当前位置:文档之家› (完整版)智能制造基本概念解读

(完整版)智能制造基本概念解读

(完整版)智能制造基本概念解读
(完整版)智能制造基本概念解读

智能制造基本概念解读

前言

德国工业4.0、美国工业互联网和中国制造2025这三大国家战略虽在表述上不一样,但本质上异曲同工,核心都是智能制造。2017年用友网络股份有限公司-制造事业部也正式更名为“智能制造事业部”,以响应国家号召推动智能制造的发展。但是,智能制造尚处于不断发展过程中,社会各界的认识和理解各有不同。目前国际和国内还没有关于智能制造的准确定义。在用友公司内部也没有明确的关于智能制造的定义。为此本人查阅了相关资料,并将学习过程中的摘录及笔记整理成本文,以供大家进行概念普及。由于时间紧迫、资料有限,错误及疏漏难免,望大家积极反馈(hhp@https://www.doczj.com/doc/1c18965312.html,),以便及时修正。

1. 智能制造的概念

2015年5月8日,国务院印发关于《中国制造2025》的通知。通知中明确提出要大力推进智能制造,以带动各个产业数字化水平和智能化水平,加速培育我国新的经济增长动力,抢占新一轮产业竞争制高点。通知中明确了五大工程来推动中国制造2025的落地,智能制造工程为五大工程中的其中一个。

为了进一步落实中国制造2025,2016年12月8日,工业和信息化部、财政部联合制定了《智能制造发展规划(2016-2020年)》。

《智能制造发展规划(2016-2020年)》对智能制造给出了较为明确的定义。智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。推动智能制造,能够有效缩短产品研制周期、提高生产效率和产品质量、降低运营成本和资源能源消耗,并促进基于互联网的众创、众包、众筹等新业态、新模式的孕育发展。智能制造具有以智能工厂为载体,以关键制造环节智能化为核心,以端到端数据流为基础、以网络互联为支撑等特征,这实际上指出了智能制造的核心技术、管理要求、主要功能和经济目标,体现了智能制造对于我国工业转型升级和国民经济持续发展的重要作用。

2. 智能制造的发展目标

《智能制造发展规划(2016-2020年)》明确了智能制造的发展目标。

2025年前,推进智能制造发展实施“两步走”战略:第一步,到2020年,智能制造发展基础和支撑能力明显增强,传统制造业重点领域基本实现数字化制造,有条件、有基础的重点产业智能转型取得明显进展;第二步,到2025年,智能制造支撑体系基本建立,重点产业初步实现智能转型。

由于我国制造业发展水平参差不齐,有的处于2.0阶段,有的处于3.0阶段,有的在走向4.o阶段。我国实现智能制造必须2.0、3.0、4.0并行发展,既要在改造传统制造方面“补课”,又要在绿色制造、智能升级方面“加课”。对于制造企业而言,应着手于完成传统生产装备网络化和智能化的升级改造,以及生产制造工艺数字化和生产过程信息化

的升级改造。对于装备供应商和系统集成商,应加快实现安全可控的智能装备与工业软件的开发和应用,以及提供智能制造顶层设计与全系统集成服务。鉴于此2020年前,我们的发展目标是:

●推进传统制造业重点领域基本实现数字化制造;

●在有条件、有基础的重点产业,建立智能转型的试点示范企业。

3. 智能制造系统架构

为落实国务院《中国制造2025》的战略部署,加快推进智能制造发展,发挥标准的规范和引领作用,指导智能制造标准化工作的开展,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2015年版)》。该标准于2015年12月29日正式发布。该标准对智能制造系统架构给出了一个认知度较高的模型。

智能制造系统架构通过生命周期、系统层级和智能功能三个维度构建完成,主要解决智能制造标准体系结构和框架的建模研究。如图1所示。

图 1 智能制造系统架构

3.1.生命周期

生命周期是由设计、生产、物流、销售、服务等一系列相互联系的价值创造活动组成的链式集合。生命周期中各项活动相互关联、相互影响。不同行业的生命周期构成不尽相同。

3.2.系统层级

系统层级自下而上共五层,分别为设备层、控制层、车间层、企业层和协同层。智能制造的系统层级体现了装备的智能化和互联网协议(IP)化,以及网络的扁平化趋势。具体包括:

(1) 设备层级包括传感器、仪器仪表、条码、射频识别、机器、机械和装置等,是企业进行生产活动的物质技术基础;

(2) 控制层级包括可编程逻辑控制器(PLC)、数据采集与监视控制系统(SCADA)、分布式控制系统(DCS)和现场总线控制系统(FCS)等;

(3) 车间层级实现面向工厂/车间的生产管理,包括制造执行系统(MES)等;

(4) 企业层级实现面向企业的经营管理,包括企业资源计划系统(ERP)、产品生命周期管理(PLM)、供应链管理系统(SCM)和客户关系管理系统(CRM)等;

(5) 协同层级由产业链上不同企业通过互联网络共享信息实现协同研发、智能生产、精准物流和智能服务等。

3.3. 智能功能

智能功能包括资源要素、系统集成、互联互通、信息融合和新兴业态等五层。

(1) 资源要素包括设计施工图纸、产品工艺文件、原材料、制造设备、生产车间和工厂等物理实体,也包括电力、燃气等能源。此外,人员也可视为资源的一个组成部分。

(2) 系统集成是指通过二维码、射频识别、软件等信息技术集成原材料、零部件、能源、设备等各种制造资源。由小到大实现从智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统的集成。

(3) 互联互通是指通过有线、无线等通信技术,实现机器之间、机器与控制系统之间、企业之间的互联互通。

(4) 信息融合是指在系统集成和通信的基础上,利用云计算、大数据等新一代信息技术,在保障信息安全的前提下,实现信息协同共享。

(5) 新兴业态包括个性化定制、远程运维和工业云等服务型制造模式。

3.4. 示例解析-互联互通

图2 工业互联网在智能制造系统架构中的位置

工业互联网位于智能制造系统架构生命周期的所有环节、系统层级的设备、控制、工厂、企业和协同五个层级,以及智能功能的互联互通。

4. 智能制造试点示范

为深入贯彻落实《中国制造2025》,加快实施智能制造工程。工业和信息化部于2015年4月制定“智能制造试点示范2015专项行动实施方案”,并确定首批46家智能制造试点示范单位。这46家试点示范单位分为以下六类:

●以智能工厂为代表的流程制造试点示范;

●以数字化车间为代表的离散制造试点示范;

●以信息技术深度嵌入为代表的智能装备和产品试点示范;

●以个性化定制、网络协同开发、电子商务为代表的智能制造新业态新模式试点示

范;

●以物流信息化、能源管理智慧化为代表的智能化管理试点示范;

●以在线监测、远程诊断与云服务为代表的智能服务试点示范;

2016年4月,再次制定“智能制造试点示范2016专项行动实施方案”,并确定63家智能制造试点示范单位。这63家试点示范单位分为以下五类:

●离散型智能制造试点示范

●流程型智能制造试点示范

●网络协同制造试点示范

●大规模个性化定制试点示范

●远程运维服务试点示范

通过2两年试点示范企业实施效果汇总测算,各指标平均变化情况如下(简称两提升、三降低):

●运营成本降低20%;

●产品研发周期缩短29%;

●生产效率提高25%;

●产品不良率降低20%;

●能源利用率提高7%;

从试点企业统计情况看,国产软件主要集中于经营管理、物流仓储与生产工艺结合比

较紧密的领域,而MES、PLM、三维设计、虚拟仿真、控制系统、操作系统、数据库等软件

仍以国外为主。工业软件的国产化仍然是需要大力支持和发展的方向。

5. 用友智能制造方案及推进策略

经过多年的实践,用友已经在化工、建材、军工、装备、消费品等行业培养了一大批智能制造示范单位。

用友智能制造产品整体架构如下。

从生命周期维度看,用友提供设计(PLM部分)、生产、物流、销售、服务(部分)的解决方案。

从系统层级维度看,用友提供车间层(MES)、企业层(ERP、PLM、SCM、CRM)、协同层(部分)的解决方案。

在MES层面,用友细分流程制造、离散制造给出不同的细分解决方案及推进策略。针对不同的细分行业,我们还针对性给出了行业细分解决方案。

针对流程制造行业,根据用户不同应用深度,我们给出如下交付策略。

针对离散制造行业,根据用户不同应用深度,我们给出如下交付策略。

用友网络智能制造事业部将全力以赴,推动我国制造企业走向智能化。

参考文献:

【1】、《中国制造2025》,国务院发文国发〔2015〕28号,;

【2】、《国家智能制造标准体系建设指南(2015年版)》工业和信息化部、国家标准化管理委员,2015年12月29日;

【3】、《智能制造发展规划(2016-2020年)》,工业和信息化部、财政部,2016年12月8日;

【4】、《2015智能制造试点示范专项行动实施方案》工业和信息化部,2015年3月9日;【5】、《智能制造试点示范2016专项行动实施方案》工业和信息化部,2016年4月11日;【6】、《中国制造2025蓝皮书(2016)》,国家制造强国建设战略咨询委员会,电子工业出

版社;

电路分析基础_复习题

电路分析基础复习题及答案 1、测量正弦交流电路中的电压时,应先选好电压表的量程,再将电压表并联接入电路中。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:√ 2、理想电流源的输出电流和电压是恒定的,不随负载变化。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 3、导体中的电流由电子流形成,故规定电子流的方向就是电流正方向。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 4、从定义上看,电位和电压相似,电位改变,电压也跟着改变。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 5、导体的长度和截面都增大一倍,其电阻值也增大一倍。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题; 难易程度:易 答案:× 6、电压的实际方向规定为( )指向( ),电动势的实际方向规定为由( )指向( )。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题; 难易程度:易 答案:高电压,低电压,低电压,高电压 7、测量直流电流的直流电流表应串联在电路当中,表的 端接电流的流入端,表的 端接电流的流出端。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题; 难易程度:易 答案:正,负 8、工厂中一般动力电源电压为 ,照明电源电压为 。 以下的电压称为安全电压。如果考虑相位差,设?∠=? 10220A U ,则? B U = , ? C U = 。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题; 难易程度:易 答案:380伏,220伏,36伏,?-∠=? 110220B U ?∠=? 130220C U 9、用交流电表测得交流电的数值是其 值。受控源是大小方向受电路中其他地方的电压或电流控制的电源。受控源有四种模型,分别是: ; ; ;和 。

热处理名词解释(个人整理)

起始晶粒度:钢在临界温度以上,奥氏体形成刚结束,其晶粒边界刚刚接触时的晶粒大 小称为奥氏体的起始晶粒度 实际晶粒度:钢在某一具体的加热条件下实际获得的奥氏体晶粒的大小 本质晶粒度:标准实验的方法,即将钢加热到(930+-10)℃,保温3-8小时,冷却后测得的晶粒度 固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种相状态向另一种相状态的转变,这种转变称为固态相变。 伪共析转变:过冷奥氏体将全部转变为珠光体型组织,但合金的成分并非公析成分,并 且其中铁素体和渗碳体的相对含量也与共析成分珠光体不同,随奥氏体的碳含量变化而变化。这种转变称为“伪共析转变” 魏氏组织:在奥氏体晶粒较粗大,冷却速度适宜时,钢中的先共析相以针片状形态与片状珠光体混合存在的复相组织。 热稳定化:淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。 形变诱发马氏体:在Ms点以上,一定温度范围内因塑性变形而发生的马氏体 二次淬火:在冷却回火时残余奥氏体转变为马氏体的现象叫二次淬火 二次硬化:当钢中含有较多的碳化物形成元素时,在回火第四阶段温度区形成合金渗碳体或者特殊碳化物。这种碳化物的析出,将使硬度再次提高,称为二次硬化现象 脱溶沉淀:从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀 淬火时效:含有Mo,W,V,Cu,Be等元素的铁基合金淬火后进行时效时产生时效硬化现象应变时效:纯铁或低碳钢经形变后时效时产生的硬化现象 碳势:纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量 淬透性:钢材被淬透的能力或者说是钢材淬火时获得马氏体能力的特性 淬硬性:淬硬性是指在理想的淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度,也称可硬性

网络分析仪的使用

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。

电路分析基础课程标准(120学时)

青海建筑职业技术学院 《电路分析基础》课程标准 适用专业:通信技术、电子信息工程技术(普大) 编写单位:信息技术系通信、电子教研室 编写人:蒋雯雯 审批:李明燕 编写日期:2007 年07月 修订日期:2011年03月

《电路分析基础》课程标准 学时数:120学时 适应专业:通信技术、电子信息工程技术(普大) 一、课程的性质、目的和任务 《电路分析基础》课程是我院普大“通信技术”和“电子信息工程技术”专业重要的技术基础课,它既是通信电子类专业课程体系中高等数学、物理学等科学基础课的后续课程,又是后续课程(如模拟电子技术、数字电子技术、信号与系统和电子测量仪器等)的基础,在整个人才培养方案和课程体系中起着承前启后的重要作用。 本课程理论严密、逻辑性强,有广阔的工程背景,是通信、电子类学生知识结构的重要组成部分。本课程系统地阐述了电路的基本概念、基本定律和基本的分析方法,是进一步学习其他专业课程必不可少的前期基础课程。本课程的任务是使学生掌握通信、电子类技术人员必须具备的电路基础理论、基本分析方法,掌握各种常用电工仪器、仪表的使用和简单的电工测量方法,为后续专业课的学习和今后踏入社会后的工程实际应用奠定基础。 二、课程教学目标和基本教学要求 教学目标:通过本课程的学习,逐步培养学生严肃、认真的科学作风和理论联系实际的工程观点,培养学生的科学思维能力、分析计算能力、实验研究能力和科学归纳能力。 1.知识目标: 简单直流电路分析、一阶电路的暂态分析、交流电路的分析与应用。

2.职业技能目标: 电路元器件的识别、测量能力;基本工具的使用能力;基本仪器的使用能力;电路图识图能力,并能在电工操作台上正确连接电路;能够对实际直流电路进行正确的操作、测量;直流电路的分析、计算及初步设计;能够对实际交流电路进行正确的操作、测量;交流电路的分析、计算及初步设计;动态电路的分析、计算及初步设计;安全用电能力。 3.职业素质养成目标 耐心细致的职业习惯的养成;规范操作习惯的养成;信息获取能力;团结协作精神的养成。 教学要求:本课程应适应电路内容的知识更新和课程体系改革的需要,着重介绍经典的电路分析方法,力求做到以应用为目的,以必需、够用为度,讲清概念,结合实际、强化训练,突出适应性、实用性和针对性;重点讲清基本概念和经典的电路分析方法,在例题和习题的选取上,适当淡化手工计算的技巧,并根据该课程具有较强的实践性的特点,在每章中引入计算机辅助分析与仿真测量,同时加入16个(包括5个选做)电路的实践操作实验,以达到理论与实践的结合和“教、学、做”的统一。 三、课程的教学目的、内容、重点和难点 第一章电路的基本概念与定律 教学目的: 1.了解实际电路、理想电路元件和电路模型的概念。 2.理解电路中的基本物理量-电流、电压和电功率的基本概念。 3.掌握电路的基本定律-欧姆定律、基尔霍夫定律。

《电路分析基础》复习题

《电路分析基础》复习题 1、测量正弦交流电路中的电压时,应先选好电压表的量程,再将电压表并联接入电路中。() 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题;评分:2分 难易程度:易 答案:√ 2、理想电流源的输出电流和电压是恒定的,不随负载变化。() 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题;评分:2分 难易程度:易 答案:× 3、导体中的电流由电子流形成,故规定电子流的方向就是电流正方向。( ) 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题;评分:2分 难易程度:易 答案:× 4、从定义上看,电位和电压相似,电位改变,电压也跟着改变。() 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题;评分:2分 难易程度:易 答案:× 5、导体的长度和截面都增大一倍,其电阻值也增大一倍。() 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:判断题;评分:2分 难易程度:易 答案:× 6、电压的实际方向规定为()指向(),电动势的实际方向规定为由()指向()。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题;评分:4分 难易程度:易 答案:高电压,低电压,低电压,高电压 7、测量直流电流的直流电流表应串联在电路当中,表的端接电流的流入端,表的 端接电流的流出端。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题;评分:2分 难易程度:易 答案:正,负 8、工厂中一般动力电源电压为,照明电源电压为。以下的电压称为安全电压。 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题;评分:2分 难易程度:易 答案:380伏,220伏,36伏 9、用交流电表测得交流电的数值是其值 知识点:基本知识及电压电流的参考方向;章节1.1 ;题型:填空题;评分:2分 难易程度:易 答案:有效

金属热处理 名词解释

结构起伏:短程有序的原子集团瞬间出现瞬间消失,这样不断变化着的短程有序的原子集团能量起伏:各微观区域内的自由能并不相同有的高有的低各微观的能量处于的起伏状的状态正温度梯度:是指液相中的温度随与界面的距离的增加而提高的温度分布状况 变质处理:是在浇注前往液态金属中加入形核剂促成形成大量的非均匀晶核来细化晶粒。固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度,硬度提高,而塑性韧性有所下降的现象 扩散退火:也叫均与化退火,是指将铸件加热至低于固相线100-200的温度,进行较长时间保温,使偏元素充分进行扩散,达到成分均匀 选择结晶:也叫异分结晶,是指固溶体合金结晶时所结晶出的的固相成分和液相成分不同,这种结晶出的晶体与母相化学成分不同的结晶成分称为 离异共晶:在先共晶相数量较多而共晶组织甚少的情况下,有时共晶组织中与先共晶相相同的那一相,会依附于先共晶相生长,剩下的另一相则单独存在于晶界处,从而使共晶组织的特征消失,这种两相分离的共晶称为 滑移:晶体的塑性变形是晶体的的一部分相对于另一部分沿某些晶面和晶向发生滑移的结果滑移带:如果将表面抛光的单晶体金属试样进行拉伸,当试样经适量的塑性变形后,在金相显微镜下可以观察到,在抛光的表面上出现许多相互平行的线条,这些线条成为滑移带 滑移系:一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系 多系滑移:两个或更多的滑移系上进行的滑移称为多系滑移,简称多滑移 交滑移:由于晶体取向的改变可能使两个或多个相交的滑移面沿一个滑移方向进行滑移,因而使加工硬化效果逐渐下降,这个过程成为交滑移 加工硬化:在塑性变形过程中,随着金属内部组织的变化,金属的力学性能也产生明显的变化,即随着变形程度的增加,金属的强度,硬度增加,而塑性韧性下降 多变形化:是冷变形金属加热时,原来处在滑移面的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程 再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生于畸变的新晶粒,性能也发生显著变化,并恢复到冷变形前的水平, 临界变形度:通常把对应于得到特别粗大的晶粒的变形称为 热处理:是将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定速度冷却到室温的一种热加工工艺 马氏体的正方度:体心正方的马氏体,c轴伸长,而另外两个a轴稍有缩短,轴比c/a称为马氏体转变:钢从奥氏体状态快速冷却抑制其扩散性分解在较低温度下发生的无扩散型相变奥氏体的热稳定化:因冷却缓慢或冷却过程停留引起奥氏体稳定性提高而使马氏体转变滞后的现象叫 奥氏体的机械稳定化:由于奥氏体在淬火过程中受到较大塑性变形或受到压应力而造成的稳定化现象 临界冷却速度:表示过冷奥氏体在连续冷却过程中全部转变为珠光体的最大冷却速度 回火:是将淬火钢加热到低于临界点A1的某一温度保温一段时间,使淬火组织转变为稳定的回火组织,然后以适当方式冷却到室温的一种热处理工艺 回火脆性:有些钢在一定的范围内回火时,其冲击韧度显著下降,这种催化现象叫钢的 退火:是将钢加热到临界点Ac1以上或一下温度,保温后随炉缓慢冷却以获得近于平衡状态的热处理工艺 正火:是将钢加热到Ac3或Acm以上适当温度,保温以后在空气中冷却得到珠光体类组织淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度冷却得到马氏体或下贝氏体 等温淬火:是将奥氏体化后的工件淬入Ms点以上某温度盐浴中,等温保持足够长时间,使之转变为下贝氏体组织,然后取出在空气中冷却的淬火方法 调质处理:将淬火和随后回火相结合的热处理工艺成为调质处理 淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力 淬硬性:表示钢淬火时的硬化能力 形变热处理:是将塑性变形和热处理有机结合在一起的一种复合工艺 自扩散:是不伴有浓度变化的扩散,它与浓度梯度无关,只发生在纯金属和均匀固溶体中互扩散:是伴有浓度变化的扩散,它与异类原子的浓度差有关,如在不均匀固溶体中,不同相之间或不同材料制成的扩散偶之间的扩散过程中,异类原子相对扩散,相互渗透,所以又称为异扩散 下坡扩散:是沿着浓度降低的方向进行的扩散,使浓度趋于均匀化 上坡扩散:是沿着浓度升高的方向进行的扩散,即由低浓度向高浓度方向扩散 原子扩散:在扩散过程中晶格类型始终不变,没有新相产生,这种扩散就成为原子扩散 反应扩散:通过扩散使固溶体的溶质组元浓度超过固溶度极限而形成新相过程称为反应扩散

电路分析基础知识归纳

《电路分析基础》知识归纳 一、基本概念 1.电路:若干电气设备或器件按照一定方式组合起来,构成电流的通路。 2.电路功能:一是实现电能的传输、分配和转换;二是实现信号的传递与处理。 3.集总参数电路近似实际电路需满足的条件:实际电路的几何尺寸l(长度)远小于电路 。 正常工作频率所对应的电磁波的波长λ,即l 4.电流的方向:正电荷运动的方向。 5.关联参考方向:电流的参考方向与电压降的参考方向一致。 6.支路:由一个电路元件或多个电路元件串联构成电路的一个分支。 7.节点:电路中三条或三条以上支路连接点。 8.回路:电路中由若干支路构成的任一闭合路径。 9.网孔:对于平面电路而言,其内部不包含支路的回路。 10.拓扑约束:电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约 束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系与电路元件的特性无关,只取决于元件的互联方式。 U(直流电压源)或是一定的时间11.理想电压源:是一个二端元件,其端电压为一恒定值 S u t,与流过它的电流(端电流)无关。 函数() S 12.理想电流源是一个二端元件,其输出电流为一恒定值 I(直流电流源)或是一定的时间 S i t,与端电压无关。 函数() S 13.激励:以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。 14.响应:经过电路传输处理后的输出信号叫做响应信号,简称响应。 15.受控源:在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它 支路的电压或电流的控制。 16.受控源的四种类型:电压控制电压源、电压控制电流源、电流控制电压源、电流控制电 流源。 17.电位:单位正电荷处在一定位置上所具有的电场能量之值。在电力工程中,通常选大地 为参考点,认为大地的电位为零。电路中某点的电位就是该点对参考点的电压。 18.单口电路:对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。 19.单口电路等效:如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同, 则这两个单口电路对端口以外的电路而言是等效的,可进行互换。 20.无源单口电路:如果一个单口电路只含有电阻,或只含受控源或电阻,则为不含独立源 单口电路。就其单口特性而言,无源单口电路可等效为一个电阻。 21.支路电流法:以电路中各支路电流为未知量,根据元件的VAR和KCL、KVL约束关系, 列写独立的KCL方程和独立的KVL方程,解出各支路电流,如果有必要,则进一步计算其他待求量。 22.节点分析法:以节点电压(各独立节点对参考节点的电压降)为变量,对每个独立节点 列写KCL方程,然后根据欧姆定律,将各支路电流用节点电压表示,联立求解方程,求得各节点电压。解出节点电压后,就可以进一步求得其他待求电压、电流、功率。23.回路分析法:以回路电流(各网孔电流)为变量,对每个网孔列写KVL方程,然后根据

电路基础分析知识点整理

电路分析基础 1.(1)实际正方向:规定为从高电位指向低电位。 (2)参考正方向:任意假定的方向。 注意:必须指定电压参考方向,这样电压的正值或负值才有意义。 电压和电位的关系:U ab=V a-V b 2.电动势和电位一样属于一种势能,它能够将低电位的正电荷推向高电位,如同水路中的水泵能够把低处的水抽到高处的作用一样。电动势在电路分析中也是一个有方向的物理量,其方向规定由电源负极指向电源正极,即电位升高的方向。 电压、电位和电动势的区别:电压和电位是衡量电场力作功本领的物理量,电动势则是衡量电源力作功本领的物理量;电路中两点间电压的大小只取决于两点间电位的差值,是绝对的量;电位是相对的量,其高低正负取决于参考点;电动势只存在于电源内部。 3. 参考方向 (1)分析电路前应选定电压电流的参考方向,并标在图中; (2)参考方向一经选定,在计算过程中不得任意改变。参考方向是列写方程式的需要,是待求值的假定方向而不是真实方向,因此不必追求它们的物理实质是否合理。 (3)电阻(或阻抗)一般选取关联参考方向,独立源上一般选取非关联参考方向。 (4) 参考方向也称为假定正方向,以后讨论均在参考方向下进行,实际方向由计算结果确定。 (5)在分析、计算电路的过程中,出现“正、负”、“加、减”及“相同、相反”这几个名词概念时,切不可把它们混为一谈。 4. 电路分析中引入参考方向的目的是为分析和计算电路提供方便和依据。应用参考方向时,“正、负”是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,说明它的实际方向与参考方向相反,参考方向下一个电压为“+20V”,说明其实际方向与参考方向一致;“加、减”指参考方向下列写电路方程式时,各项前面的正、负符号;“相同、相反”则是指电压、电流是否为关联参考方向,“相同”是指电压、电流参考方向关联,“相反”指的是电压、电流参考方向非关联。 5.基尔霍夫定律 基尔霍夫定律包括结点电流定律(KCL)和回路电压(KVL)两个定律,是集总电路必须遵循的普遍规律。 中学阶段我们学习过欧姆定律(VAR),它阐明了线性电阻元件上电压、电流之间的相互约束关系,明确了元件特性只取决于元件本身而与电路的连接方式无关这一基本规律。 基尔霍夫将物理学中的“液体流动的连续性”和“能量守恒定律”用于电路中,总结出了他的第一定律(KCL);根据“电位的单值性原理”又创建了他的第二定律(KVL),从而解决了电路结构上整体的规律,具有普遍性。基尔霍夫两定律和欧姆定律合称为电路的三大基本定律。 6.几个常用的电路名词 1.支路:电路中流过同一电流的几个元件串联的分支。(m) 2.结点:三条或三条以上支路的汇集点(连接点)。(n) 3.回路:由支路构成的、电路中的任意闭合路径。(l) 4.网孔:指不包含任何支路的单一回路。网孔是回路,回路不一定是网孔。平面电路的每个网眼都是一个网孔。

热处理工艺名词解释.doc

正火: 正火,又称常化,是将工件加热至Ac3或Ac m以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低材料的硬度。 正火,又称常化,是将工件加热至Ac3(Ac?是指加热时自由铁素体全部转变为奥氏体的终了温度)或Ac m(Ac m是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。④用于铸钢件,可以细化铸态组织,改善切削加工性能。 ⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开

裂倾向。⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。 正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。 普通结构零件的最终热处理,由于正火后工件比退火状态具有更好的综合力学性能,对于一些受力不大、性能要求不高的普

《电路分析基础》第一章 第四章同步练习题

《电路分析基础》第一章~第四章练习题 一、基本概念和基本定律 1、将电器设备和电器元件根据功能要求按一定方式连接起来而构成的集合体称为。 2、仅具有某一种确定的电磁性能的元件,称为。 3、由理想电路元件按一定方式相互连接而构成的电路,称为。 4、电路分析的对象是。 5、仅能够表现为一种物理现象且能够精确定义的元件,称为。 6、集总假设条件:电路的??电路工作时的电磁波的波长。 7、电路变量是的一组变量。 8、基本电路变量有四个。 9、电流的实际方向规定为运动的方向。 10、引入后,电流有正、负之分。 11、电场中a、b两点的称为a、b两点之间的电压。 12、关联参考方向是指:。 13、电场力在单位时间内所做的功称为电功率,即。 p=,当0?p时,说明电路元件实际 14、若电压u与电流i为关联参考方向,则电路元件的功率为ui 是;当0?p时,说明电路元件实际是。 15、规定的方向为功率的方向。 16、电流、电压的参考方向可。 17、功率的参考方向也可以。 18、流过同一电流的路径称为。 19、支路两端的电压称为。 20、流过支路电流称为。 21、三条或三条以上支路的连接点称为。 22、电路中的任何一闭合路径称为。 23、内部不再含有其它回路或支路的回路称为。 24、习惯上称元件较多的电路为。 25、只取决于电路的连接方式。 26、只取决于电路元件本身电流与电压的关系。 27、电路中的两类约束是指和。

28、KCL指出:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电 流的为零。 29、KCL只与有关,而与元件的性质无关。 30、KVL指出:对于任一集总电路中的任一回路,在任一时刻,沿着该回路的代 数和为零。 31、求电路中两点之间的电压与无关。 32、由欧姆定律定义的电阻元件,称为电阻元件。 33、线性电阻元件的伏安特性曲线是通过坐标的一条直线。 34、电阻元件也可以另一个参数来表征。 35、电阻元件可分为和两类。 36、在电压和电流取关联参考方向时,电阻的功率为。 37、产生电能或储存电能的设备称为。 38、理想电压源的输出电压为恒定值,而输出电流的大小则由决定。 39、理想电流源的输出电流为恒定值,而两端的电压则由决定。 40、实际电压源等效为理想电压源与一个电阻的。 41、实际电流源等效为理想电流源与一个电阻的。 42、串联电阻电路可起作用。 43、并联电阻电路可起作用。 44、受控源是一种双口元件,它含有两条支路:一条是支路,另一条为支路。 45、受控源不能独立存在,若为零,则受控量也为零。 46、若某网络有b条支路,n个节点,则可以列个KCL方程、个KVL方程。 47、由线性元件及独立电源组成的电路称为。 48、叠加定理只适用于电路。 49、独立电路变量具有和两个特性。 50、网孔电流是在网孔中流动的电流。 51、以网孔电流为待求变量,对各网孔列写KVL方程的方法,称为。 52、网孔方程本质上回路的方程。 53、列写节点方程时,独立方程的个数等于的个数。 54、对外只有两个端纽的网络称为。 55、单口网络的描述方法有电路模型、和三种。 56、求单口网络VAR关系的方法有外接元件法、和。

系统集成、建筑智能化工程与弱电工程的概念与区别

系统集成工程、弱电工程、智能建筑工程的区别与联系 具有智能化建筑特点的工程,在近年许多的建筑建设项目中的投资幅度,呈逐年增长的趋势。但在这些建设项目中,有的并不能称之为智能建筑工程、充其量也仅仅是具有BA 性能的简单的系统集成工程,与智能建筑还相差甚远。还有的建设项目一提出做弱电系统工程,就要和系统集成、智能建筑联系起来。 可怎么联系?建设方又拿不出切实可行的技术规划方案,由集成商在那里做主导意见。有的建筑物面积大并形成了相关的建筑群,具有很强的综合性功能,本应该具有智能建筑特点的工程,但又往往舍不得投资,只是做几个相对独立的弱电工程来应付。缺少了构成完整的一体化网络管理系统,给今后的楼宇物业的科学管理以及资源的浪费带来很大的遗憾。有的建设方在考察了相关的工程和听了集成商的一番炒作后,觉得智能建筑很不错,不惜这方面的投资。但在经过使用一段时间后,觉得工程并没有发挥多么好的效益,相反,有时却成了管理者的负担。诸如此类问题。不禁令投资者和使用者困惑。究竟弱电工程是什么?系统集成是什么?智能建筑是什么?系统集成是否就是智能化建筑?如何对上述工程定义。如何把握好建设投资的适度,并在今后的使用过程中切实保证弱电各子系统以及建筑物的智能化管理的功能达到当初所预计的目的,无论对投资方还是使用方都是很重要的。 智能化工程及弱电系统工程,目前已经在一些重大的建设项目中与建筑结构、机电设备安装、内外装饰工程列为同等重要的单位工程。但是,由于智能化工程相对其他传统建设项目起步较晚,属于朝阳产业。同时涉及建设、信息、公安、消防、电信、广电等部门在上述工程界面内容的互为交叉难于协调,故疏于工程规范化标准的综合性的具体操作等现象。另外,在设计领域里,由于没有此项工程设计的取费依据及取费标准,而是将智能化技术含量很高的这样一个工程按建筑电气工程设计取费,故费率很低,加上很多设计院也缺少智能建筑的系统集成设计人员。所以国内大多甲级建筑设计院对智能建筑工程设计普遍没有积极性。这种设计的缺位,就往往由集成商取代了。集成商为取得工程的承包资格,常常免费为建设方设计,而集成商无论从设计经验和各专业图纸的协调以及图纸之间的纵横质量深度无法与正规设计院相比,造成设计图纸的质量普遍偏低现象。这种本末倒置的做法很是影响智能建筑工程的发展。所以在验收上述工程时,不难发现在对整体的传统建设项目验收过程中,智能化工程及弱电工程却成了验收中的弱项,甚至是空白点。这对建设方合同利益维护方面,显然处于下风。尤其对今后的使用方面带来很不好的影响。存在这方面的问题是多方面的原因,但有一点不可否认,那就是在工程的前期工作中,没有将上述工程准确的定位,究竟是建设几个单独的弱电工程?还时建设具有系统集成含有智能化特点的工程。因而较为准确的理解并清楚上述工程之间的区别和基本概念是很有必要的。 一、弱电工程是目前各类建筑建设项目的基本单元,已经成为各类建筑项目中不可缺少的建设子项目。既是目前住宅小区建设,它的弱电工程建设目前也得到了很大级别的提高,例如,由原来的有线电视、宽带网建设发展到小区的闭路电视监控、楼宇门禁、三表远抄及科学物业管理等。在随着绿色建筑的兴起,有可能家用电器集成与家用信息网络交

热处理名词解释

(1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性

热处理名词解释

热处理名词解释 (1)退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 (2)正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30~50℃,保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 (3)淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 (4)回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 (5)调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 (6)化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。 (7)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 (8)沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400~500℃或700~800℃进行沉淀硬化处理,可获得很高的强度。 (9)时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。 (10)淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。 (11)临界直径(临界淬透直径):临界直径是指钢材在某种介质中淬冷后,心部得到全部马氏体或50%马氏体组织时的最大直径,一些钢的临界直径一般可以通过油中或水中的淬透性试验来获得。 (12)二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。这种硬化现象,称为二次硬化,它是由于特殊碳化物析出和(或)由于参与奥氏体转变为马氏体或贝氏体所致。 (13)回火脆性:指淬火钢在某些温度区间回火或从回火温度缓慢冷却通过该温度区间的脆化现象。回火脆性可分为第一类回火脆性和第二类回火脆性。第一类回火脆性又称不可逆回火脆性,主要发生在回火温度为250~400℃时,在重新加热脆性消失后,重复在此区间回火,不再发生脆性,第二类回火脆性又称可逆回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。回火脆性的发生与钢中所含合金元素有关,如锰,铬,硅,镍会产生回火脆性倾向,而钼,钨有减弱回火脆性倾向。

矢量网络分析仪基础知识与S参数测量

矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 1.单端口网络习惯上又叫负载ZL。因为只有一个口,总是接在zui后又称终端负载。zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。 2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。 匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。 两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即S11、S21、S12、S22。这里仅简单的(但不严格)带上一笔。 S11与网络输出端接上匹配负载后的输入反射系数Г相当。注意:它是网络的失配,不是负载的失配。负载不好测出的Γ,要经过修正才能得到S11 。 S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。上述两项是zui常用的。 S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。 S22即由输出端向网络看的网络本身引入的反射系数。 中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。 1.2 传输线 传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。 特性阻抗Z0 它是一种由结构尺寸决定的电参数,对于同轴线: 式中εr为相对介电系数,D为同轴线外导体径,d为导体外径。 反射系数、返回损失、驻波比这三个参数采用了不同术语来描述匹配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电压一样高,只是相位不同,而实际上反射总是存在的, 这就需要定义一个参数。?式中ZL为负载阻抗, Z0为同轴线的特性阻抗。 由于反射系数永远≤1, 而且在甚高频以上频段手边容易得到的校准装置为衰减器,所以有人用返回损失(回损)R.L.来描述反射系数的幅度特性,并且将负号扔掉。

电路分析基础概念题集锦

电路分析基础概念题集锦 2015年7月 制作者:张雪艳 序号 页码 电路分析基础概念 1 46 (1)设任意电路的节点数为n ,则独立的KCL 方程为(n-1)个,且为任意的(n-1)个。 (2)给定一平面电路: (a )该电路有[b-(n-1)]个网孔; (b )[b-(n-1)]个网孔的KVL 方程是独立的。 (注:把KVL 运用到每一网孔,从而得到独立的KVL 方程,这只是一种方法而已,而且这一方法只能用于平面电路,还有可以获得KVL 独立方程的其他方法,但不论用什么方法,独立的KVL 方程的数目总是[b-(n-1)]个。 能提供独立的KCL 方程的节点,称为独立节点;能提供独立的KVL 方程的回路称为独立回路。) 2 122 等效的定义:如果一个单口网络N 和另一个单口网络N ’的电压、电流关系完全相同,亦即它们在u-i 平面上的伏安特性曲线完全重叠,则这两单口网络便是等效的。 3 126 一个含受控源及电阻的有源单口网络和一个只含电阻的单口网络一样,可以等效为一个电阻。这是一般规律,是可以证明的。在含受控源时,等效电阻可能为负值。(可能为0,也可能无穷大。) 4 149 1.接在复杂网络中的T 型或Ⅱ型网络部分的等效互换: 5 169 ()()+-=t u t u c c “电容电压不能跃变” 前提:当电容电流为无界时就不能运用。 6 169 某一时刻的电容电压取决于在此之前电流的全部历史,因此,可以说电容电压有“记忆”电流的性质,电容是一种记忆元件。 7 163 电容的VCR :()dt du C dt dCu t i == (注:这一公式在u 和i 参考方向一致的前提下才能使用。) 在某一时刻电容的电流取决于该时刻电容电压的变化率。电容有隔直流的作用。 8 175 电感的VCR :dt di L dt dLi u == (注:此式必须在电流、电压参考方向一致时才能使用。) 在某一时刻电感的电压取决于该时刻电流的变化率。电感对直流起着短路的作用。 9 164 电阻两端只要有电压(不论是否变化),电阻中就一定有电流。 10 192 当电路到达稳态(直流稳态)时,电容相当于开路,而电感相当于短路。 11 204 ()()0)(1c c u t u t u +=

相关主题
文本预览
相关文档 最新文档