当前位置:文档之家› 石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用
石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用石墨烯(Graphene)是一种仅由碳原子以sp2杂化轨道组成六角型晶格的平面薄膜,亦即只有一个碳原子厚度的二维材料。相比其他炭材料如碳纳米管,石墨烯具有独特的微观结构,这使得石墨烯具有较大的比表面积和蜂窝状空穴结构,具有较高的储锂能力。此外,材料本身具有良好的化学稳定性、高电子迁移率以及优异的力学性能,使其作为电极材料具有突出优势。与碳纳米管类似,纯石墨烯材料由于首次循环库仑效率低、充放电平台较高以及循环稳定性较差等缺陷并不能取代目前商用的炭材料直接用作锂离子电池负极材料。随着制备技术的发展,通过控制石墨烯片层间的间距,防止固体电介质层的形成大量消耗锂离子,并合理平衡缺陷结构与“死锂”的产生也许是石墨烯材料进一步向实用化材料发展的方向之一。

1.硅-石墨烯基复合材料在锂电池负极材料中的应用

石墨烯也是对硅负极进行改性的重要骨架材料。它能够提供自由空间来缓冲充放电过程中的体积效应,保证脱嵌锂过程中材料结构的完整性;同时,石墨烯片层间能形成稳定的导电网络,从而提高电极的储锂性能。Lee等将纳米硅颗粒高度分散在石墨烯薄片上,然后进行热处理还原得到硅-石墨烯复合材料,电化学测试表明,该复合材料经过50个循环后,容量大于2200mA·h/g,200个循环后容量大于1500mA·h/g,每个循环的衰减率小于0.5%。该复合材料优异的电化学性能得益于纳米硅颗粒均匀分散在柔韧的石墨烯层间,不仅改善了硅的电子电导,而且有效缓冲了硅的体积效应。

高鹏飞通过喷雾干燥技术将二维的石墨烯加工成具有三维结构的导电网络,同时将纳米硅粉包裹在其内部空腔内,得到了一种“包裹型”硅碳复合材料。该材料具有高达1525mA·h/g 的比容量和较好的循环稳定性。这得益于硅与石墨烯的协同效应,纳米硅粒可分隔石墨烯层,防止其堆叠失效;而石墨烯层可以缓冲硅的体积效应,其导电网络结构可改善活性硅颗粒的电接触,维持材料结构稳定。Ma等通过喷雾干燥法合成具有浴花形状的硅-石墨烯复合材料(见图1)。电化学测试表明,该复合材料的首次充放电容量分别为2174mA·h/g和1252mA·h/g,经过30个循环后,可逆容量仍保持在1500mA·h/g以上。其优异的电化学性能归因于这种特殊的浴花状结构以及石墨烯与纳米硅颗粒之间的协同作用,石墨烯提供足够的空间来缓冲充放电过程中硅的体积变化,并防止硅颗粒的聚集。此外,高导电性的石墨烯包裹活性纳米硅颗粒,从而保持其循环过程中稳定的电接触。

图1硅-石墨烯三维复合负极材料的制备过程

2.石墨烯-金属氧化物复合材料在锂电池负极材料中的应用

石墨烯与金属氧化物也可形成复合电极材料。由于金属氧化物都具有较高的储锂容量,使得电极材料的能量密度得到了提高。同时,将金属氧化物颗粒引入石墨烯片层间,阻止了片层的聚集,确保了离子传输通道的畅通。Lian等通过气液界面合成法制备了SnO2/石墨烯复合材料,图2是其反应原理图。利用这种反应机理获得的复合材料经150次循环后仍具有1304mA·h/g的可逆容量,在1000mA/g的高倍率下,可逆容量也能保持在748mA·h/g,是石墨理论可逆容量的两倍,表现出优异的电化学性能。这得益于SnO2纳米颗粒均匀分布在石墨烯表面,在充放电过程中难以聚集,从而保持其高容量;另外,该复合材料为充放电过程中SnO2纳米颗粒的体积变化提供了足够的空间,从而提高了循环性能。

图2 气-液相界面反应制备SnO2/石墨烯符合材料反应原理图

周冠蔚通过采用喷雾干燥法制备出具有特殊微观立体结构的Fe2O3/石墨烯复合材料,其可逆容量高达900mA·h/g。其中,石墨烯缓冲了充放电过程中Fe2O3的体积效应,并增强材料内部电子及离子的传输能力,提高了其循环稳定性。而纳米Fe2O3插层在石墨烯片层中,可防止石墨烯重新堆叠,保持其储锂能力。利用石墨烯的二维片状结构,也可将其作

为碳包覆材料与金属氧化物形成复合材料。Yang等利用静电吸引相互作用及随后的化学还原合成由石墨稀包裹金属氧化物构成的纳米复合材料,普通的石墨烯/纳米颗粒复合电极材料中纳米颗粒都是负载在石墨稀的表面,颗粒与石墨烯的相互接触面积比较小,并且这种结构不能有效控制石墨烯夹层之间金属纳米颗粒易聚集的现象;而在合成的产物中,石墨稀片可以紧紧裹住Co3O4纳米球,保证了两者之间的充分接触,表现出非常出色的电化学性能:在最初的10个循环中,该复合材料保持了1100mA·h/g以上的稳定可逆容量,且经过130个循环后仍具有1000mA·h/g以上的容量。

由以上研究可以看出,具有优良电化学性能的石墨烯基复合材料有以下特点:引入物均匀地分散在石墨烯片层中,或者石墨烯将引入物紧密包覆起来。这样石墨烯可以缓冲循环过程中的体积效应,同时引入物又能发挥其高容量的优势。石墨烯作为锂离子电池的负极材料的研究已获得了一定成果,但为了能够满足在商业应用中对锂离子电池的快速大电流充放电、高循环寿命、高比容量等性能要求,以后石墨烯基电极材料的发展要注意:(1)研究石墨烯复合材料的微观形貌与电化学性能之间的关系,特别是其结构、尺寸、孔径以及缺陷等对电化学性能的影响;(2)优化制备工艺,设计能大规模生产石墨烯的制备工艺,便于投入商业化应用。

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.doczj.com/doc/1e13594873.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.doczj.com/doc/1e13594873.html, or J.F.Che; e-mail:xiaoche@https://www.doczj.com/doc/1e13594873.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.doczj.com/doc/1e13594873.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

年产5000吨锂离子电池负极材料石墨化项目可行性研究报告

年产5000吨锂离子电池负极材料石墨化项目可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 高级工程师:高建

目录 第一章项目总论 (1) 1.1项目概况 (1) 1.1.1项目名称 (1) 1.1.2建设单位 (1) 1.1.3拟建设地点 (1) 1.1.4建设内容与规模 (1) 1.1.5项目性质 (2) 1.1.6项目总投资及资金筹措 (2) 1.1.7建设期 (3) 1.2编制依据和原则 (4) 1.2.1编制依据 (4) 1.2.2编制原则 (4) 1.2.3编制范围 (5) 1.3主要技术经济指标 (6) 1.4可行性研究结论 (7) 第二章项目建设背景及必要性分析 (9) 2.1项目建设背景 (9) 2.2项目建设的必要性概述 (13) 2.2.1本项目的符合国家新能源产业发展的需求 (13) 2.2.2本项目的建设,符合国家产业政策 (14) 2.2.3项目是当地居民脱贫致富和增加就业的需要 (14) 2.2.4项目具有良好的社会效益 (14) 第三章项目市场分析与预测 (16) 3.1锂电池负极材料市场分析 (16) 3.2锂电池负极材料的分类、用途及发展趋势 (17) 3.3市场定位 (18) 3.4市场竞争力分析 (18) 第四章项目整体规划分析 (21) 4.1建设规模 (21) 4.2产品方案 (21) 第五章项目选址及建设条件 (23) 5.1项目选址 (23) 5.1.1项目建设地点 (23) 5.1.2项目用地性质及权属 (23) 5.1.3场地状况 (23) 5.2建设条件分析 (23) 5.2.1交通、能源供应条件 (23) 5.2.2施工条件 (24) 5.2.3公用设施条件 (24) 第六章技术方案、设备方案与工程方案 (25) 6.1技术方案 (25) 6.1.1 技术方案选择的原则 (25) 6.1.2项目实施的技术方案 (25) 6.2设备方案 (26) 6.2.1设备选型原则 (26) 6.2.2设备方案 (26)

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用石墨烯(Graphene)是一种仅由碳原子以sp2杂化轨道组成六角型晶格的平面薄膜,亦即只有一个碳原子厚度的二维材料。相比其他炭材料如碳纳米管,石墨烯具有独特的微观结构,这使得石墨烯具有较大的比表面积和蜂窝状空穴结构,具有较高的储锂能力。此外,材料本身具有良好的化学稳定性、高电子迁移率以及优异的力学性能,使其作为电极材料具有突出优势。与碳纳米管类似,纯石墨烯材料由于首次循环库仑效率低、充放电平台较高以及循环稳定性较差等缺陷并不能取代目前商用的炭材料直接用作锂离子电池负极材料。随着制备技术的发展,通过控制石墨烯片层间的间距,防止固体电介质层的形成大量消耗锂离子,并合理平衡缺陷结构与“死锂”的产生也许是石墨烯材料进一步向实用化材料发展的方向之一。 1.硅-石墨烯基复合材料在锂电池负极材料中的应用 石墨烯也是对硅负极进行改性的重要骨架材料。它能够提供自由空间来缓冲充放电过程中的体积效应,保证脱嵌锂过程中材料结构的完整性;同时,石墨烯片层间能形成稳定的导电网络,从而提高电极的储锂性能。Lee等将纳米硅颗粒高度分散在石墨烯薄片上,然后进行热处理还原得到硅-石墨烯复合材料,电化学测试表明,该复合材料经过50个循环后,容量大于2200mA·h/g,200个循环后容量大于1500mA·h/g,每个循环的衰减率小于0.5%。该复合材料优异的电化学性能得益于纳米硅颗粒均匀分散在柔韧的石墨烯层间,不仅改善了硅的电子电导,而且有效缓冲了硅的体积效应。 高鹏飞通过喷雾干燥技术将二维的石墨烯加工成具有三维结构的导电网络,同时将纳米硅粉包裹在其内部空腔内,得到了一种“包裹型”硅碳复合材料。该材料具有高达1525mA·h/g 的比容量和较好的循环稳定性。这得益于硅与石墨烯的协同效应,纳米硅粒可分隔石墨烯层,防止其堆叠失效;而石墨烯层可以缓冲硅的体积效应,其导电网络结构可改善活性硅颗粒的电接触,维持材料结构稳定。Ma等通过喷雾干燥法合成具有浴花形状的硅-石墨烯复合材料(见图1)。电化学测试表明,该复合材料的首次充放电容量分别为2174mA·h/g和1252mA·h/g,经过30个循环后,可逆容量仍保持在1500mA·h/g以上。其优异的电化学性能归因于这种特殊的浴花状结构以及石墨烯与纳米硅颗粒之间的协同作用,石墨烯提供足够的空间来缓冲充放电过程中硅的体积变化,并防止硅颗粒的聚集。此外,高导电性的石墨烯包裹活性纳米硅颗粒,从而保持其循环过程中稳定的电接触。

石墨烯作为锂电池负极材料前景渺茫

石墨烯用作锂电负极产业化前景渺茫 2015-06-26 作者: 自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。 国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。 Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。 什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。”

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 .

三、石墨的中国产地: 1、我国以鸡西市恒山区密山市柳毛乡为最大的产地。以及省的七台河市、鹤岗市和双鸭山市等。 2、省莱西市为我国石墨重要产地之一。 3、省磐石市也是石墨产地之一。 4、乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、省煤田地质局一九四队在洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直 .

石墨烯在锂离子电池中的应用

石墨烯在锂离子电池中的应用 碳材料因其具有独特的性质和优异的功能,被广泛应用于高温耐火材料,生物工程材料,核反应堆用结构材料,导电用炭材料,电极材料等高科技产业中的各个领域。碳元素的存在形式多种多样,有零维纳米结构富勒烯,一维碳纳米管,三维结构的金刚石、石墨,以及近几年发现的二维结构石墨烯。 图1 0维、1维、2维和3维碳结构示意图 2004年英国的两位科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫从石墨中剥离出石墨片,然后通过特殊的胶带分离法制得仅由一层碳原子构成的薄片——石墨烯。它是一种新型二维碳质材料,具有超大的比表面积, 同时具有良好的导电性和导热性, 也是很有潜力的储能材料,因此成为物理、化学、材料领域的研究热点。石墨烯的出现在科学界掀起了巨

大的波澜,这种新材料的诞生最终使安德烈·海姆和康斯坦丁·诺沃肖洛夫获得2010年诺贝尔物理学奖。 1 石墨烯的结构和性质 石墨烯是只有一个碳原子层厚度的石墨,具有理想的二维晶体结构,碳原子通过SP2杂化成键,与周围其他三个碳原子以C—C单键相连,同时每个碳原子剩有一个垂直于石墨烯平面的p电子,未成对的p电子在与平面垂直的方向形成π轨道,可以在石墨烯晶体结构中自由移动,从而使得石墨烯具有良好的导电性能。 图1.1 石墨烯结构示意图 但是,二维晶体在热学上不稳定,透射电镜观察及电子衍射分析表明单层石墨烯并不是完全平整的,而是呈现出本征的微观的不平整,在平面方向发生角度弯曲。扫描隧道显微镜观察表明纳米级别的褶皱出现在单层石墨烯表面及边缘。这种褶皱起伏变化可以导致静电的产生,从而使得石墨烯在宏观易于聚集,很难以单片层存在。

Pt-石墨烯复合材料

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institution and sharing with colleagues. Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article(e.g.in Word or Tex form)to their personal website or institutional repository.Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: https://www.doczj.com/doc/1e13594873.html,/copyright

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

石墨烯锂离子电池

石墨烯锂硫电池 以《超快长循环寿命锂硫电池:基于石墨烯的三明治结构》为题,介绍了高容量、长循环寿命、低成本及环境友好的新型石墨烯锂硫(Li-S)电池开发,并取得重大突破。据介绍,新型石墨烯锂硫电池理论比能量为2567Wh/Kg而中科院金属所采用石墨烯集电体的轻质特点,使其构成的锂硫电池具有更高的能量密度。目前常用锂电池能量密度140Wh/Kg。也就是说,该电池的储电能力达到目前锂电池18倍以上,相当于将比亚迪E6电动汽车700KG电池,缩小约95%或35KG.根据早前的各方面消息,该电池的功率密度及充电时间均已解决,一次充电多在 6分钟以内,其循环次数及电池寿命高于目前锂电池的百倍。大众化车用动力电池即将投入使用阶段,据测算,使用该电池之电动汽车的使用成本,约相当于燃油汽车的20%。据2014年2月17日中科院金属所的最新消息,石墨烯锂硫电池研发再次取得重大突破。这种超级电池“组装方法与现有锂离子电池工艺兼容,具有进一步放大和产业化前景”。与目前用在小汽车上电池比较,其重量下降90%以上,一次充电不超过10分钟,巡航里程超过450公里,每公里成本下降4/5,电池寿命超过30年。该项研究以工业化生产的石墨烯为原料,通过连续工艺制备了石墨烯集流体和石墨烯复合隔膜,其组装方法还与现有的锂离子电池制造工艺可以兼容,因此具有进一步放大和产业化的前景,中科院金属所已经申请了三项专利。 锌锰电池以二氧化锰为正极,锌为负极,氯化铵水溶液为主电解液的原电池。俗称干电池。学术界中又称为勒克朗谢电池。用面粉、淀粉等使电解液成为凝胶,不流动,形成隔离层,或用棉、纸等加以分隔。锌锰电池的开始电压随使用的MnO2的种类、电解液的组成和pH值等的不同而异,一般在1.55~1.75V,公称电压为1.5V。最适宜的使用温度为15~30℃。锌锰电池是普通干电池的升级换代的高性能电池产品,有LR6(五号)和LR03(七号)两种产品电池。产品分普通型(含汞量60%)和微汞量(含汞量不大于25%),现正在开展无汞型电池试制。性能和用途: 电池性能符合国家行业标准,与国外电池性能相当。由于能重负载,大电流放电,电容量大,低温性能和防漏性能好,性能价格比低(价为干电池2-3倍,大电流工作电能是6-8倍)等优点而广泛用于民用和工业。特别适用于闪光照相

四种锂电池负极材料的PK

四种锂电池负极材料的PK 作者:中国储能网新闻中心来源:电池中国网发布时间:2016-8-8 18:46:00 中国储能网讯:负极材料作为锂电池四大组成材料之一,在提高电池 的容量以及循环性能方面起到了重要作用,处于锂电池产业中游的核心环节。调研显示,2015年中国负极材料产量7.28万吨,同比增长42.7%,国内产值为38.8亿元,同比增长35.2%。这标志着锂电池负极材料市场 迎来了发展的春天。 负极材料分类众多,其中石墨类碳材料一直处于负极材料的主流地位。编辑总结发现,近日受到追捧的石墨烯概念、业内使用较为普遍的人工石墨、性能稳定的中间相碳微球以及有“新大陆”之称的硅碳复合材料,在 负极材料领域形成了“四方争霸”的局面。下面就让编辑带大家了解一下 这“四方霸主”的厉害吧。 独占一方的石墨烯 石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,因为质地薄、硬度大且电子移动速度快而被科学家广泛推崇,并冠以“新材料之王”的

美誉。尽管这位“王者”优异的化学性能被新能源市场所看好,但是至今 为止依然停留在“概念化”的阶段。 如果将石墨烯用作锂电负极材料的话,需要独立的上下游产业链、昂 贵的价格还有复杂的工艺,这让众多负极材料厂商望而却步。尽管如此, 国内依然有一些企业砥砺前行,目前中国安宝、大富科技以及贝特瑞等知 名企业已经开始布局石墨烯产业。 但是,行业内关于石墨烯用作负极材料的质疑也在不断发酵,有人认 为石墨烯的振实和压实密度都非常低,又加之成本昂贵,作为电池负极材 料前景十分渺茫。但是鉴于它的热潮还在持续,说它是“一方霸主”也不 为过。 控制“主场”的人工石墨 目前负极材料主要以天然石墨和人造石墨为主,这两种石墨各有优劣。湖州创亚总经理胡博表示:“天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安 全性能较好。通过各种手段的技术改进,这两种石墨负极材料都可以‘扬 长避短’,但就目前来看,人造石墨用于动力电池上占据一定的优势”。 而这一说法也在市场中得到了印证。相关媒体调研数据显示,今年第 一季度中国天然石墨产量4770吨,同比增长16.3%;人造石墨出货15160吨,同比增长110.5%。从以上数据来看,人造石墨出货量远高于天然石墨,而造成这一现象的重要原因,是今年以来市场对动力电池的强 劲需求。 性能稳定的中间相碳微球 中间相碳微球具有高度有序的层面堆积结构,是典型的软碳,石墨化 程度较高,结构稳定,电化学性能优异。据中咨网研究部统计数据显示,2012年中国负极材料出货量为27650吨,其中天然石墨出货量占比59%,人造石墨30%,石墨化中间碳微球8%。就此说来,中间相碳微球是仅次于天然石墨和人工石墨的第三大主流碳类负极材料。

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯在锂电池中的应用研究

LUOYANG NORMAL UNIVERSITY 2015届本科毕业论文 石墨烯在锂离子电池材料中的应用研究 院(系)名称化学化工学院 专业名称化学工程与工艺 学生姓名雷丙丽 学号110644058 指导教师刘丰讲师 完成时间2015年04月

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。文章不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 The application of graphene in lithium-ion battery materials research Abstract:Graphene is a single atomic layer close packing of a kind of special graphite material, such as electrical, thermal and mechanical aspects has unique structure and excellent performance, can play its important role. Because of properties of high electrical conductivity, large surface area, and chemical stability, graphene holds great promising for potential applications in electrode materials for lithium-ion battery, it is in the lithium-ion battery materials research has attracted widespread attention. Article summarizes the modification of graphene and graphene is introduced as a new research progress of the lithium-ion battery materials, graphene is analyzed the influence of the preparation and applications of graphene in lithium-ion battery material development trend is prospected. Keywords:graphene; the modification of graphene; lithium—ion battery material 1 引言 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界

相关主题
文本预览
相关文档 最新文档