车.现有一质量也为m的小 球以v0的水平速度沿切线水平的槽口向小车滑去,不计一切摩擦,则() A. 在相互作用的过程中,小车和小球组成的系统总动量守恒 B. 小球离车后,可能做竖直上抛运动 C. 小球离车后,可能做自由落体运动 D. 小球离车后,小车的速度有可能大于v0 6.如图甲所示,光滑水平面上放着长木板B,质量为m=2kg的木块A以速度v0=2m/s滑上原来静止的长木板B的上表面,由于A、B之间存在有摩擦,之后,A、B的速度随时间变化情况如乙图所示,重力加速度g=10m/s2。则下列说法正确的是() A. A、B之间动摩擦因数为0.1 B. 长木板的质量M=2kg C. 长木板长度至少为2m D. A、B组成系统损失机械能为4J 7.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有 一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出。设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,(其中M=3m)求: (1)木块与水平面间的动摩擦因数μ; (2)子弹受到的阻力大小f。(结果用m ,v0,L表示) 8.如图所示,A、B两点分别为四分之一光滑圆弧轨道的最高点和最低点,O为圆心,OA连线水平,OB连线竖直,圆弧轨道半径R=1.8m,圆弧轨道与水平地面BC平滑连接。质量m1=1kg的物体P由A点无初速度下滑后,与静止在B点的质量m2=2kg的物体Q发生弹性碰撞。已知P、Q两物体与水平地面间的动摩擦因数均为0.4,P、Q两物体均可视为质点,当地重力加速度g=10m/s2。求P、Q两物体都停止运动时二者之间的距离。

高中物理牛顿运动定律的应用专题训练答案

高中物理牛顿运动定律的应用专题训练答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10- 8 C .物块与水平面间的动摩擦因数μ=0.2,给 物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求: (1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】 带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】 (1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a = (2)物块进入电场向右运动的过程,根据动能定理得:()2101 02 mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m (3)物块先向右作匀减速直线运动,根据:00111??22 t v v v s t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m =μ-=. 根据:21221 2 s a t = 得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg a g m μμ=-=-=- 根据:3322a t a t = 解得30.2t s = 物块运动的总时间为:123 1.74t t t t s =++= 【点睛】 本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.

高考物理培优专题限时训练(十一)含答案

培优专题限时训练11带电粒子在磁场中的运动1.如图所示,O'PQ是关于y轴对称的四分之一圆,在PQMN区域有均匀辐向电场,PQ与MN间的电压为U。PQ上均匀分布带正电的粒子,可均匀持续地以初速度为零发射出来,任一位置上的粒子经电场加速后都会从O'进入半径为R、中心位于坐标原点O的圆形匀强磁场区域,磁场方向垂直xOy平面向外,大小为B,其中沿+y轴方向射入的粒子经磁场偏转后恰能沿+x轴方向射出。在磁场区域右侧有一对平行于x轴且到x轴距离都为R的金属平行板A和K, 金属板长均为4R, 其中K板接地,A与K 两板间加有电压U AK>0, 忽略极板电场的边缘效应。已知金属平行板左端连线与磁场圆相切,O'在y 轴(0,-R)上。(不考虑粒子之间的相互作用力) (1)求带电粒子的比荷; (2)求带电粒子进入右侧电场时的纵坐标范围; (3)若电压U AK=,求到达K板的粒子数与进入平行板总粒子数的比值。 2.如图为一装放射源氡的盒子,静止的氡核Rn)经过一次α衰变成钋Po,新核Po的速率约为2×105 m/s。衰变后的α粒子从小孔P进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B=0.1 T。之后经过A孔进入电场加速区域Ⅱ,加速电压U=3×106 V。从区域Ⅱ射出的α粒子随后又进入半径为r=m的圆形匀强磁场区域Ⅲ,该区域磁感应强度B0=0.4 T、方向垂直纸面向里。圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M和圆形磁场的圆心O、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为=5×107 C/kg。

(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置。 3.(2018年3月新高考研究联盟第二次联考)一台质谱仪的工作原理如图1所示。大量的甲、乙两种离子以0到v范围内的初速度从A点进入电压为U的加速电场,经过加速后从O点垂直边界MN进入磁感应强度为B的匀强磁场中,最后打到照相底片上并被全部吸收。已知甲、乙两种离子的电荷量均为+q、质量分别为2m和m。不考虑离子间的相互作用。 图1 图2 (1)求乙离子离开电场时的速度范围;

高中物理专题训练一:力与运动基础练习题

专题训练一、力和运动一.选择题 1.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力 的个数和性质不变,物体的运动情况可能是() A.静止 B.匀加速直线运动 C.匀速直线运动 D.匀速圆周运动 14.如图所示,用光滑的粗铁丝做成一直角三角形,BC水平,AC边竖直,∠ABC=α,AB及AC两边上分别套有细线连着的铜环,当它们静止时,细线跟AB所成的角θ的大小为(细线长度小于BC) A.θ=α B.θ> 2 π C.θ<α D.α<θ< 2 π 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。有一质量m=10kg的猴子,从绳的另一端沿绳向上爬,如图1-1所示。不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g=10m/s2)A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2() 3.小木块m从光滑曲面上P点滑下,通过粗糙静止的水平传送带落于地面上的Q点,如图1-2所示。现让传送带在皮带轮带动下逆时针转 动,让m从P处重新滑下,则此次木块的落地点将 A.仍在Q点 B.在Q点右边() C.在Q点左边 D.木块可能落不到地面 4.物体A的质量为1kg,置于水平地面上,物体与地面的动摩擦因数为μ=0.2,从t=0开始物体以一定初速度v0向右滑行的同时,受到一个水平向左的恒力F=1N的作用,则捅反映物体受到的摩擦力f随时间变化的图像的是图1-3中的哪一个(取向右为正方向,g=10m/s2)() 5.把一个重为G的物体用水平力F=kt(k为恒量,t为时间)压在竖直的足够高的墙面上,则从t=0开始物体受到的摩擦力f随时间变化的图象是下图中的 图1-1 P m Q 图1-2 f/N t 2 1 -1 -2 f/N t 2 1 -1 -2 f/N t 2 1 -1 -2 f/N t 2 1 -1 -2 图1-3

高中物理选择性必修一 周末限时训练

周五限时训练 一.选择题一、选择题(1-8单选,9-12多选,每题6分,共72分,请将答案填在括号里) 1.分析下列物理现象:(1)夏天里在一次闪电过后,有时雷声轰鸣不绝;(2)“闻其声而不见其人”;(3)围绕振动的音叉转一圈会听到忽强忽弱的声音;(4)当正在鸣笛的火车向着我们急驶而来时,我们听到汽笛声的音调变高.这些物理现象分别属于波的()A .反射、衍射、干涉、多普勒效应B .折射、衍射、多普勒效应、干涉 C .反射、折射、干涉、多普勒效应 D .衍射、折射、干涉、多普勒效应 2.装有砂粒的试管竖直静浮于水面,如图所示,将试管竖直提起少许,然后由静止释放并开始计时,在一定时间内试管在竖直方向近似做简谐运动,若取竖直向上为正方向,则以下描述试管振动的图像中可能正确的是() A . B . C . D . 3.如下图所示,向左匀速运动的小车发出频率为f 的声波,车左侧A 处的人感受到的声波的频率为f 1,车右侧B 处的人感受到的声波的频率为f 2,则() A .f 1<f ,f 2<f B .f 1<f ,f 2>f C .f 1>f ,f 2>f D .f 1>f ,f 2<f 4.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是() A .在1~2 T t 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来 4T 内,两物块通过的路程为A C .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小 D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变 5. 两列波速大小相同的简谐横波在t =0时刻的波形图如图所示,此时x =2m 处的质点的振动沿y 轴负方向,在t 1=0.3s 时,两列波第一次完全重合,则下列说法正确的是( ) A .两列波的波速大小均为10m/s B .在t 2=1.1s 时,两列波的波形第二次完全重合 C .x =4.5m 处的质点为振动减弱点 D .x =2.5m 处的质点的位移可能为8cm 6.甲、乙两个弹簧振子,它们的振动图像如图所示,则可知两弹簧振子 A .振动强度完全相同 B .振动快慢完全相同 C .振子甲速度为零时,振子乙速度最 大 D .所受回复力最大值之比F 甲∶F 乙=1∶2 7.有一个在y 方向上做简谐运动的物体,其振动图像如图所示。下列关于图甲、乙、 丙、丁的判断正确的是(选项中v 、F 、a 、E k 分别表示物体的速度、受到的回复力、加 速度和动能)() A .甲可作为该物体的v -t 图像 B .乙可作为该物体的F -t 图像 C .丙可作为该物体的a -t 图像 D .丁可作为该物体的 E k -t 图像 8.如图,t =0时刻,波源在坐标原点从平衡位置沿y 轴正向开始振动,振动周期为0.4s ,在同一均匀介质中形成沿 x 轴正、负两方向传播的简谐波.下图中能够正确表示t =0.6s 时波形的图是( )

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

高中物理电磁感应专题训练

C .若是非匀强磁场,环在左侧滚上的高度等于 D .若是匀强磁场,环在左侧滚上的高度小于 专题:电磁感应 1.如图为理想变压器原线圈所接电源电压波形, 原副线圈匝数之比 n 1∶n 2 = 10∶ 1,串联在 原线圈电路中电流表的示数为 1A ,下则说法正确的是( A .变压器输出两端所接电压表的示数为 22 2 V B .变压器输出功率为 220W C .变压器输出的交流电的频率为 50HZ D .若 n 1 = 100 匝,则变压器输出端穿过每匝线圈的磁通量的变化率的最 大值为 2.2 2wb/s 2.如图所示,图甲中 A 、B 为两个相同的线圈,共轴并靠边放置, A 线圈中画有如图乙 所 示的交变电流 i ,则( ) A .在 t 1到 t 2的时间内, A 、B 两线圈相吸 B . 在 t 2到 t 3 的时间内, A 、B 两线圈相斥 C . t 1 时刻,两线圈的作用力为 零 D . t 2时刻,两线圈的引力最大 3.如图所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导线所在平面, 当 ab 棒下滑到稳定状态时,小灯泡获得的功率为 P 0 ,除灯泡外,其它电阻不计,要使灯 泡的功率变为 2P 0 ,下列措施正确的是( A .换一个电阻为原来 2 倍的灯泡 B .把磁感应强度 B 增为原来的 2 倍 C .换一根质量为原来 2 倍的金属棒 D .把导轨间的距离增大为原来的 2 4.如图所示,闭合小金属环从高 h 的光滑曲面上端无初速滚下,沿曲面的另一侧上升,曲 面在磁场中( A .是非匀强磁场,环在左侧滚上的高度小于 B .若是匀强磁场,环在左侧滚上的高度等于 ××× ×× × ×× × ××× 5.如图所示,一电子以初速 v 沿与金属板平行的方向飞入两板间,在下列哪种情况下, 电 子将向 M 板偏转?( ) A .开关 K 接通瞬间 B .断开开关 K 瞬间 C .接通 K 后,变阻器滑动触头向右迅速滑动 D .接通 K 后,变阻器滑动触头向左迅速滑动 6.如图甲, 在线圈 l 1 中通入电流 i 1后,在 l 2 上产生感应电流随时间变化规律如图乙所示, M N K

(新课标)2020高考物理复习第一部分专题一力与运动1.1.3抛体运动和圆周运动专题限时训练

1.1.3 抛体运动和圆周运动 专题限时训练 一、单项选择题 1.(2019·湖南株洲一模)在某次跳投表演中,篮球以与水平面成45°的倾角落入篮筐,设投球点和篮筐正好在同一水平面上,如图所示.已知投球点到篮筐距离为10 m ,不考虑空气阻力,则篮球投出后的最高点相对篮筐的竖直高度为( ) A .2.5 m B .5 m C .7.5 m D .10 m 答案:A 解析:篮球抛出后做斜上抛运动,根据对称性可知,出手时的速度方向与水平方向成45°角,设初速度为v 0,则水平方向x =v 0cos 45°t ;竖直方向设能到达的最大高度为h ,则h = v 0sin 45°2 ·t 2,解得h =x 4 =2.5 m ,故只有选项A 正确. 2.开口向上的半球形曲面的截面如图所示,直径AB 水平.一物块(可视为质点)在曲面内A 点以某一速率开始下滑,曲面内各处动摩擦因数不同,因摩擦作用物块下滑过程速率保持不变.在物块下滑的过程中,下列说法正确的是( ) A .物块运动过程中加速度始终为零 B .物块所受合外力大小不变,方向时刻在变化 C .滑到最低点C 时,物块所受重力的瞬时功率达到最大 D .物块所受摩擦力大小逐渐变大 答案:B 3.近年许多电视台推出户外有奖冲关的游戏节目,如图所示(俯视图)是某台设计的冲关活动中的一个环节.要求挑战者从平台A 上跳到以O 为转轴的快速旋转的水平转盘上而不落入水中.已知平台到转盘盘面的竖直高度为1.25 m ,平台边缘到转盘边缘的水平距离为1 m ,转盘半径为2 m ,以12.5 r/min 的转速匀速转动,转盘边缘间隔均匀地固定有6个相同障碍桩,障碍桩及桩和桩之间的间隔对应的圆心角均相等.若某挑战者在如图所示时刻从平台边缘以水平速度沿AO 方向跳离平台,把人视为质点,不计桩的厚度,g 取10 m/s 2 ,则能穿

高一物理专题训练专题八

专题八机械能守恒定律 知识回顾 练习题组 1.讨论力F在下列几种情况下做功的多少( ) (1)用水平推力F推质量是m的物体在光滑水平面上前进了s. (2)用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s. (3)斜面倾角为θ,与斜面平行的推力F,推一个质量为2m的物体沿光滑斜面向上进了s. A.(3)做功最多 B.(2)做功最多 C.做功相等 D.不能确定 2.质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,那么( ) A.物体的重力势能减少2mgh B.物体的动能增加2mgh C.物体的机械能保持不变 D.物体的机械能增加mgh 3.如图1所示,一个物体放在水平面上,在跟竖直方向成θ角的斜向下的推力F的作用平面移动了位移s,若物体的质量为m,物体与地面之间的摩擦力为f,则在此过程中( ) A.摩擦力做的功为-fs B.力F做的功为Fscosθ C.力F做的功为Fssinθ D.重力做的功为mgs 4.质量为m的物体静止在倾角为θ的斜面上,当斜面沿水平方向向右匀速移动了距离s时,如图2所示,物体m相对斜面静止,则下列说法中不正确的是( ) A.摩擦力对物体m做功为零 B.合力对物体m做功为零 C.摩擦力对物体m做负功 D.弹力对物体m做正功

5.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A.返回斜面底端的动能为E B.返回斜面底端时的动能为3E/2 C.返回斜面底端的速度大小为2υ D.返回斜面底端的速度大小为 υ 6.下列关于机械能守恒的说法中正确的是:( ) A.物体做匀速直线运动,它的机械能一定守恒 B.物体所受的合力的功为零,它的机械能一定守恒 C.物体所受的合力不等于零,它的机械能可能守恒 D.物体所受的合力等于零,它的机械能一定守恒 7.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当 它落到地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A. B. C. D. 8.如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC 的长度也是R,一质量为m的物体,与两个轨道间的动摩擦因数都为,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为( ) A. B. C. D. 9.如图:用F=40 N的水平推力推一个质量m=3 kg的木块,使其沿着斜面向上移动2m,木块和斜面间的动摩擦因数为μ=0.1,则在这一过程中(g=10m/s2),求: 1 力F做的功; 2 物体克服摩擦力做的功;

高中物理重点专题练习:(临界问题)(精选.)

课堂练习:(临界问题) 1、一劲度系数为m N k /200=的轻弹簧直立在水平地板上,弹簧下端与地板相连,上端与一质量kg m 5.0=的物体B 相连,B 上放一质量也为kg 5.0的物体A ,如图。现用一竖直向下的力F 压A ,使B A 、均静止。当力F 取下列何值时,撤去F 后可使B A 、不分开 ( ) A.N 5 B.N 8 N 15 D.N 20 2、如图,三个物块质量分别为1m 、 2m 、M ,M 与1m 用弹簧联结,2m 放在1m 上,用足够大的外力F 竖直向下压缩弹簧,且弹力作用在弹性限度以内,弹簧的自然长度为L 。则撤去外力F ,当2m 离开1m 时弹簧的长度为___________,当M 与地面间的相互作用力刚为零时,1m 的加速度为 。 3、如图,车厢内光滑的墙壁上,用线拴住一个重球,车静止时,线的拉力为T ,墙对球的支持力为N 。车向右作加速运动时,线的拉力为T ',墙对球的支持力为N ',则这四个力的关系应为:T ' T ;N ' N 。(填>、<或=)若墙对球的支持力为0,则物体的运动状态可能是 或 。 4、在光滑的水平面上,B A 、两物体紧靠在一起,如图。A 物体的质量为m ,B 物体的质量m 5,A F 是N 4的水平向右的恒力,N t F B )316(-=(t 以s 为单位),是随时间变化的水平力。从 静止开始,当=t s 时,B A 、两物体开始分离,此时B 物体的速度方向 朝 (填“左”或“右”)。 5、如图,在斜面体上用平行于斜面的轻绳挂一小球,小球质量为m ,斜面体倾角为θ,置于光滑水平面上 (g 取2/10s m ),求: (1)当斜面体向右匀速直线运动时,轻绳拉力为多大; (2)当斜面体向左加速运动时,使小球对斜面体的压力为零时,斜面体加速度为多大; (3)为使小球不相对斜面滑动,斜面体水平向右运动的加速度的最大值为多少。

高中物理训练专题【曲线运动与万有引力】

限时规范训练(二) 曲线运动与万有引力 建议用时45分钟,实际用时________ 一、单项选择题 1.如图所示,绕过定滑轮的细线连着两个小球,小球a 、b 分别套在 水平杆和竖直杆上,某时刻连接两球的细线与竖直方向的夹角均为37°, 此时a 、b 两球的速度大小之比v a v b 为(已知sin 37°=0.6,cos 37°=0.8)( ) A.43 B .34 C.259 D .2516 解析:A 将a 、b 两小球的速度分解为沿细线方向的速度与垂直细线方向的速度,则a 球沿细线方向的速度大小为v 1=v a sin 37°,b 球沿细线方向的速度大小为v 2=v b cos 37°,又 v 1=v 2,解得v a v b =cos 37°sin 37°=43 ,A 正确. 2.羽毛球运动员林丹曾在某综艺节目中表演羽毛球定点击鼓,如图是他表演时的羽毛球场地示意图.图中甲、乙两鼓等高,丙、丁两鼓较低但也等高,若林丹各次发球时羽毛球飞出位置不变且均做平抛运动,则( ) A .击中甲、乙的两球初速度v 甲=v 乙 B .击中甲、乙的两球运动时间可能不同 C .假设某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓 D .击中四鼓的羽毛球中,击中丙鼓的初速度最大 解析:C 由题图可知,甲、乙高度相同,所以球到达两鼓用时相同,但由于两鼓离林 丹的水平距离不同,甲的水平距离较远,由v =x t 可知,击中甲、乙的两球初速度v 甲>v 乙,故A 、B 错误;甲鼓的位置比丁鼓位置较高,则球到达丁鼓用时较长,则若某次发球能够击中甲鼓,用相同大小的速度发球可能击中丁鼓,故C 正确;由于丁鼓与丙鼓高度相同,但由题图可知,丁鼓离林丹的水平距离大,所以击中丁鼓的球的初速度一定大于击中丙鼓的球的初速度,即击中丙鼓的球的初速度不是最大的,故D 错误.

高中物理《选修3-1》专题训练讲义

第一课时:电场的力的性质 一、单项选择题 1.(2011年台州模拟)在电场中的某点放一个检验电荷,其电量为q,受到的电场力为F,则该点的电 场强度为E=F q,下列说法正确的是(D) A.若移去检验电荷,则该点的电场强度为0 B.若检验电荷的电量变为4q,则该点的场强变为4E C.若放置到该点的检验电荷变为-2q,则场中该点的场强大小不变,但方向相反 D.若放置到该点的检验电荷变为-2q,则场中该点的场强大小方向均不变 2.使两个完全相同的金属小球(均可视为点电荷)分别带上-3Q和+5Q的电荷后,将它们固定在相距为a的两点,它们之间库仑力的大小为F1.现用绝缘工具使两小球相互接触后,再将它们固定在相距为2a 的两点,它们之间库仑力的大小为F2.则F1与F2之比为(D) A.2∶1 B.4∶1 C.16∶1 D.60∶1 3. (2010年高考课标全国卷)静电除尘器是目前普遍采用的一种高效除尘器.某除尘器 模型的收尘板是很长的条形金属板,图中直线ab为该收尘板的横截面.工作时收尘板带 正电,其左侧的电场线分布如图所示;粉尘带负电,在电场力作用下向收尘板运动,最 后落在收尘板上.若用粗黑曲线表示原来静止于P点的带电粉尘颗粒的运动轨迹,下列 四幅图中可能正确的是(忽略重力和空气阻力)( ) 解析:选A.根据力和运动的关系知,当粒子运动至电场中某一点时,运动速度方向与 受力方向如图所示,又据曲线运动知识知粒子运动轨迹夹在合外力与速度之间,可判定粉 尘颗粒的运动轨迹如A选项中图所示. 4.法拉第首先提出用电场线形象生动地描绘电场,如图所示为点电荷a、b所形成电场的电场线分布图,以下几种说法中正确的是( ) A.a,b为异种电荷,a的电荷量大于b的电荷量 B.a,b为异种电荷,a的电荷量小于b的电荷量 C.a,b为同种电荷,a的电荷量大于b的电荷量 D.a,b为同种电荷,a的电荷量小于b的电荷量 解析:选B.由题图看出,电场线由一个点电荷发出到另一个点电荷终止,由此可知,a、b必为异种电荷,C、D选项错;又由图可知,电荷b附近的电场线比电荷a附近的电场线密,则电荷b附近的场强必比电荷a附近的场强大,b带的电荷量必然多于a带的电荷量,则A选项错误,B选项正确.5.(2011年舟山模拟)A、B是一条电场线上的两个点,一带负电的微粒仅在电场力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图甲所示.则此电场的电场线分布可能是图乙中的( ) 解析:选A.从图象可以直接看出,粒子的速度随时间逐渐减小;图线的斜率逐渐增大,说明粒子的加速度逐渐变大,电场强度逐渐变大,从A到B电场线逐渐变密.综合分析知,负电荷是顺着电场线运动,由电场线疏处到达密处,正确选项是A.

高二限时训练物理试题

高二限时训练物理试题10.13 出题人:赵著科 审题人:王建伟 一.选择题(16个题,每题3分,选不全得2分) 1.以下叙述正确的是( ) A.由E=F/q 可知,电场强度E 与电荷所受电场力F 成正比,与电量q 成反比 B.由U=W/q 可知,电场中两点间的电势差U 与电场力做功W 成正比,与电量q 成反比 C.由C=Q/U 可知,电容C 与电容器的带电量Q 成正比,与两极板间电势差U 成反比 D.由I=U/R 可知,通过某导体的电流与导体两端的电压U 成正比,与导体电阻R 成反比 2.一个动能为Ek 的带电粒子,垂直于电场线方向飞入平行板电容器,飞出电容器时动能为3Ek ,如果使这个带电粒子的初速度变为原来的2倍,那么它飞出电容器时的动能变为( ) A .6Ek B .4.5Ek C .4.25Ek D .5.25Ek 3.一空腔导体周围的电场线分布如图所示,电场方向如图中箭头所示,M 、N 、P 、Q 是以O 为圆心的一个圆周上的四点,其中M 、O 、N 在一条直电场线上,P 、Q 在一条弯曲的电场线上,下列说法正确的有?( ) A .M 点的电场强度比N 点的电场强度大 B .P 点的电势比Q 点的电势高 C ..M 、O 间的电势差大于O 、N 间的电势差 D ..一负电荷在P 点的电势能小于在Q 点的电势能 4.将一个正电荷从无穷远移入电场中的M 点,电势能增加8.0×10-9 J ;若将另一个等量的负电荷从无穷 远移入电场中的N 点,电场力做功为9.0×10-9 J ,则正确的结果是( ) A . B . C . D . 5.如图所示,带箭头的线表示某一电场的电场线。在电场力作用下一带电粒子(不计重力)经A 点飞向 B 点,径迹如图中虚线所示,下列说法正确的是:( ) A 、粒子带正电。 B 、粒子在A 点加速度大。 C 、粒子在B 点动能小。 D 、A 、B 两点相比,B 点电势能较小。 6.如图6所示,水平放置的平行板电容器,上板带负电,下板带正电,断开电源,带电小球以速度v 0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,小球仍以相同的速度v 0从原处 飞入,则 带电小球 ( ) A .将打在下板中央 B .仍沿原轨迹由下板边缘飞出 C .不发生偏转,沿直线运动 D .若上板不动,将下板上移一段距离,小球可能打在下板的中央 7.如图4所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为a ,最低点为b.不计空气阻力,则 ( ) A .小球带负电 B .电场力跟重力平衡 C .小球在从a 点运动到b 点的过程中,电势能减小 D .小球在运动过程中机械能守恒 8.如图所示,在竖直放置的光滑半圆形绝缘细管的圆心O 处放一点电荷。现将质量为m 、电荷量为q 的小球从半圆形管的水平直径端点A 静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力。若小球所带电量很小,不影响O 点处的点电荷的电场,则置于圆心处的点电荷在B 点处的电场强度的大小为( ) A . mg q B . 2mg q C .3mg q D .4mg q 9.关于点电荷下列说法不正确... 的是 ( ) A .点电荷是一种理想化的物理模型 B .点电荷自身不一定很小,所带电荷不一定很少 C. 点电荷、元电荷、检验电荷是同一种物理模型 D. 当两个带电体的形状大小对它们间相互作用力的影响可忽略时,这两个带电体可看作点电荷 10.下列说法中,正确的是: A .公式E = q F 只适用于真空中点电荷产生的电场 0<>N M ??0<>M N ? ?

高一物理期末精选专题练习(word版

高一物理期末精选专题练习(word 版 一、第一章 运动的描述易错题培优(难) 1.质点做直线运动的 v-t 图象如图所示,则( ) A .3 ~ 4 s 内质点做匀减速直线运动 B .3 s 末质点的速度为零,且运动方向改变 C .0 ~ 2 s 内质点做匀加速直线运动,4 ~ 6 s 内质点做匀减速直线运动,加速度大小均为 2 m/s 2 D .6 s 内质点发生的位移为 8 m 【答案】BC 【解析】 试题分析:矢量的负号,只表示物体运动的方向,不参与大小的比较,所以3 s ~4 s 内质点的速度负方向增大,所以做加速运动,A 错误,3s 质点的速度为零,之后开始向负方向运动,运动方向发生变化,B 错误,图线的斜率表示物体运动的加速度,所以0~2 s 内质点做匀加速直线运动,4 s ~6 s 内质点做匀减速直线运动,加速度大小均为2 m/s 2,C 正确,v-t 图像围成的面积表示物体的位移,所以6 s 内质点发生的位移为0,D 错误, 考点:考查了对v-t 图像的理解 点评:做本题的关键是理解v-t 图像的斜率表示运动的加速度,围成的面积表示运动的位移,负面积表示负方向位移, 2.一个质点做变速直线运动的v-t 图像如图所示,下列说法中正确的是 A .第1 s 内与第5 s 内的速度方向相反 B .第1 s 内的加速度大于第5 s 内的加速度 C .OA 、AB 、BC 段的加速度大小关系是BC OA AB a a a >> D .OA 段的加速度与速度方向相同,BC 段的加速度与速度方向相反 【答案】CD 【解析】

【分析】 【详解】 A .第1s 内与第5s 内的速度均为正值,方向相同,故A 错误; B .第1 s 内、第5 s 内的加速度分别为: 2214 m/s 2m/s 2 a = = 22504 m/s 4m/s 1 a -= =- 1a 、5a 的符号相反,表示它们的方向相反,第1s 内的加速度小于于第5 s 内的加速度,故 B 错误; C .由于AB 段的加速度为零,故三段的加速度的大小关系为: BC OA AB a a a >> 故C 正确; D .OA 段的加速度与速度方向均为正值,方向相同;BC 段的加速度为负值,速度为正值,两者方向相反,故D 正确; 故选CD 。 3.如图所示为某质点做直线运动时的v-t 图象图象关于图中虚线对称,则在0~t 1时间内,关于质点的运动,下列说法正确的是 A .若质点能两次到达某一位置,则两次的速度都不可能为零 B .若质点能三次通过某一位置,则可能三次都是加速通过该位置 C .若质点能三次通过某一位置,则可能两次加速通过,一次减速通过 D .若质点能两次到达某一位置,则两次到达这一位置的速度大小一定相等 【答案】C 【解析】 【分析】 【详解】 AD 、分析质点运动过程可知,质点在10t 时间内能两次到达的位置有两个,分别对应质 点运动速度为零的两个位置,因此A 、D 错误; BC 、如图,画出质点运动的过程图:

高中物理“4 1”15分钟40分限时训练(9)

物理“4+1”15分钟40分限时训练(九) 16.下列说法中正确的是 A .泊松亮斑证实了光的粒子性 B .光的偏振现象说明光是一种纵波 C .康普顿效应进一步证实了光的粒子性 D .干涉法检查被检测平面的平整度应用了光的双缝干涉原理 17.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的半径为2r ,则可以确定 A .翟志刚出舱后不再受地球引力 B .翟志刚出舱取回外挂实验样品,若样品脱手,则样品做自由落体运动 C . “神舟七号” 与卫星的加速度大小之比为4:1 D .“神舟七号”与卫星的线速度大小之比为1 :2 18. 一理想变压器原、副线圈匝数比n 1: n 2=11:5,原线圈与正弦交流电源连接,输入电压u 如图所示,副线圈仅接入一个10 Ω的电阻,则 A. 流过电阻的电流是0.2A B. 与电阻并联的电压表示数是100 2 V C. 经过1分钟电阻发出的热量是6?103 J D. 变压器的输入功率是1?103 W 19.分别用波长为2λ和λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:3. 以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为 ( ) A .34h c λ B . 23hc λ C .λhc 4 1 D . 4hc λ 22.(16分)如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。若人和滑板的总质量m = 60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ = 0.50,斜坡的倾角θ = 37°(sin37° = 0.6,cos37° = 0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 m/s 2 .求: 0 6 1 2 4 3 5 t /10-2s u /V 2202 -2202 图

相关主题
文本预览
相关文档 最新文档