当前位置:文档之家› 氨基酸和核苷酸代谢【生物化学及实验(丙)】

氨基酸和核苷酸代谢【生物化学及实验(丙)】

氨基酸代谢和核苷酸代谢

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 氨基酸代谢和核苷酸代谢 氨基酸代谢和核苷酸代谢组卷测试一: 填空题 1.哺乳动物产生 1 分子尿素需要消耗________________分子的 ATP。 2.褪黑激素来源于________________氨基酸,而硫磺酸来源于________________氨基酸。 3.-谷氨酰循环的生理功能是________________。 4.核苷酸的合成包括________________和________________两条途径。 5.转氨酶的辅基是________________。 6.________________酶的缺乏可导致人患严重的复合性免疫缺陷症(SCID),使用________________治疗可治愈此疾患。 7.痛风是因为体内________________产生过多造成的,使用________________作为黄嘌呤氧化酶的自杀性底物可以治疗痛风。 8.不能使用 5-溴尿嘧啶核苷酸代替 5-溴尿嘧啶治疗癌症是因为________________。 9.脑细胞中氨的主要代谢去向是________________。 10.从 IMP 合成 GMP 需要消耗________________,而从IMP 合成 AMP需要消耗________________作为能源物质。 11.Arg 可以通过________________循环形成。 12.氨基酸共有的代谢途径有________________和 1 / 6

氨基酸与核酸代谢

氨基酸与核酸代谢 1. 概述三大类营养物质代谢的联系。 答:在生物体内,糖类、脂质和蛋白质这三类物质的代谢是同时进行的,它们之间既相互联系,又相互制约,形成一个协调统一的过程。 1.糖类、脂质和蛋白质之间可以转化关系 (1)糖类代谢与蛋白质代谢的关系 ①糖类代谢的中间产物可以转变成非必需氨基酸; ②蛋白质可以转化成糖类。 几乎所有组成蛋白质的天然氨基酸均可转变成糖类。 (2)糖类代谢与脂质代谢的关系 ①糖类转变成脂肪 ②脂肪转变成糖类 脂质分解产生的甘油和脂肪酸能够转变成糖类。 (3)蛋白质代谢与脂质代谢的关系 ①一般来说,动物体内不容易利用脂肪酸合成氨基酸。植物和微生物可由脂肪酸和氮源生成氨基酸。某些氨基酸通过不同途径可转变成甘油或脂肪酸 ②某些氨基酸通过不同途径可转变成甘油或脂肪酸。 2.糖类、脂质和蛋白质之间转化的条件 糖类、脂质和蛋白质之间的转化是有条件的。例如,只有在糖类供应充足的情况下,糖类才有可能大量转化成脂质。不仅如此,各种代谢物之间的转化程度也是有明显差异的。例如,糖类可以大量转化成脂肪,而脂肪却不能大量转化成糖类。只有当糖类代谢发生障碍时才由脂肪和蛋白质来供能,当糖类和脂肪摄入量都不足时,蛋白质的分解才会增加 3.糖类、脂质和蛋白质之间除了能转化外,还相互制约 三大营养物质在代谢上的共同点; (1)物质的来源:从根本上说均是食物。 (2)这些物质在细胞内虽然均进行着许多种的生物化学反应,但是可以归纳为进行合成和分解这两方面的反应,并且这两方面的反应在细胞内是同时进行,相互联系的。 (3)三大营养物质的代谢均必须在酶的催化作用下才能够完成。 (4)这些物质彻底氧化分解时,代谢终产物里均有CO2和水,均能放释能量。 三大营养物质在代谢上的不同点 (1)糖类是主要的供能物质,脂肪是主要的储能物质,蛋白质的主要功能是构成生物体和调节生命活动。 (2)蛋白质质代谢的最终产物里还有尿素。 人体内的物质代谢是一个完整的统一过程 我们从糖类、氨基酸能够转变成脂肪,脂肪、氨基酸能够转变成糖类,可以看出各种物质代谢之间是相互联系的。这种联系说明,人体内的物质代谢是一个完整的统一过程,它使细胞内的成分不断地进行新旧更替。 2. 如何看懂肝功化验单? 临床上肝功能检查的主要项目包括:蛋白代谢检查、糖代谢检查、脂类检查、胆红素代谢检查、血清酶学检查等。 如何看血清酶学化验单 常见以下几种酶:谷丙转氨酶(英文简写为ALT或GPT)、谷草转氨酶(AST或GOT)、碱性

氨基酸代谢

第九章氨基酸代谢 一、名词解释 1.必需氨基酸 2.一碳单位 二、英译汉 1.ornithine cycle 2.one carbon unit 3.amino acid metabolic pool 4.nitrogen balance 5. transamination 6. blood ammonia 三、填空 1.体内甲基的直接供体是,间接供体是。蛋氨酸合成酶的辅酶是,其缺乏可导致巨幼红细胞性贫血。 2.肌酸的磷酸化物是,是心肌、骨骼肌及大脑中能量的贮存形式。 3. 是体内硫酸根的主要来源,硫酸根的活性形式是。 4.苯丙氨酸羟化后生成酪氨酸,酪氨酸可转变成、和。 5.人体缺乏酪氨酸酶会引起;苯丙氨酸羟化酶先天缺乏,导致;尿黑酸氧化酶缺陷可引起。 6.血清GTP(ALT)活性可作为监测指标之一;血清GOT(AST)活性可作为监测指标之一;血清尿素氮及肌酐可作为监测指标。 7. 氨在血液中的运输形式有两种,分别是和。 四、选择题 【例1】下列哪种氨基酸体内不能合成,必须靠食物供给? A.缬氨酸 B.精氨酸 C.半胱氨酸 D.组氨酸 E.丝氨酸 【正确答案】A 【例2】食物蛋白质的营养价值是指 A.蛋白质含量 B.蛋白质与脂肪的比值 C.蛋白质的吸收速率 D.蛋白质在体内的利用率 【正确答案】D 【例3】属于酶化学修饰调节的反应有 A.乙酰化 B.磷酸化 C.腺苷化 D.泛素化 【正确答案】ABC 【例4】在肌肉中氨基酸脱氨基作用的主要方式 A.谷氨酰胺酶参与的脱氨基作用 B.嘌呤核苷酸循环 C.谷氨酸氧化脱氨基作用 D.转氨基作用

【例5】催化联合脱氨基作用所需的酶是 A.L-氨基酸氧化酶 B.L-谷氨酸脱氢酶 C.谷氨酰胺酶 D.转氨酶 【正确答案】BD 【例6】与下列α-氨基酸相应的α-酮酸,何者是三羧酸循环的中间产物? A.丙氨酸 B.鸟氨酸 C.缬氨酸 D.赖氨酸 E.谷氨酸 【正确答案】E 【例7】氨由肌肉组织通过血液向肝进行转运的机制是 A.三羧酸循环 B.核蛋白体循环 C.丙氨酸-葡萄糖循环 D.甲硫氨酸循环 【正确答案】C 【例8】脑中氨的主要解毒方式是生成 A.尿素 B.丙氨酸 C.谷氨酰胺 D.天冬酰胺 【正确答案】C 【例9】氨在血中主要是以下列哪种形式运输的? A.谷氨酸 B.天冬氨酸 C.谷氨酰胺 D.天冬酰胺 E.谷胱甘肽 【正确答案】C 【例10】经脱羧基作用后生成γ-氨基丁酸的是 A.酪氨酸 B.半胱氨酸 C.天冬氨酸 D.谷氨酸 E.谷氨酰胺 【正确答案】D 【例11】可以作为一碳单位来源的氨基酸是 A.丝氨酸 B.丙氨酸 C.亮氨酸 D.甲硫氨酸 【正确答案】A 【例12】体内转运一碳单位的载体是 A.叶酸 B.生物素 C.维生素B12 D.四氢叶酸 E.S-腺苷蛋氨酸 【正确答案】D 【例13】S-腺苷蛋氨酸是合成下列那些物质所需之原料 A.肾上腺素 B.肌酸 C.磷脂酰胆碱 D.肉毒碱 【例14】酪氨酸在体内不能转变生成的是 A.肾上腺素 B.黑色素 C.延胡索酸 D.苯丙氨酸 E.乙酰乙酸

生物化学真题之脂类代谢与合成

脂代谢 2014简述细胞质内脂肪酸氧化降解的三个步骤及其相关活性载体 (未) 第一个步骤是脂肪酸的 -氧化。 -氧化又包括活化、氧化、水合、氧化、断裂这五个步骤。每一轮氧化切下两个碳原子即乙酰辅酶A 第二个步骤是 氧化形成的乙酰辅酶A进入柠檬酸循环,继续被氧化最后脱出二氧化碳。 第三个大步骤中脂肪酸氧化过程中产出还原型的电子传递分子一一NADH和FADH2它们在第三步骤中把电子送到线粒体呼吸链,经过呼吸链,电子被运送给氧原子,伴随这个电子的流动,ADP经磷酸化作用转化为ATP。 所涉及的相关活性载体包括 -氧化中将脂肪酸的形式乙酰辅酶A转送到线粒体的载体肉碱。第三个步骤电子传递的载体包括:NADH-Q还原酶、琥珀酸一Q还原酶、细胞色素还原酶、细胞色素氧化酶等 2011脂肪酸 氧化和载体 脂肪酸 氧化共包括五个步骤 1?活化:脂肪酸在硫激酶的作用下形成脂酰辅酶A 2?氧化:脂酰辅酶A的羧基邻位被脂酰辅酶A脱氢酶作用,脱下两个氢原子转化为反式-2-烯酰辅酶A,同时产生FADH2

3?水合:反式-2-烯酰辅酶A水合成3-羟脂酰辅酶A,这部反应是在烯酰辅酶A 水合酶的作用下完成的 4?氧化:3-羟脂酰辅酶A在3-羟脂酰辅酶A脱氢酶的作用下转化为3-酮脂酰辅酶A,并产生NADH 5?硫解:3-同脂酰辅酶A受第二个辅酶A的作用发生硫解,断裂为乙酰辅酶A和一个缩短了两个碳原子的脂酰辅酶A,这部反应是在-酮硫解酶的催化下。 其总结果是脂肪酸链以乙酰辅酶A形式自羧基端脱下两个碳原子单元,缩短了的脂肪酸以脂酰辅酶A形式残留,又进入下一轮-氧化。 2010磷脂合成的共性 脂质合成所包括的绝大多数反应发生在膜结构的表面,与之相关的各种酶具有两亲性。 甘油磷脂合成的第一阶段是甘油-3-磷酸形成磷脂酸的反应途径,甘油酸和脂酰辅酶A在脂酰转移酶的作用下生成磷脂酸。磷脂酸一旦形成就很快转移为二脂酰甘油和CDP-二脂酰甘油。 常见的磷脂如磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油,这三种甘油磷脂的生物合成途径从开始到CDP-二脂酰甘油的生物合成途径是共通的,自CDP-二脂酰甘油一下就分别有各自的途径。这里说的CDP是5—胞苷二磷 酸。 2009某细胞内草酰乙酸的浓度对脂肪酸的合成有何影响? 草酰乙酸是柠檬酸循环的中间产物,其浓度在柠檬酸循环中有重要作用,是循环中最关键的底物之一。在肝脏中,决定乙酰辅酶A去向的是草酰乙酸,它带动乙酰辅酶A进入柠檬酸循环。进而影响到脂肪酸合成。 当草酰乙酸浓度低时,则不能充分带动乙酰辅酶 A 进入柠檬酸循环,换言之就是无法合成足够的柠檬酸。而柠檬酸又是脂肪酸合成中将乙酰辅酶 A 从线粒体转运到细胞溶胶中的三羧酸转运体系的基础,柠檬酸是乙酰基的载体。所以脂肪酸必然受到抑制。当草酰乙酸浓度高时,即能合成充分的柠檬酸,也意味着细胞溶胶中将会有

氨基酸与核苷酸代谢

氨基酸与核苷酸代谢 (一)名词解释 1.蛋白酶(Proteinase) 2.肽酶(Peptidase) 3.氮平衡(Nitrogen balance) 4.转氨作用(Transamination) 联合脱氨基作用 8.尿素循环(Urea cycle) 9.生糖氨基酸(Glucogenic amino acid) 10.生酮氨基酸(Ketogenic amino acid) 11.核酸酶(Nuclease) 12.限制性核酸内切酶(Restriction endonuclease) 13.一碳单位(One carbon unit) (二)英文缩写符号 1.GOT 2.GPT 3.APS 4.PAL 5.PRPP 6.SAM 7.GDH 8.IMP (三)填空 1.生物体内的蛋白质可被和共同作用降解成氨基酸。 2.多肽链经胰蛋白酶降解后,产生新肽段羧基端主要是和氨基酸残基。3.胰凝乳蛋白酶专一性水解多肽链由族氨基酸端形成的肽键。 4.氨基酸的降解反应包括、和作用。 5.转氨酶和脱羧酶的辅酶通常是。 6.谷氨酸经脱氨后产生和氨,前者进入进一步代谢。 7.尿素循环中产生的和两种氨基酸不是蛋白质氨基酸。 8.尿素分子中两个N原子,分别来自和。 9.芳香族氨基酸碳架主要来自糖酵解中间代谢物和磷酸戊糖途径的中间代谢物。 13.组氨酸合成的碳架来自糖代谢的中间物。 14.氨基酸脱下氨的主要去路有、和。 15.胞嘧啶和尿嘧啶经脱氨、还原和水解产生的终产物为。 16.参与嘌呤核苷酸合成的氨基酸有、和。 17.尿苷酸转变为胞苷酸是在水平上进行的。 18.脱氧核糖核苷酸的合成是由酶催化的,被还原的底物是。19.在嘌呤核苷酸的合成中,腺苷酸的C-6氨基来自;鸟苷酸的C-2氨基来自。 20.对某些碱基顺序有专一性的核酸内切酶称为。 21.多巴是经作用生成的。 22.生物体中活性蛋氨酸是,它是活泼的供应者。 23.转氨基作用是沟通和桥梁; 24.尿素循环中涉及的天然蛋白质氨基酸是; 25.氨的去路有、和降解;脱氨产生的生理作用是和。 26.氨基酸通过、和降解,脱羧后产生和,此过程需——作辅酶。 27.Tyr脱NH3,然后脱羧后生成。 28.Tyr羟化后生成,后者经脱羧生成。

氨基酸代谢

蛋白质降解和氨基酸代谢 一、填空题 1.根据蛋白酶作用肽键的位置,蛋白酶可分为 酶和 酶两类,胰蛋白酶则属于 酶。 2.转氨酶类属于双成分酶,其共有的辅基为 或 ;谷草转氨酶促反应中氨基供体为 氨酸,而氨基的受体为 该种酶促反应可表示为 。 3.植物中联合脱氨基作用需要 酶类和 酶联合作用,可使大多数氨基酸脱去氨基。 4.在线粒体内谷氨酸脱氢酶的辅酶多为 ;同时谷氨酸经L-谷氨酸氢酶作用生成的酮酸为 ,这一产物可进入 循环最终氧化为CO 2和H 2O 。 5.动植物中尿素生成是通 循环进行的,此循环每进行一周可产生一分子尿素,其尿素分子中的两个氨基分别来自于 和 。每合成一分子尿素需消耗 分子ATP 。 6.根据反应填空 ( ) ( )氨酸 ( )酸 7.氨基酸氧化脱氨产生的 -酮酸代谢主要去向是 、 、 、 。 8.固氮酶除了可使N 2还原成 以外,还能对其它含有三键的物质还原,如 等。该酶促作用过程中消耗的能量形式为 。 9.生物界以NADH 或NADPH 为辅酶硝酸还原酶有三个类别,其中高等植物子叶中则以 硝酸还原酸酶为主,在绿藻、酵母中存在着 硝酸还原酶或 硝酸还原酶。 10.硝酸还原酶催化机理如下图请填空完成反应过程。 NAD (P )H —— 2Cytb557 —— NO -+H 2O 还原型 2Cytb -557 NAD (P )+ 氧化型 —— NO 3- CH 3 C=O COOH COOH CHNH 2 CH 2 CH 2 COOH

11.亚硝酸还原酶的电子供体为,而此电子供体在还原子时的电子或氢则来自于或。 12.氨同化(植物组织中)通过谷氨酸循环进行,循环所需要的两种酶分别为和;它们催化的反应分别表示为和。 13.写出常见的一碳基团中的四种形式、、、;能提供一碳基团的氨基酸也有许多。请写出其中的三种、、。 二、选择题(将正确答案相应字母填入括号中) 1.谷丙转氨酶的辅基是() A、吡哆醛 B、磷酸吡哆醇 C、磷酸吡哆醛 D、吡哆胺 E、磷酸吡哆胺 2.存在于植物子叶中和绿藻中的硝酸还原酶是() A、NADH—硝酸还原酶 B、NADPH—硝酸还原酶 C、Fd—硝酸还原酶 D、NAD(P)H—硝酸还原酶 3.硝酸还原酶属于诱导酶,下列因素中哪一种为最佳诱导物() A、硝酸盐 B、光照 C、亚硝酸盐 D、水分 4.固氮酶描述中,哪一项不正确() A、固氮酶是由钼铁蛋白质构成的寡聚蛋白 B、固氮酶是由钼铁蛋白质和铁蛋白构成寡聚蛋白 C、固氮酶活性中心富含Fe原子和S2-离子 D、固氮酶具有高度专一性,只对N2起还原作用 5.根据下表内容判断,不能生成糖类的氨基酸为() 氨基酸降解中产生的α-酮酸 6 A、经谷氨酰胺合成酶作用,NH3与谷氨酸合成谷氨酰胺; B、经天冬酰胺合成酶作用,NH3与天冬氨酸合成天冬酰胺; C、经鸟氨酸循环形成尿素; D、与有机酸结合成铵盐。 7.对于植物来说NH3同化的主要途径是() A、氨基甲酰磷酸酶 O NH3+CO2H2N-C-OPO32- 2ATP+H2O 2ADP+Pi 氨基甲酰磷酸 B、谷氨酰胺合成酶 NH3+L-谷氨酸L-谷氨酰胺 A TP ADP+Pi

氨基酸代谢核苷酸代谢

组卷测试 一:填空题 1.哺乳动物产生1分子尿素需要消耗________________分子的A TP。 2.褪黑激素来源于________________氨基酸,而硫磺酸来源于________________氨基酸。 3.γ-谷氨酰循环的生理功能是________________。 4.核苷酸的合成包括________________和________________两条途径。 5.转氨酶的辅基是________________。 6.________________酶的缺乏可导致人患严重的复合性免疫缺陷症(SCID),使用________________治疗可治愈此疾患。 7.痛风是因为体内________________产生过多造成的,使用________________作为黄嘌呤氧化酶的自杀性底物可以治疗痛风。 8.不能使用5-溴尿嘧啶核苷酸代替5-溴尿嘧啶治疗癌症是因为________________。 9.脑细胞中氨的主要代谢去向是________________。 10.从IMP合成GMP需要消耗________________,而从IMP合成AMP需要消耗________________作为能源物质。 11.Arg可以通过________________循环形成。 12.氨基酸共有的代谢途径有________________和________________。 13.人类对嘌呤代谢的终产物是________________。 14.羟基脲作为________________酶的抑制剂,可抑制脱氧核苷酸的生物合成。 15.脱氧核苷酸是由________________还原而来。 16.HGPRT是指________________,该酶的完全缺失可导致人患________________。 17.人类对氨基代谢的终产物是________________,鸟类对氨基代谢的终产物是________________,植物解除氨的毒害的方法是________________。 18.重亮氨酸作为________________类似物可抑制嘌呤核苷酸的从头合成。 19.通过________________的脱羧可产生β-丙氨酸。 20.细菌嘧啶核苷酸从头合成途径中的第一个酶是________________。该酶可被终产物 ________________抑制。 21.PAPS是指________________,它的生理功能是________________。 二:是非题 1.[ ]真核细胞内参与嘧啶核苷酸从头合成的酶都位于细胞质。 2.[ ]参与尿素循环的酶都位于线粒体内。 3.[ ]既然谷氨酸上的N原子可经过转氨基作用重新分布,那么谷氨酸应该可作为很好的营养品而弥补蛋白质缺乏。 4.[ ]嘧啶合成所需要的氨甲酰磷酸合成酶与尿素循环所需要的氨甲酰磷酸合成酶是同一个酶。 5.[ ]氨基酸脱羧酶通常也需要吡哆醛磷酸作为其辅基。 6.[ ]一般来说,在哺乳动物体内由蛋白质氧化分解产生的能量效率低于糖或脂肪的氧化分解。 7.[ ]嘌呤核苷酸的从头合成是先闭环,再在形成N糖苷键。 8.[ ]氨基酸经脱氨基作用以后留下的碳骨架进行氧化分解需要先形成能够进入TCA循环的中间物。 9.[ ]Arg是哺乳动物的一种非必需氨基酸,因为在它们的肝细胞之中,含有足够的合成Arg的酶。 10.[ ]动物产生尿素的主要器官是肾脏。 11.[ ]黄嘌呤氧化酶既可以使用黄嘌呤又可以使用次黄嘌呤作为底物。 12.[ ]L-氨基酸氧化酶是参与氨基酸脱氨基作用的主要酶。

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

生化核苷酸代谢和生物转化

本科-核苷酸代谢-非营养物质代谢1 一、单5选1(题下选项可能多个正确,只能选择其中最佳的一项) 1、参加肠道次级结合胆汁酸生成的氨基酸是 A:鸟氨酸 B:精氨酸 C:甘氨酸 D:蛋氨酸 E:瓜氨酸 考生答案:C 标准答案:C 满分:4 得分:4 2、体内脱氧核苷酸是由下列哪种物质直接还原而成的 A:核糖 B:核糖核苷 C:一磷酸核苷 D:二磷酸核苷 E:三磷酸核苷 考生答案:D 标准答案:D 满分:4 得分:4 3、关于生物转化作用,下列哪项是不正确的 A:具有多样性和连续性的特点 B:常受年龄、性别、诱导物等因素影响 C:有解毒与致毒的双重性 D:使非营养性物质极性降低,利于排泄 E:使非营养性物质极性增加,利于排泄 考生答案:D 标准答案:D 满分:4 得分:4 4、甲氨蝶呤(MTX)在临床上用于治疗白血病的依据是 A:嘌呤类似物 B:嘧啶类似物 C:叶酸类似物 D:二氢叶酸类似物

E:氨基酸类似物 考生答案:C 标准答案:C 满分:4 得分:4 5、嘧啶分解代谢的终产物正确的是 A:尿酸 B:尿苷 C:尿素 D:α-丙氨酸 E:氨和二氧化碳 考生答案:E 标准答案:E 满分:4 得分:4 6、胸腺嘧啶在体内合成时甲基来自 A:N10-甲酰四氢叶酸 B:胆碱 C:N5,N10-甲烯四氢叶酸 D:S-腺苷甲硫氨酸 E:肉碱 考生答案:C 标准答案:C 满分:4 得分:4 7、下列哪种物质是结合胆红素 A:胆红素—清蛋白 B:胆红素—Y蛋白 C:胆红素—Z蛋白 D:双葡糖醛酸胆红素 E:胆红素-结合珠蛋白 考生答案:D 标准答案:D 满分:4 得分:4 8、嘧啶环中两个氮原子是来自 A:谷氨酰胺和氮 B:谷氨酰胺和天冬酰胺 C:谷氨酰胺和氨甲基鳞酸 D:天冬酰胺和氨甲基磷酸

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

第20章氨酸代谢与核苷酸代谢

第十一章氨基酸代谢与核苷酸代谢 一:填空题 1.氨基酸共有的代谢途径有________________和________________。 2.转氨酶的辅基是________________。 3.人类对氨基代谢的终产物是________________,鸟类对氨基代谢的终产物是________________,植物解除氨的毒害的方法是________________。 4.哺乳动物产生1分子尿素需要消耗________________分子的A TP。 5.脑细胞中氨的主要代谢去向是________________。 6.通过________________的脱羧可产生β-丙氨酸。 7.人类对嘌呤代谢的终产物是________________。 8.痛风是因为体内________________产生过多造成的,使用________________作为黄嘌呤氧化酶的自杀性底物可以治疗痛风。 9.________________酶的缺乏可导致人患严重的复合性免疫缺陷症(SCID),使用________________治疗可治愈此疾患。 10.核苷酸的合成包括________________和________________两条途径。 11.脱氧核苷酸是由________________还原而来。 12.Arg可以通过________________循环形成。 13.重亮氨酸作为________________类似物可抑制嘌呤核苷酸的从头合成。 14.HGPRT是指________________,该酶的完全缺失可导致人患________________。 15.从IMP合成GMP需要消耗________________,而从IMP合成AMP需要消耗________________作为能源物质。 16.羟基脲作为________________酶的抑制剂,可抑制脱氧核苷酸的生物合成。 17.不能使用5-溴尿嘧啶核苷酸代替5-溴尿嘧啶治疗癌症是因为________________。 18.细菌嘧啶核苷酸从头合成途径中的第一个酶是________________。该酶可被终产物 ________________抑制。 19.褪黑激素来源于________________氨基酸,而硫磺酸来源于________________氨基酸。 20.PAPS是指________________,它的生理功能是________________。 21.γ-谷氨酰循环的生理功能是________________。 二:是非题 1.[ ]对于苯丙酮尿患者来说酪氨酸也是必需氨基酸。 2.[ ]氨基酸脱羧酶通常也需要吡哆醛磷酸作为其辅基。 3.[ ]动物产生尿素的主要器官是肾脏。 4.[ ]参与尿素循环的酶都位于线粒体内。 5.[ ]L-氨基酸氧化酶是参与氨基酸脱氨基作用的主要酶。 6.[ ]黄嘌呤氧化酶既可以使用黄嘌呤又可以使用次黄嘌呤作为底物。 7.[ ]嘌呤核苷酸的从头合成是先闭环,再在形成N糖苷键。 8.[ ]IMP是嘌呤核苷酸从头合成途径中的中间产物。 9.[ ]严格的生酮氨基酸都是必需氨基酸。 10.[ ]Lys的缺乏可以通过在食物中添加相应的α-酮酸加以纠正。 11.[ ]能刺激固氮酶的活性。 12.[ ]氨基酸经脱氨基作用以后留下的碳骨架进行氧化分解需要先形成能够进入TCA循环的中间物。 13.[ ]真核细胞内参与嘧啶核苷酸从头合成的酶都位于细胞质。

氨基酸的代谢

一、氨基酸代谢的概况 ?重点、难点 ?第一节蛋白质的营养作用 ?第二节蛋白质的消化,吸取 ?第三节氨基酸的一般代谢 ?第四节个别氨基酸代谢 食物蛋白质经过消化吸收后进人体内的氨基酸称为外源性氨基酸。机体各组织的蛋白质分解生成的及机体合成的氨基酸称为内源性氨基酸。在血液和组织中分布的氨基酸称为氨基酸代谢库(aminoacidmetabolic pool)。各组织中氨基酸的分布不均匀。氨基酸的主要功能是合成蛋白质,也参与合成多肽及其它含氮的生理活性物质。除维生素外,体内的各种含氮物质几乎都可由氨基酸转变而来。氨基酸在体内代谢的基本情况概括如图。大部分氨基酸的分解代谢在肝脏进行,氨的解毒过程也主要在肝脏进行。 图8-2 氨基酸代谢库 二、氨基酸的脱氨基作用 脱氨基作用是指氨基酸在酶的催化下脱去氨基生成α—酮酸的过程,是体内氨基酸分解代谢的主要途径。脱氨基作用主要有氧化脱氨基、转氨基、联合脱氨基、嘌呤核苷酸循环和非氧化脱氨基作用。 (一)氧化脱氨基作用

氧化脱氨基作用是指在酶的催化下氨基酸在氧化的同时脱去氨基的过程。组织中有几种催化氨基酸氧化脱氨的酶,其中以L-谷氨酸脱氢酶最重要。L-氨基酸氧化酶与D-氨基酸氧化酶虽能催化氨基酸氧化脱氨,但对人体内氨基酸脱氨的意义不大。 1.L-谷氨酸氧化脱氨基作用由 L谷氨酸脱氢酶(L-glutamatedehydrogenase)催化谷氨酸氧化脱氨。谷氨酸脱氢使辅酶NAD+还原为NADH+H+并生成α-酮戊二酸和氨。谷氨酸脱氢酶的辅酶为NAD+。 谷氨酸脱氢酶广泛分布于肝、肾、脑等多种细胞中。此酶活性高、特异性强,是一种不需氧的脱氢酶。谷氨酸脱氢酶催化的反应是可逆的。其逆反应为α-酮戊二酸的还原氨基化,在体内营养非必需氨基酸合成过程中起着十分重要的作用。 (二)转氨基作用 转氨基作用:在转氨酶(transaminase ansaminase)的催化下,某一氨基酸的a-氨基转移到另一种a-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成a-酮酸。转氨酶催化的反应是可逆的。因此,转氨基作用既属于氨基酸的分解过程,也可用于合成体内某些营养非必需氨基酸。 图8-4 转氨基作用 除赖氨酸、脯氨酸和羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。人体内有多种转氨酶分别催化特异氨基酸的转氨基反应,它们的活性高低不一。其中以谷丙转氨酶(glutamicpyruvic transaminase,GPT,又称ALT)和谷草转氨酶(glutamic oxaloacetictransaminase,GOT,又称AST)最为重要。它们催化下述反应。 转氨酶的分布很广,不同的组织器官中转氨酶活性高低不同,如心肌GOT最丰富,肝中则GPT最丰富。转氨酶为细胞内酶,血清中转氨酶活性极低。当病理改变引起细胞膜通透性增高、组织坏死或细胞破裂时,转氨酶大量释放,血清转氨酶活性明显增高。如急性肝炎病人血清GPT活性明显升高,心肌梗死病人血清GOT活性明显升高。这可用于相关疾病的临床诊断,也可作为观察疗效和预后的指标。 各种转氨酶的辅酶均为含维生素B6的磷酸吡哆醛或磷酸吡哆胺。它们在转氨基反应中起着氨基载体的作用。在转氨酶的催化下,α—氨基酸的氨基转移到磷酸吡哆醛分子上,生成磷酸吡哆胺和相应的α—酮酸;而磷酸吡哆胺又可将其氨基转移到另一α—酮酸分子上,生成磷酸吡哆醛和相应的α—氨基酸(图8—6),可使转氨基反应可逆进行。

08生物化学习题与解析--核苷酸代谢

核苷酸代谢 一、选择题 (一) A 型题 1 .下列关于嘌呤核苷酸从头合成的叙述正确的是 A .嘌呤环的氮原子均来自于氨基酸的α - 氨基 B .氨基甲酰磷酸为嘌呤环提供甲酰基 C .次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP 转变成GMP D .由IMP 合成AMP 和GMP 均有ATP 供能 E .合成过程中不会产生自由嘌呤碱 2 . 体内进行嘌呤核苷酸从头合成的是 A .胸腺 B .骨髓 C .肝 D .脾 E .小肠粘膜 3 .嘌呤核苷酸从头合成时首先生成的是 A .AMP B .GMP C .IMP D .ATP E .GTP 4 .人体内嘌呤核苷酸的分解代谢的主要终产物是 A .尿素 B .尿酸 C .肌酸 D .肌酸酐 E .β - 丙氨酸 5 .胸腺嘧啶的甲基来自 A .N 10 -CHO-FH 4 B .N 5 ,N 10 =CH-FH 4 C .N 5 ,N 10 -CH 2 -FH 4 D .N 5 -CH 3 -FH 4 E .N 5 -CH=NH-FH 4 6 .哺乳动物嘧啶核苷酸从头合成的主要调节酶是 A .天冬氨酸氨基甲酰转移酶 B .二氢乳清酸酶 C .二氢乳清酸脱氢酶 D .乳清酸磷酸核糖转移酶 E .氨基甲酰磷酸合成酶II 7 .嘧啶核苷酸生物合成时CO 2 中C 原子进入嘧啶哪个部位 A .C 6 B . C 4 C .C 5 D .C 2 E .没有进入 8 .痛风症患者血中含量升高的物质是 A .尿酸 B .肌酸 C .尿素 D .胆红素 E .NH 4 9 .不属于嘌呤核苷酸从头合成直接原料的是 A .CO 2 B .谷氨酸 C .甘氨酸 D .一碳单位 E .天冬氨酸 10 .dTMP 合成的直接前体是 A .dCMP B .dUDP C .dUMP D .UMP E .UDP 11 .嘌呤核苷酸与嘧啶核苷酸合成的共同原料是 A .丙氨酸 B .谷氨酸 C .甘氨酸 D .天冬酰胺 E .天冬氨酸 12 .嘌呤核苷酸分解代谢的共同中间产物是 A .IMP B .XMP C .黄嘌呤 D .次黄嘌呤 E .尿酸 13 .下面分别表示嘌呤环结构中各原子的编号,谷氨酰胺提供哪些原子 A .C 2 、C 8 B . C 4 、C 5 、N 7 C .N 1 D .N 3 、N 9 E .C 4 14 .哺乳类动物体内直接催化尿酸生成的酶是 A .核苷酸酶 B .黄嘌呤氧化酶 C .鸟嘌呤脱氨酶 D .腺苷脱氨酶 E .尿酸氧化酶 15 .最直接联系核苷酸合成与糖代谢的物质是 A .5- 磷酸核糖 B .1- 磷酸葡萄糖 C .6- 磷酸葡萄糖 D .1 ,6- 二磷酸葡萄糖 E .葡萄糖 16 .HGRPT (次黄嘌呤- 鸟嘌呤磷酸核糖转移酶)参与下列哪种反应

生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

氨基酸代谢 重要知识点

蛋白质降解及氨基酸代谢 1、细胞内的蛋白质降解 (1)不依赖ATP的溶酶体途径,主要降解细胞通过胞吞作用摄取的外源蛋白、膜蛋白及长寿命的细胞内蛋白。在营养充足的细胞内没有选择性。饥饿细胞:选择性降解含有五肽Lys-Phe-Glu-Arg-Gln或相关的序列的胞内蛋白。 (2)依赖ATP的泛素途径,在胞质中进行,主要降解异常蛋白和短寿命蛋白(调节蛋白),此途径在不含溶酶体的红细胞中尤为重要。(选择性降解) 2、细胞内蛋白质降解的意义 (1)清除异常蛋白; (2)细胞对代谢进行调控的一种方式; (3)在需要时降解供肌体需要。 3、氨基酸的分解代谢主要在肝脏中进行。包括:脱氨基作用(最主要的反应)和脱羧基作用。 4、氧化脱氨基作用:α-氨基酸在酶的催化下氧化生成α-酮酸,此时消耗氧并产生氨。 5、L谷氨酸——α-酮戊二酸+ NH3 是L-Glu脱氢酶催化下的可逆反应,一般情况下偏向于谷氨酸的合成,因为高浓度氨对机体有害。L-谷氨酸脱氢酶为不需氧脱氢酶,辅酶为NAD+或NADP+,此酶为别构酶,此反应与能量代谢密切相关,ADP、GDP是其别构激活剂。

6、转氨基作用:指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,结果原来的α-氨基酸生成相应的α-酮酸,而原来的α-酮酸则形成了相应的α-氨基酸。它是体内各种氨基酸脱氨基的主要形式,其逆反应也是体内生成非必需氨基酸的途径。 7、转氨酶种类很多:其中谷草转氨酶(GOT)在心脏中活力最大,其次为肝脏;谷丙转氨酶(GPT)在肝脏中活力最大,用于诊断肝功能。转氨酶的辅酶均为磷酸吡哆醛(VB6的磷酸酯)。 8、联合脱氨基作用:(1)转氨酶与L-谷氨酸脱氢酶作用相偶联:大多数转氨酶优先利用α-酮戊二酸作为氨基的受体,生成Glu,约占生物体的10%;(2)转氨基作用与嘌呤核苷酸循环相偶联:肝脏中90%谷氨酸经转氨基作用转化为天冬氨酸。 9、脱羧基作用:氨基酸经脱羧基作用生成伯胺类化合物和CO2。AA脱羧酶专一性很强,每一种AA都有一种脱羧酶,辅酶都是磷酸吡哆醛。AA脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能。但大多数胺类对动物有毒。体内的胺氧化酶能将胺氧化为醛和氨,醛进一步氧化成脂肪酸。 10、NH3去向。(1)重新利用:合成AA、核酸。(2)贮存:高等植物将氨基氮以Gln和Asn的形式储存在体内。(3)排出体外:高等动物通过尿素循环在肝中将NH3生成尿素,通过肾脏排出体外。 11、尿素循环(鸟氨酸循环):在排尿动物体内由NH3合成尿素是在肝脏中通过一个循环机制完成的,这一个循环称为尿素循环。 过程:(1)NH3、CO2与鸟氨酸作用合成瓜氨酸;(2)瓜氨酸与天

生物化学(本科)第八章 核酸组成、结构与核苷酸代谢随堂练习与参考答案

生物化学(本科)第八章核酸组成、结构 与核苷酸代谢 随堂练习与参考答案 第一节核酸的化学组成第二节DNA的结构与功能第三节RNA的种类及其结构与功能第四节核酸的理化性质及其应用第五节核苷酸代谢 1. (单选题)核酸中核苷酸之间的连接方式是 A.2’,3’-磷酸二酯键 B.3’,5’ -磷酸二酯键 C.2’,5’ -磷酸二酯键 D.糖苷键 E.氢键 参考答案:B 2. (单选题)符合DNA结构的正确描述是 A.两股螺旋链相同 B.两股链平行,走向相同 C.每一戊糖上有一个自由羟基 D.戊糖平面垂直于螺旋轴 E.碱基对平面平行于螺旋轴 参考答案:D 3. (单选题)DNA双螺旋结构模型的描述中哪一条不正确

A.腺瞟吟的克分子数等于胸腺嘧啶的克分子数 B.同种生物体不同组织中的DNA碱基组成极为相似 C.DNA双螺旋中碱基对位于外侧 D.二股多核苷酸链通过A与T或C与G之间的氢键连接 E.维持双螺旋稳定的主要因素是氢键和碱基堆积力 参考答案:C 4. (单选题)有关DNA的变性哪条正确 A.是指DNA分子中磷酸二酯键的断裂 B.是指DNA分子中糖苷键的断裂 C.是指DNA分子中碱基的水解 D.是指DNA分子中碱基间氢键的断裂 E.是指DNA分子与蛋白质间的疏水键的断裂 参考答案:D 5. (单选题)RNA和DNA彻底水解后的产物 A.核糖相同,部分碱基不同 B.碱基相同,核糖不同 C.碱基不同,核糖不同 D.碱基不同,核糖相同 E.碱基相同,部分核糖不同 参考答案:C 6. (单选题)DNA和RNA共有的成分是 A.D-核糖

B.D-2-脱氧核糖 C.鸟嘌呤 D.尿嘧啶 E.胸腺嘧啶 参考答案:C 7. (单选题)核酸具有紫外吸收能力的原因是 A.嘌呤和嘧啶环中有共轭双键 B.嘌呤和嘧啶中有氮原子 C.嘌呤和嘧啶中有硫原子 D.嘌呤和嘧啶连接了核糖 E.嘌呤和嘧啶连接了磷酸基团 参考答案:A 8. (单选题)有关 DNA双螺旋模型的叙述哪项不正确 A.有大沟和小沟 B.两条链的碱基配对为T=A,G≡C C.两条链的碱基配对为T=G,A=C D.两条链的碱基配对为T=A,G≡C E.一条链是5’→3’,另一条链是3’→5’方向参考答案:C 9. (单选题)DNA超螺旋结构中哪项正确 A.核小体由DNA和非组蛋白共同构成 B.核小体由RNA和H1,H2,H3,H4各二分子构成

相关主题
文本预览
相关文档 最新文档