当前位置:文档之家› FSUSB23USB2.0模拟开关

FSUSB23USB2.0模拟开关

FSUSB23USB2.0模拟开关
FSUSB23USB2.0模拟开关

多路复用器、模拟开关设计指南 第十二版

MUX & SWITCH
Data Sheets
DESIGN GUIDE
Free Samples
ANALOG
Applications Notes
1
1
e Futurcts Produ
!
SOT
/ Maxim ( SPST )
+2.0V
+5.5V
: +25° C 0.5 SOT23-5 1 MAX4544 SOT23 PDA 1 +2.0V
MAX4626/MAX4627/MAX4628
+5.5V 50ns t ON 50ns t OFF MAX4501/MAX4502 MAX4514/MAX4515 TC7S66F Maxim MAX4644 / : MAX4661–MAX4669 ±15V 1.25 5 ( SPDT )
MAX4624/MAX4625 +25 °C MAX4626/MAX4627/MAX4628 MAX4624 ( BBM ) ( MBB ) MAX4625
6
MAX4680/MAX4690/MAX4700
+25 °C ( MAX4624* MAX4625* MAX4626* MAX4627* MAX4628*
* —
RON )
+25 °C
RON () 6 6 5 5 5
– SOT23 SOT23 SOT23 SOT23 SOT23
(ns) tON 50 50 50 50 50 t OFF 50 50 50 50 50
1 2 3 4 5 6 7 8 9 10 11 12
1 1 0.5 0.5
/
0.3 0.3 0.2 0.2 0.2
0.5

多路复用器和模拟开关

多路复用器和模拟开关 多路复用器(MULTIPLEXER 也称为数据选择器)是用来选择数字信号通路的;模拟开关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的, 所以模拟开关也能传递数字信号。 在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。但是TTL的多路复用器就不能选择模拟信号.。 用CMOS的多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为1;或者用单电源供电,而使模拟信号的变化中值在 1/2 电源电压上, 传递之后再恢复到原来的值。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如下图所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。

2.单八路模拟开关CD4051 CD4051引脚功能如下图所示。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 3.双四路模拟开关CD4052 CD4052的引脚功能如下图所示。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。

cd集成多路模拟开关的应用技巧

集成多路模拟开关的应用技巧(cd4051) 集成多路模拟开关的应用技巧 摘要:从应用的角度出发,研究了集成多路模拟开关的应用技巧,并结合实例进行了讨论。这些应用技巧具有较强的针对性和可操作性,对集成多路模拟开关的正确选择与合理使用具有指导意义。 关键词:集成多路模拟开关传输精度传输速度 集成多路模拟开关(以下简称多路开关)是自动数据采集、程控增益放大等重要技术领域的常用器件,其实际使用性能的优劣对系统的严谨和可靠性重要影响。关于多路开关的应用技术,些文献上介绍有两点不足:一是对器件自身介绍较多,而对器件与相关电路的合理搭配与协调介绍较少;二是原则性的东西介绍较多, 而操作性的东西介绍较少。研究表明:只有正确选择多路开关的种类,注意多路开关与相关电路的合理搭配与协调,保证各电路单元有合适的工作状态,才能充 分发挥多路开关的性能,甚至弥补某性能指标的欠缺,收到预期的效果。本文从应用的角度出发,研究多路开关的应用技巧。目前市场上的多路开关以CMOS电路为主,故以下的讨论除特别说明外,均针对这类产品。 1 “先断后通”与“先通后断”的选择 目前市场上的多路开关的通断切换方式大多为“先断后通”(Break-Before-Make)。在自动数据采集中,应选用“先断后通”的多路开关。否则,就会发生两个通道短接的现象,严重时会损坏信号源或多路开关自身。 然而,在程控增益放大器中,若用多路开关来改变集成运算放大器的反馈电阻,以改变放大器的增益,就不宜选用“先断后通”的多路开关。否则,放大器就会出现开环状态。放大器的开环增益极高,易破坏电路的正常工作,甚至损坏元器件,一般应予避免。 2 选择合适的传输信号输入方式 分别适用于不同的场合。,传输信号一般有单端输入和差动输入两种方式 单端输入方式如图1所示,即把所有信号源一端接同一信号地,信号地与ADC等的模拟地相接,各信号源的另一端分别接多路开关。图中Vs为传输信号,Vc为系统中的共模干扰信号。 图1(a)接法的优点是无需减少一半通道数,也可保证系统的共模抑制能力;缺

基于OrCAD的开关电源仿真

万方数据

万方数据

基于OrCAD的开关电源仿真 作者:刘彬, 王珂, 魏巍, 赵红玉, 马恺, 付廖凯, 郭健鹏 作者单位:刘彬,王珂,魏巍,赵红玉,马恺(中国矿业大学信电学院,221008), 付廖凯,郭健鹏(中国矿业大学徐海学院,221008) 刊名: 中国科技信息 英文刊名:CHINA SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2008(20) 本文读者也读过(8条) 1.彭晓珊.余明扬PWM控制的开关电源仿真研究[期刊论文]-株洲工学院学报2003,17(5) 2.吴霞.WU Xia用Orcad PSpice9.2仿真分析输出电压可调的直流稳压电源[期刊论文]-实验室研究与探索 2006,25(7) 3.胡志勇.Hu Zhiyong具有强大功能的OrCAD Capture CIS软件[期刊论文]-印制电路信息2007(4) 4.陶瑞莲OrCAD PSpice在电子线路实验仿真研究[期刊论文]-通信电源技术2010,27(2) 5.许德操.董凌基于EMTDC/PSCAD的数字型高频开关电源仿真研究[会议论文]-2008 6.曾庆立.孟凡斌.陈炳权OrCAD在降压型开关电源优化设计中的应用[期刊论文]-襄樊学院学报2008,29(5) 7.张登奇.Zhang Dengqi调频式开关电源仿真模型的设计与仿真[期刊论文]-电子技术2008,45(11) 8.谭阳红.何怡刚.叶佳卓.伍君锡MATLAB与OrCAD的数据通信[期刊论文]-电气电子教学学报2004,26(3) 本文链接:https://www.doczj.com/doc/1c4335073.html,/Periodical_zgkjxx200820084.aspx

多路模拟开关的选择

今天做电路研究的时候要用到多路数据选择器,多路开关。和开发部的头讨论了下,才发现里面有很多东西要学,这里就贴出来一些心得分享一下,一下的内容也有从别处摘来的一部分。选择开关时需考察以下指标: 1 多路开关通断方式的选择 目前市场上的多路开关的通断切换方式大多为“先断后通” (Break-Before-Make)。在自动数据采集中,应选用“先断后通”的多路开关。否则,就会发生两个通道短接的现象,严重时会损坏信号源或多路开关自身。然而,在程控增益放大器中,若用多路开关来改变集成运算放大器的反馈电阻,以改变放大器的增益,就不宜选用“先断后通”的多路开关。否则,放大器就会出现开环状态。放大器的开环增益极高,易破坏电路的正常工作,甚至损坏元器件,一般应予避免。 2. 通道数量 集成模拟开关通常包括多个通道。通道数量对传输信号的精度和开关切换速率有直接的影响,通道数越多,寄生电容和泄漏电流就越大。因为当选通一路时,其它阻断的通道并不是完全断开,而是处于高阻状态,会对导通通道产生泄漏电流,通道越多,漏电流越大,通道之间的干扰也越强。 3. 泄漏电流 一个理想的开关要求导通时电阻为零,断开时电阻趋于无限大,漏电流为零。而实际开关断开时为高阻状态,漏电流不为零,常规的CMOS漏电流约1nA。如果信号源内阻很高,传输信号是电流量,就特别需要考虑模拟开关的泄漏电流,一般希望泄漏电流越小越好。 4. 导通电阻 导通电阻的平坦度与导通电阻一致性。导通电阻会损失信号,使精度降低,尤其是当开关串联的负载为低阻抗时损失更大。应用中应根据实际情况选择导通电阻足够低的开关。必须注意,导通电阻的值与电源电压有直接关系,通常电源电压越大,导通电阻就越小,而且导通电阻和泄漏电流是矛盾的。要求导通电阻小,则应扩大沟道,结果会使泄漏电流增大。导通电阻随输入电压的变化会产生波动,导通电阻平坦度是指在限定的输入电压范围内,导通电阻的最大起伏值△RON=△RONMAX—△RONMIN。它表明导通电阻的平坦程度,△RON应该越小越好。

常用模拟开关芯片引脚,功能及应用电路

常用模拟开关芯片引脚,功能及应 用电路 ! m8r*}3V"d'w , n7x8L1z&B#r1a0Z3~ CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。$ \, \4F-]5}8 W6 G2 T 2 t$y5I&R!n6N&}4z 一、常用CMOS模拟开关功能及引脚介绍) ]) S f7 X; S& Z+ X 1.四双向模拟开关CD4066% b$ Y) P- k5 c3 \# _, |+ a 4 D7{6F T4v8e,S,y CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。. V"T!S1O,h#n O 2.单八路模拟开关CD4051 n*L+X%k._+L CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。& Q/]9t"F8o,`7J(q 表1 附件: 您所在的用户组无法下载或查看附件, 保暖

(整理)常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理(4066,4051-53) 开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 表1 输入状态 接通通道INH C B A 0 0 0 0 “0” 0 0 0 1 “1” 0 0 1 0 “2” 0 0 1 1 “3”

开关电源仿真

开关电源中变压器的Saber仿真辅助设计一:反激 一、Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 二、Saber 中的变压器 我们用得上的Saber 中的变压器是这些:(实际上是我只会用这些)

分别是: xfrl 线性变压器模型,2~6绕组 xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型:也分线性和非线性2种 线性变压器参数设置(以2绕组为例):

其中: lp 初级电感量 ls 次级电感量 np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置 rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆) k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。需要注意的是,k 为0。99 时,漏感并不等于lp 或者ls 的1/100。漏感究竟是多少,后述。 其他设置项我没有用过,不懂的可以保持默认值。 非线性变压器参数设置(以2绕组为例):

CD4066模拟开关

开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066 的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051 CD4051 引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当 “INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V, VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表1 输入状态 接通通道 INH C B A 0 0 0 0 “0” 0 0 0 1 “1” 0 0 1 0 “2” 0 0 1 1 “3” 0 1 0 0 “4” 0 1 0 1 “5” 0 1 1 0 “6” 0 1 1 1 “7” 1 均不接通 3.双四路模拟开关CD4052 CD4052的引脚功能见图3。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。其真值表见表2。

模拟开关的技术特性和应用

模拟开关的关键技术特性和应用实例分析 近年来,便携式产品越来越多地采用多源设计,因此开关功能是视频、音频传输及处理过程中的一个重要组成部分。早期采用的机械开关具有可靠性低、体积大、功耗大的缺点,所以模拟开关已经引起了越来越多人的重视,并已被广泛应用于各种电子产品中。 尽管模拟开关具有机械开关不可取代的优势,然而它的应用较机械开关稍微复杂些,初次使用模拟开关的工程人员往往会由于模拟开关使用不当,引起整个系统的故障。本文通过将模拟开关与普通机械开关作比较,论述了模拟开关的若干基本概念,并结合实例对模拟开关应用的关键技术进行研究。 模拟开关的模拟特性 许多工程师第一次使用模拟开关,往往会把模拟开关完全等同于机械开关。其实模拟开关虽然具备开关性,但和机械开关有所不同,它本身还具有半导体特性: 1. 导通电阻(R on)随输入信号(V IN)变化而变化 图1a是模拟开关的简单示意图,由图中可以看出模拟开关的常开常闭通道实际上是由两个对偶的N沟道MOSFET与P沟道MOSFET构成,可使信号双向传输,如果将不同V IN值所对应的P沟道MOSFET与N沟道MOSFET的导通电阻并联,可得到图1b并联结构下R on随输入电压(V IN)的变化关系,如果不考虑温度、电源电压的影响,R on随V in呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD)。此外,R on也受电源电压的影响,通常随着电源电压的上升而减小。 图1:a. 模拟开关原理图;b. 模拟开关导通电阻与输入电压关系 2. 模拟开关输入有严格的输入信号范围 由于模拟开关是半导体器件,当输入信号过低(低于零电势)或者过高(高于电源电压)时,MOSFET处于反向偏置,当电压达到某一值时(超出限值0.3V),此时开关无法正常工作,严重者甚至损坏。因此模拟开关在应用中,一定要注意输入信号不要超出规定的范围。 3. 注入电荷

多路模似转换器

12.2.2模拟I/O 通道建立 1.模拟I/O 通道概述1)模拟输入通道 微机系统的模拟输入通道,就是微机用来对单个或多个模拟量进行采集的A/D 通道,有时也叫前向通道。建立模拟输入通道的目的,通常是为了进行参数测量或数据采集。它的核心部件是A/D 转换器及其与微处理器的接口。但在许多情况下仅有它们还不够,按照实际模数转换的四个步骤,常常还需要用到采样保持器等电路;在需要采集或检测多个模拟信号的A/D 通道中,一般还需要用到模拟多路开关。 2)模拟输出通道 微机系统的模拟输出通道,则是微机用来发送单路或多路模拟信号的D/A 通道,有时也叫后向通道。建立模拟输出通道的目的,主要是为了对外部参数进行控制或对被采集的参数进行形象的记录显示,如在X —Y 记录仪上绘出曲线,在示波器上画出波形等。 模拟输出通道的基本组成部分同样有三种:D/A 转换器及其与MPU 的接口,这是不可少的核心部件;数字或模拟寄存器;模拟多路开关。具体组成取决于通道结构的形式。 2.模拟输入通道的结构形式 模拟输入通道的结构形式根据实际需要选定。粗分有单路通道和多路通道两种;细分,在单路、多路通道中又各有多种不同的形式。 1)不带采样保持器的单路模拟输入通道 这种模拟输入通道实际上就是第十一章讲过的ADC 及其与MPU 的接口,结构最简单,如图12.2所示。 一般只采集一个点的直流或低频信号时,可采用这种通道结构。那么,信号的频率低到什么程度可以用它呢?要求模拟输入电压的最大变化率与A/D 转换器的转换时间之间应满足下列关系: max dt dv i ≤ CONV n FS T V 1 2?其中:v i ——模拟输入电压;V FS ——ADC 满刻度电压值;n ——ADC 分辨率(位数);T CONV ——ADC 转换时间。为了更便于理解,不妨将上面关系式变换一下: ΔV i CONV i T dt dv ?= max max ≤q V n FS =2 该式表明,在ADC 的转换时间内,输入电压的最大变化ΔV i max 应小于ADC 的量化电平q 。例如,A/D 转换芯片的V FS =10V,n=10位,T CONV =0.1s ,则要求输入电压的最大变化率不能超过0.1V/s 。如果超过这个值,在采用同样ADC 芯片的情况下,就不能采用这种简单的模入通道,而要采用带采样保持器的模入通道;如果还想采用这种简单的模入通道,就必须改换速度更快或分辨率更高的ADC 芯片。 2)带采样保持器的单路模拟输入通道 当模拟输入信号的变化率比较大时,逐次比较式ADC 会产生相当大的非线性误差,这是它的一个缺点。为了改善这种情况,一般需要在ADC 前面增加一个采样保持电路(S/H),使模拟输入通道变为如图12.3所示的形式。 图12.2不带采样保持器的单路模拟输入通道

开关电源中Saber仿真设计实例

经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊? 其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。 一、 Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 二、 Saber 中的变压器 我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些 ) 分别是:

xfrl 线性变压器模型,2~6绕组 xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型: 也分线性和非线性2种 线性变压器参数设置(以2绕组为例): 其中: lp 初级电感量 ls 次级电感量 np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置

模拟开关电路介绍

模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。模拟开关在电子设备中主要起接通信号或断开信号的作用。由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。 一、模拟开关的电路组成及工作原理 模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。模拟开关的真值表见表一。 表一 模拟开关的工作原理如下: 当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。 当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。 当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。

从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。 二、常用的CMOS模拟开关集成电路 根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。现将常用的模拟开关集成电路的型号、名称及特性列入表二中。 表二常用的模拟开关 三、CD4066模拟开关集成电路的应用举例 CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。使用时选通端是不允许悬空的。 下面介绍CD4066模拟开关的两个应用实例。 1.采样信号保持电路 采样信号保持电路如图二所示。 图二采样信号保持电路 模拟信号Ui从运算放大器的同相输人端输人。当模拟开关控制端为高电平时,模拟开关导通,电容C被充电至Ui,这个过程叫做输人信号的采样。当采样结束时,使模拟开关控制端为低电平,模拟开关断开。由于模拟开关断开时的电阻高达100M以上,且运放A2的输人阻抗也极高,故电容C上可以保持采样信号。

模拟开关与多路转换器

模拟开关与多路转换器 问:ADI公司不给出ADG系列模拟开关和多路转换器的带宽,这是为什么? 答:ADG系列模拟开关和多路转换器的输入带宽虽然高达数百兆赫,但是其带宽指标本身不是很有意义的。因为在高频情况下,关断隔离(off isolation)和关扰指标都明显变坏。例如,在1MHz情况下,开关的关断隔离典型值为70dB,串扰典型值为-85dB。由于这两项指标都按20dB/+倍频下降,所以在10MHz时,关断隔离降为50dB,串扰增加为-65dB;在100MHz时,关断隔离降为30dB,而串扰增加为-45dB。所以,仅仅考虑带宽是不够的,必须考虑在所要求的高频工作条件下这两项指标下降是否能满足应用的要求。(关断隔离是指当开关断开时,对耦合无用信号的一种度量——译者注。) 问:哪种模拟开关和多路转换器在电源电压低于产品说明中的规定值情况下仍能正 常工作? 答:ADG系列全部模开关和多路转换器在电源电压降到+5V或±5V情况下都能正常工作。受电源电压影响的技术指标有响应时间、导通电阻、电源电流和漏电流。降低电源电压会降低电源电流和漏电流。例如,在125°C,±15V时,ADG411关断状态源极漏电流IS(OFF)和漏极漏电流ID(OFF)都为±20nA,导通状态漏极漏电流ID(ON)为±40nA;在同样温度下,当电源电压降为±5V,IS(OFF)和ID(OFF)降为±25nA,ID(ON)降为±5nA。在+125°C,±15V 时,电源电流I DD ,I SS 和IL最大为5μA;在±5V时,电源电流,最大值降为1μA。导通电阻和响应时间随电源电压降低而增加。图1和图2分别示出了ADG408的导通电阻和响应时间随电源电压变化的关系曲线。 此主题相关图片如下: 图1 导通电阻与电源 电压的关系曲线 问:有些ADG系列模拟开关是用DI工艺制造的,DI是怎么回事? 答:DI是英文Dielectric Isolation介质隔离的缩写,按照DI工艺要求,每 个CMOS开关的NMOS管和PMOS管之间都有一层绝缘层(沟道)。这样可以消除普通的模拟开关之间的寄生PN结,所以可以制造出完全防闩锁的开关。在采用PN结隔离(不是沟道)工艺中, 此主题相关图片如下:

单片机控制的多路数据采集系统.doc

湖南科技大学 毕业设计(论文) 题目单片机控制的多路数据采 集系统 作者马玉刚 学院信息与电气工程学院专业通信工程 学号0704040224 指导教师宋芳老师 二〇一一年五月二十日

湖南科技大学 毕业设计(论文)任务书 信息与电气工程学院院通信工程系(教研室) 系(教研室)主任:(签名)年月日 学生姓名: 马玉刚学号: 0704040224 专业: 通信工程 1 设计(论文)题目及专题:单片机控制的多路数据采集系统 2 学生设计(论文)时间:自2011 年2月20日开始至 2011年6月 5 日止 3 设计(论文)所用资源和参考资料: (1)单片机原理与实用技术 (2)Bernard Rose. Analog to Digital and Digital to Analog Conversion (3)数据采集与处理技术 4 设计(论文)应完成的主要内容: (1)介绍多路数据采集的发展历史、现况及将来的发展趋势 (2)简介单片机的原理、作用 (3)多路数据采集的总体设计框图 (4)多路数据采集系统设计及原理说明 (5)多路数据原理图设计及说明 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1)论文文本格式严格按照学校对本科毕业生论文格式的规定完成 (2)要求文字流畅、无错别字、符合设计规范 (3)论文以学校规定的“打印版”和“电子版”提交给指导老师 6 发题时间: 2011 年 2 月 20 日 指导教师:(签名) 学生:(签名)

湖南科技大学 毕业设计(论文)指导人评语 指导人:(签名) 年月日指导人评定成绩:

湖南科技大学 毕业设计(论文)评阅人评语 评阅人:(签名) 年月日评阅人评定成绩:

CD4066是四双向模拟开关

CD4066是四双向模拟开关,主要用作模拟或数字信号的多路传输。CD4066 的每个封装内部有4 个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。 模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 CD4066的引出端排列与CC4016一致,但具有比较低的导通阻抗。另外,导通阻抗在整个输入信号范围内基本不变。CD4066由四个相互独立的双向开关组成,每个开关有一个控制信号,开关中的p和n器件在控制信号作用下同时开关。这种结构消除了开关晶体管阈值电压随输入信号的变化,因此在整个工作信号范围内导通阻抗比较低。与单通道开关相比,具有输入信号峰值电压范围等于电源电压以及在输入信号范围内导通阻抗比较稳定等优点。但若应用于采样电路,仍推荐CD4016。 当模拟开关的电源电压采用双电源时,例如=﹢5V,=﹣5V(均对地0V而言),则输入电压对称于0V的正、负信号电压(﹢5V~﹣5V)均能传输。这时要求控制信号C=“1” 为+5V,C=“0”为-5V,否则只能传输正极性的信号电压。 2引脚功能编辑 CONTROL:开关控制端[1] IN/OUT:输入/输出端 OUT/IN:输出/输入端 VDD:电源正 VSS:电源负 3工作条件编辑 电源电压(VDD) :3V ~15V 输入电压(VIN):0V ~ VDD 工作温度范围(TA) ?55℃~ +125℃ 参考资料

多路模拟开关及应用

多路模拟开关及应用 一、实验目的 通过实验进一步了解集成多路模拟开关的组成及工作原理,掌握该芯片的功能测试方法,了解其部分电路。 二、实验仪器 智能数字电路实验台;cd4051芯片;示波器; 三、实验原理及实验电路 CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和INH 输入,具有低导通阻抗和很低的截止漏电流。幅值为4.5~20V的数字信号可控制峰值至20V 的模拟信号。例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。当INH输入端=“1”时,所有的通道截止。三位二进制信号选通8通道中的一通道,可连接该输入端至输出。 CD4051真值表

实验步骤: 1.将CD4051芯片放入数电实验箱16P引脚槽中,S0-S7(13.14.15.1 2.1.5.2.4)引脚接LED发 光二极管,Sm(3)引脚、二进控制输入端A(11)、B(10)、C(9)和INH输入(6)引脚分别接入高低电平开关,16接+5v,8接地,7接-5v。打开电源,波动A\B\C的高低电平,观察LED发光二极管是否按真值表显示。 2.将CD4051芯片放入数电实验箱16P引脚槽中,S0-S7(1 3.1 4.1 5.12.1.5.2.4)引脚接LED发 光二极管,Sm(3)引脚接连续脉冲,二进控制输入端A(11)、B(10)、C(9)和INH输入(6)引脚分别接入高低电平开关,打开电源,波动A\B\C的高低电平,观察LED 发光二极管是否按真值表显示。在发光的二极管上接示波器看是否有图形显示 3.将CD4051芯片放入数电实验箱16P引脚槽中,S0-S7(13.1 4.1 5.12.1.5.2.4)引脚接高低电 平开关,Sm(3)引脚接LED发光二极管,二进控制输入端A(11)、B(10)、C(9)和INH输入(6)引脚分别接入高低电平开关,打开电源,波动A\B\C的高低电平,将Sm (3)接LED发光二极管对应真值表看是否对应LED发光二极管发光并接示波器观察波形。 4.设计 单按钮音量控制器电路。VMOS管VT1作为一个可变电阻并接在音响装置的音量电位器输出端与地之间。VT1的D极和S极之间的电阻随VGS成反比变化,因此控制VGS就可实现对音量大小的控制。VT1的G极接有3个模拟开关S1~S3和一个100μF的电容,其中100μF电容起电压保持作用。由于VMOS管的G极和S极之间的电阻极高,故100μF电容上的电压可

saber仿真35W反激开关电源设计

今天开始,为大家介绍一个开关电源仿真的实例。由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示: 在SaberSketch根据对该原理图进行适当修改,具体修改情况如下: 1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载. 2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u 3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u. 4.将输出部分的滤波器由π 型改为电容直接滤波. 5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER). 6.对部分Saber中没有模型的器件进行替换: a. POWER MOSFET UFN833->mtp4n80e b. Current Sense R10=0.33->R10=0.55 c. Output Rectifier USD945->mbr2545ct UFS1002->ues704 d. T1采用xfrl3 template 使用电感量控制变比, L1=1m, L2=10.7u, L3=216.7u, L4=66.9u. 在完成以上修改后,在各种负载条件下,对该电路进行仿真分析。 测试条件: Vacin = 117V, Vout = 5V/4A (Rload =1.25) Vout = 24V/0.6A (Rload=40) 分析结果如下:

常用模拟开关

常用模拟开关 关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个 独立的模拟开关,每个模拟开关有输入、输出、控制三个端 子,其中输入端和输出端可互换。当控制端加高电平时,开关 导通;当控制端加低电平时开关截止。模拟开关导通时,导通 电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看 成为开路。模拟开关可传输数字信号和模拟信号,可传输的 模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 图1 CD4066的引脚功能 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 图2 CD4051引脚功能 表1 CD4051真值表

最新开关电源仿真

开关电源仿真

开关电源中变压器的Saber仿真辅助设计一:反激 一、 Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 附件下载磁芯手册.XLS 二、 Saber 中的变压器

我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些) 分别是: xfrl 线性变压器模型,2~6绕组 xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型:也分线性和非线性2种 线性变压器参数设置(以2绕组为例):

其中: lp 初级电感量 ls 次级电感量 np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置 rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)

集成多路模拟开关的应用技巧

集成多路模拟开关的应用技巧 集成多路模拟开关(以下简称多路开关)是自动数据采集、程控增益放大等重要技术领域的常用器件,其实际使用性能的优劣对系统的严谨和可靠性重要影响。关于多路开关的应用技术,些文献上介绍有两点不足:一是对器件自身介绍较多,而对器件与相关电路的合理搭配与协调介绍较少;二是原则性的东西介绍较多,而操作性的东西介绍较少。研究表明:只有正确选择多路开关的种类,注意多路开关与相关电路的合理搭配与协调,保证各电路单元有合适的工作状态,才能充分发挥多路开关的性能,甚至弥补某性能指标的欠缺,收到预期的效果。本文从应用的角度出发,研究多路开关的应用技巧。目前市场上的多路开关以CMOS电路为主,故以下的讨论除特别说明外,均针对这类产品。 1“先断后通”与“先通后断”的选择 目前市场上的多路开关的通断切换方式大多为“先断后通”(Break-Before-Make)。 在自动数据采集中,应选用“先断后通”的多路开关。否则,就会发生两个通道短接的现象,严重时会损坏信号源或多路开关自身。然而,在程控增益放大器中,若用多路开关来改变集成运算放大器的反馈电阻,以改变放大器的增益,就 不宜选用“先断后通”的多路开关。否则,放大器就会出现开环状态。放大器的开环增益极高,易破坏电路的正常工作,甚至损坏元器件,一般应予避免。 2选择合适的传输信号输入方式 传输信号一般有单端输入和差动输入两种方式,分别适用于不同的场合。

单端输入方式如图1所示,即把所有信号源一端接同一信号地,信号地与ADC等的模拟地相接,各信号源的另一端分别接多路开关。图中Vs为传输信号,Vc为系统中的共模干扰信号。 图1(a)接法的优点是无需减少一半通道数,也可保证系统的共模抑制能力;缺点是仅适用于所有传输信号均参考一个公共电位,且各信号源均置于同样的噪声环境下,否则会引入附加的差模干扰。 图1(b)接法适用于所有传输信号相对于系统模拟公共地的测量,且信号电平明显大于系统中的共模干扰。其优点是可得到最多的通道数,缺点是系统基本失去了共模抑制能力。 差动输入方式如图2所示,即把所有信号源的两端分别接至多路开关的输入端。其优点是抗共模干扰的能力强,缺点是实际通道数只有单端输入方式的一半。当传输信号的信噪比较低时,必须使用差动输入方式。

相关主题
文本预览
相关文档 最新文档