当前位置:文档之家› 连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设
连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

1 引言

随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。仪器设备很大部分陈

旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。虚拟仪器正是解决这一矛盾的最佳方案。基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。

信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。

尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。

信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。因为Pn只是n的函数,所以X(j )在重复的过程中不会使其形状发生变化。假定信号x(t)的频谱限制在- m~+ m的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(j )是以s为周期重复。显然,若在抽样的过程中s<2 m,则X^(j )将发生频谱混叠现象,只有在抽样的过程中满足s>=2 m条件,X^(j )才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

2 虚拟仪器开发软件LabVIEW入门

2.1 LabVIEW介绍

LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。它用图标表示函数,用连线表示数据流向。

LabVIEW程序使用虚拟仪器(Virtual Instrument,缩写为VI)的概念。它是指一台计算机和连接外部的端口(计算机的COM口,LPT口或内插板)在软件控制下可完全模拟替代传统的仪器。因VI功能完全是由软件定义,故在硬件系统不变的情况下,用户可通过软件开发自行改变或扩充仪器的功能,实现自己的特殊要求,或用一套硬件系统实现多种仪器的功能,从而使虚拟仪器VI不但比传统仪器更灵活有效,而且也更经济。VI的核心就是LabVIEW程序,所以在LabVIEW中,所有程序均称之为VI程序,不管它是否通过端口和外界进行通讯。每个VI程序均可作为一个功能模块被重复使用,因而使用LabVIEW 来开发和扩展程序极为方便。

LabVIEW编程语言同常规的程序语言不同,它采用更易使用和理解的图形化程序语言-G语言(Graphical programming language)。G语言使用图标代替常规的一条或一组语句来实现一个功能,通过各功能图标间的逻辑连接实现程序功能。

其编程过程不是书写一行行语句,而是连接一个个代表一定功能的图标,其程序编制

过程简单,不涉及复杂功能实现的算法,易于掌握。同时,因为其编程过程基于可重复使用的功能模块,故可方便地使用由专业人员编制提供的专业级别的功能模块,开发出专业水平的程序。所以,LabVIEW在世界范围内的众多领域如航空、航天、通信、汽车、半导体、化学和生物医学等得到了广泛的应用,从简单的仪器控制、数据采集到复杂的测试和数据处理,从工厂、科研院所到大学里的实验室,到处都可以发现LabVIEW的应用。在西方国家(如美国)的许多大学已将LabVIEW作为本科的教学内容,成为工程师素质培养的一个方面。由于LabVIEW虚拟仪器的强大功能,使得使用一套硬件系统就可进行多种不同要求的研究,故而可以用更小的消耗进行更多的研究,尤其适合在我国资金较少的科研单位用于研究工作。

LabVIEW6.-中,包含许多专家编写的VI供用户使用。在数据采集方面有许多采集卡(DAQ)的支持模块,使采集程序的编制不必涉及低层控制;有各种数字、模拟信号I/O 模块;有对GPIB(General Purpose Interface Bus,IEEE488标准)、VXI(VME bus eXtensions for Instrumentation ,扩展IEEE1014标准)和Serial端口的支持和控制等VI。在数据处理控制方面有各种数字信号处理和产生、频谱分析、滤波、平滑窗口、概率统计等VI。

本LabVIEW简介部分主要介绍LabVIEW语言的基础知识,包括界面、菜单、工具、模板、器件、函数等,通过这一部分的学习,读者即可使用LabVIEW编程并在实际工作中进行应用。LabVIEW进阶部分将深入探讨LabVIEW的编程环境、编程技巧以及优化策略等和更多的功能,考虑到篇幅限制,本书不与介绍,感兴趣的同学可参看下列参考书继续学习,不断提高自己的应用水平。

LabVIEW程序被称为VI(Virtual Instrument),即虚拟仪器。

LabVIEW的核心概念就是“软件即是仪器”,即虚拟仪器的概念。

LabVIEW还包含了大量的工具与函数用于数据采集、分析、显示与存储等。

LabVIEW在测试、测量和自动化等领域具有最大的优势,因为LabVIEW提供了大量的工具与函数用于数据采集、分析、显示和存储。

用户可以在数分钟内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。

它被广泛地应用于汽车、通信、航空、半导体、电子设计生产、过程控制和生物医学等各个领域。

LabVIEW不仅可以用来快速搭建小型自动化测试测量系统,还可以被用来开发大型的分布式数据采集与控制系统。

时域采样与频域采样 实验报告

实验二 时域采样与频域采样 学校:西南大学 班级:通信工程班 一、实验目的 时域采样理论与频域采样理论就是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理 时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上, 才 能使采样信号的频谱不产生频谱混叠。 频域采样定理的要点就是: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞=-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N

连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

1 引言 随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。仪器设备很大部分陈 旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。虚拟仪器正是解决这一矛盾的最佳方案。基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。 信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。因为Pn只是n的函数,所以X(j )在重复的过程中不会使其形状发生变化。假定信号x(t)的频谱限制在- m~+ m的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(j )是以s为周期重复。显然,若在抽样的过程中s<2 m,则X^(j )将发生频谱混叠现象,只有在抽样的过程中满足s>=2 m条件,X^(j )才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

时域抽样与频域抽样

实验三时域抽样与频域抽样 一、实验目的 1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。 2.加深对时域取样后信号频谱变化的认识。掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。 3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。 二、实验原理 1.时域抽样。 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。 2.频域抽样。 非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。

三、实验内容 1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。 (1)当T=0.01s 时,采样得到x(n),所用程序为: %产生连续信号x (t ) t=0:0.001:1; x=sin(20*pi*t); subplot(4,1,1) plot(t,x,'r') hold on title('原信号及抽样信号') %信号最高频率fm 为10 Hz %按100 Hz 抽样得到序列 fs=100; n=0:1/fs:1; y=sin(20*pi*n); subplot(4,1,2) stem(n,y) 对应的图形为: ()sin(20),01a x t t t =π≤≤

实验3-采样的时频域分析

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号:2010103080 指导教师: 一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理: 1、采样的概念:采样是将连续信号变化为离散信号的过程。 1. A 、理想采样:即将被采样信号与周期脉冲信号相乘 B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。 根据傅里叶变换性质 00 0()() ()() ??()()()()()()(()) FT FT a a T n n FT a a T a T a a n n x t X j T j x t x t T x nT t nT X j X j n ωδωδδδω=+∞ =+∞=-∞ =-∞ ←?→Ω←?→Ω==-←?→Ω=Ω-Ω∑ ∑ 式中T 代表采样间隔,01T Ω= ) (t T δ^ ()T p t ^)t

由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。 C 、低通采样和Nyquist 采样定理 设()()a a x t X j ?Ω且()0,2a M M X j f πΩ=Ω>Ω=当, 即为带限信号。则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的 ^ ()()()a a s s n x t x n T t n T δ∞ =-∞ = -∑ 信号无失真地恢复()a x t 。称2M f 为奈奎斯特频率, 12 N M T f =为奈奎斯特间隔。 注意: 实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。 2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。 低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下: )() a G j Ω0 m -ΩΩ m Ω

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

实验报告:时域采样与频域采样

实验二:时域采样与频域采样1、时域采样理论的验证 (1)程序如下: Fs=1000;Tp=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:63; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,1);plot(w/pi,abs(X)); Fs=300;Tp=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:19.2; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,2);plot(w/pi,abs(X)); Fs=200; p=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:12.8; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,3);plot(w/pi,abs(X)) (2)运行结果如下: 2频域采样理论的验证(1)程序如下:

M=26;N=32;n=0:1:M; xa=0:M/2;xb=ceil(M/2)-1:-1:0; x=[xa,xb]; w=0:2*pi/1024:2*pi; X=freqz(x,1,w); subplot(321); plot(w/pi,abs(X)); subplot(322); n=0:26; stem(n,x); m=floor(length(X)/16) n1=1:16; X1=X(m*n1-63) subplot(323); n1=0:15 stem(n1,abs(X1)) x16=ifft(X1,16) subplot(324); stem(n1,x16) m=floor(length(X)/32) n2=1:32; X2=X(m*n2-31) subplot(325); n2=0:31 stem(n2,abs(X2)) x32=ifft(X2,32) subplot(326); stem(n2,x32); (2)运行结果如下:

数字信号处理实验二-时域采样和频域采样

实验二-时域采样和频域采样 一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 1、时域采样定理的要点: a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓 b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 2、频域采样定理的要点: a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。 三、实验内容及步骤 1、时域采样理论的验证 程序: clear;clc A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=50/1000;F1=1000;F2=300;F3=200; T1=1/F1;T2=1/F2;T3=1/F3; n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1; x1=A*exp(-a*n1*T1).*sin(w0*n1*T1); x2=A*exp(-a*n2*T2).*sin(w0*n2*T2); x3=A*exp(-a*n3*T3).*sin(w0*n3*T3); f1=fft(x1,length(n1)); f2=fft(x2,length(n2)); % f3=fft(x3,length(n3)); % k1=0:length(f1)-1; fk1=k1/Tp; %

实验二时域采样与频域采样

实验二:时域采样与频域采样 一 实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用 二 实验原理 1 时域采样定理 对模拟信号()a x t 以T 进行时域等间隔采样,形成的采样信号的频谱?()a X j W 会以采样角频率2()s s T p W W =为周期进行周期延拓,公式为: 1??()[()]()a a a s n X j FT x t X j jn T +?=-? W==W -W ? 利用计算机计算上式并不容易,下面导出另外一个公式。 理想采样信号?()a x t 和模拟信号()a x t 之间的关系为: ?()()()a a n x t x t t nT d +? =-?=-? 对上式进行傅里叶变换,得到: ?()[()()()()j t j t a a a n n X j x t t nT e dt x t t nT e dt d d +??+??-W -W -??=-?-?W=-=-蝌邋 在上式的积分号内只有当t nT =时,才有非零值,因此: ?()()jn T a a n X j x nT e +?-W =-?W=? 上式中,在数值上()()a x nT x n =,再将T w =W 代入,得到: ?()()() jn j a a T T n X j x n e X e w w w w +?-=W =W =-?W==?

上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用T Ω代替即可。 2 频域采样定理 对信号()x n 的频谱函数()j X e ω在[0,2π]上等间隔采样N 点,得到 2()()j k N X k X e w p w == 0,1,2,,1k N =-L 则有: ()[()][()]()N N N i x n IDFT X k x n iN R n +?=-? ==+? 即N 点[()]IDFT X k 得到的序列就是原序列()x n 以N 为周期进行周期延拓后的 主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N 必须大于等于时域离散信号的长度M (即N M 3)。在满足频率域采样定理的条件下,()N x n 就是原序列()x n 。如果N M >,则()N x n 比原序列()x n 尾部多N M -个零点,反之,时域发生混叠,()N x n 与()x n 不等。 对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。在数字信号处理中,都必须服从这二个定理。 三 实验内容 1. 时域采样实验: %时域采样实验 A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=64/1000;F1=1000;F2=300;F3=200; %观察时间,Tp=64ms T1=1/F1;T2=1/F2;T3=1/F3; %不同的采样频率

时域采样与频域采样

实验二:时域采样与频域采样 一、实验目的: 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理与方法: 1、时域采样定理的要点: 1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱 )(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为 ∑∞ -∞=-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞=?∑-=Ω])()([)(?δ

dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑ ? -)()( δ= 在上式的积分号只有当nT t =时,才有非零值,因此 ∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只 要将自变量ω用T Ω代替即可。 2、频域采样定理的要点: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞ =-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 零点;如果N

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

开课学期 2016-2017 学年第 2 学期 实验课程信号与系统仿真实验 实验项目常用信号的频谱分析及时域采样定理 班级学号学生姓名 实验时间实验台号A11 操作成绩报告成绩 一、实验目的 1.掌握常用信号的频域分析方法; 2.掌握时域采样定理; 3.掌握时域采样信号恢复为原来连续信号的方法及过程。 二、实验性质 验证性 三、预习内容 1.时域采样定理的内容及信号时域采样过程; 2.连续信号经时域采样后,信号的频谱发生的变化; 3.时域采样信号恢复为原来连续信号的方法及过程。 四、实验内容(编写程序,绘制实验结果) 1.实现周期信号的频谱 f(t)=sin( 2*80t) 程序: fa='sin(2.*pi.*80.*t)';%原信号 fs0=10000; %采样频率 tp=0.1;%时间范围 t=[-tp:1/fs0:tp];%信号持续时间范围 k1=0:999;k2=-999:-1; m1=length(k1);m2=length(k2); f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围 w=[-2*pi*k2/m2,2*pi*k1/m1]; fx1=eval(fa);%把文本fa赋值给信号fx1 FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换 figure subplot(2,1,1),plot(t,fx1,'r'); title('原信号');xlabel('时间t(s)');%原信号的时域波形图 axis([min(t),max(t),min(fx1),max(fx1)]); subplot(212),plot(f,abs(FX1),'r'); title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图 axis([-100,100,0,max(abs(FX1))+5]);

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

时域采样理论与频域采样定理验证

实验4时域采样理论与频域采样定理验证 一 一、实验目的 1时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公 式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为: ∑∞ -∞ =-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞ =?∑ -=Ω])()([)(?δ dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此: 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑ ∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变 量ω用T Ω代替即可。 频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e j ω )在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞ =-∞ ==+∑ (b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

实验二:时域采样与频域采样

实验二:时域采样与频域采样 1. 实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 2. 实验原理与方法 ? 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的 频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T ? 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信 号的频谱不产生频谱混叠。 3. 实验内容及步骤 %物联一班 胡洪 201313060110 %2015年10月24日

%实验二:程序1 Tp=64/1000; Fs=1000;T=1/Fs;M=ceil(Tp*Fs);n=0:M-1; A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(w*n*T); Xk=fft(xnt,M); subplot(3,2,1); stem(n,xnt,'.');axis([1,65,-5,150]); title('图1 Fs=1000Hz'); subplot(3,2,2);plot(n/Tp,abs(Xk));title('图2 Fs=1000Hz幅度'); Fs=300;T=1/Fs; M=ceil(Tp*Fs);n=0:M-1; A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(w*n*T); Xk=fft(xnt,M); subplot(3,2,3);

时域采样与频域采样

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc )后, 实验室统一刻盘留档。 实验四 时域采样与频域采样 一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样前后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对采样点数选择的指导作用。 二、实验原理 在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。 三、实验内容(包括代码与产生的图形及结果分析) 1. 给定模拟信号如下: xa(t)=Ae -αt sin(Ω0t)u(t) 式中, A=444.128,α =50 π, Ω0=50 π rad/s ,将这些参数带入上式中,对x a (t 进行傅里叶变换,它的幅频特性曲线如图1所示。 现用DFT(FFT)求该模拟信号的幅频特性,以验证时 域采样理论。 按照xa(t)的幅频特性曲线,选取三种采样频率,即 Fs=1 kHz ,300 Hz ,200 Hz 。观测时间选Tp=64 ms 。 要求: 编写实验程序,计算x 1(n)、 x 2(n)和x 3(n)的幅度特性,并绘图显示。观察分析频谱混叠失真。 close all;clear all;clc; 22图1 x a (t)的幅频特性曲线

Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) % Fs=1000;T=1/Fs; Fs=1000;T=1/Fs; M=Tp*Fs;n=0:M-1; A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[xnt)] subplot(3,2,1); n=0:length(xnt)-1; stem(n,xnt,'.'); xlabel('n');ylabel('yn'); axis([0,n(end),min(xnt),1.2*max(xnt)]);%绘图 box on; title('(a) Fs=1000Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]) %======================== % Fs=300Hz;T=1/Fs; Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1; A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[xnt)] subplot(3,2,3); n=0:length(xnt)-1; stem(n,xnt,'.'); xlabel('n');ylabel('yn');

时域采样与频域分析报告

实验二:时域采样与频域分析 一、实验原理与方法 1、时域采样定理: (a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号 的频谱)(Ωj X )是原模拟信号频谱)(ωj X a 以采样角频率)2(T s s π=ΩΩ为周期进行 周期延拓。公式为:[]∑∞-∞ =Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()()) (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。 2、频域采样定理: 公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ?? ????+==∑∞-∞=。由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。 二、实验内容 1、时域采样理论的验证。给定模拟信号 )()sin()(0t u t Ae t x t a Ω=-α 式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1

图2.1 )(t x a 的幅频特性曲线 现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。 按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。观测时间选ms T p 50=。 为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。 )()sin()()(0nT u nT Ae nT x n x nT a Ω==-α 因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数) 用公式s p F T N ?=计算。选FFT 的变换点数为M=64,序列长度不够64的尾部加零。 [])()(n x FFT k X = 1,,3,2,1,0-=M k Λ 式中k 代表的频率为 k M k πω2=。 要求:编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。 观察分析频谱混叠失真。程序见附录2.1、实验结果见图2.2。 2、频域采样理论的验证。给定信号如下:

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

实验二-时域采样和频域采样

一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 1、时域采样定理的要点: a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频 谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为: ∑∞ -∞=-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞ ∞ -∞ -∞ =?∑ -=Ω])()([)(?δ dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑ ? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此: ∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑∞ -∞ =-=Ωn n j a e n x j X ω)()(?

相关主题
文本预览
相关文档 最新文档