当前位置:文档之家› 大学物理第一章答案

大学物理第一章答案

大学物理第一章答案
大学物理第一章答案

1.5一质点沿半径为

0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 +4t

3.求:

(1)t = 2s时,它的法向加速度和切向加速度;

(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答]

(1)角速度为

ω= dθ/dt = 12t2 = 48(rad2s-1),

法向加速度为

an = rω2 =

230.4(m2s-2);

角加速度为

β= dω/dt = 24t = 48(rad2s-2),

切向加速度为

at = rβ=

4.8(m2s-2).

(2)总加速度为,

当at = a/2时,有4at2 = at2 + an2,即.由此得,

即,

解得.

所以=3.154(rad).

(3)当at = an时,可得rβ= rω2,

即24t = (12t2)2,

解得.

1.7一个半径为R =

1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体

A.在重力作用下,物体A从静止开始匀加速地下降,在Δt =

2.0s内下降的距离h=

0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.

[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.

由于,所以

at = 2h/Δt2 =

0.2(m2s-2).

物体下降3s末的速度为

v = att =

0.6(m2s-1),

这也是边缘的线速度,因此法向加速度为

=

0.36(m2s-2).

1.8一升降机以加速度

1.22m2s-2上升,当上升速度为

2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距

2.74m.计算:

(1)螺帽从天花板落到底面所需的时间;

(2)螺帽相对于升降机外固定柱子的下降距离.

[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为.由题意得h = h1 - h2,所以,解得时间为

=

0.705(s).

算得h2 = -

0.716m,即螺帽相对于升降机外固定柱子的下降距离为

0.716m.

[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程,

由此可计算钉子落下的时间,进而计算下降距离.

第一章质点运动学

1.1一质点沿直线运动,运动方程为x(t) = 6t2 - 2t

3.试求:

(1)第2s内的位移和平均速度;

(2)1s末及2s末的瞬时速度,第2s内的路程;

(3)1s末的瞬时加速度和第2s内的平均加速度.

[解答]

(1)质点在第1s末的位移大小为x(1) = 6312 - 2313 = 4(m).在第2s末的位移大小为x(2) = 6322 - 2323 = 8(m).

在第2s内的位移大小为

Δx = x

(2)–x

(1) = 4(m),

经过的时间为Δt = 1s,所以平均速度大小为

=Δx/Δt = 4(m2s-1).

(2)质点的瞬时速度大小为

v(t) = dx/dt = 12t - 6t2,

因此v

(1) = 1231 - 6312 = 6(m2s-1),v(2) = 1232 - 6322 = 0,

质点在第2s内的路程等于其位移的大小,即Δs =Δx = 4m.(3)质点的瞬时加速度大小为

a(t) = dv/dt = 12 - 12t,

因此1s末的瞬时加速度为a(1) = 12 - 1231 = 0,

第2s内的平均加速度为

= [v

(2) - v

(1)]/Δt = [0–6]/1 = -6(m2s-2).

[注意]第几秒内的平均速度和平均加速度的时间间隔都是1秒.

1.2一质点作匀加速直线运动,在t = 10s内走过路程s = 30m,而其速度增为n = 5倍.试证加速度为.

并由上述数据求出量值.

[证明]依题意得vt = nvo,

根据速度公式vt = vo + at,得

a = (n–1)vo/t,

(1)

根据速度与位移的关系式vt2 = vo2 + 2as,得

a = (n2–,

(2)

(1)平方之后除以

(2)式证得.计算得加速度为

=

0.4(m2s-2).

1.3一人乘摩托车跳越一个大矿坑,他以与水平成

22.5°的夹角的初速度65m2s-1从西边起跳,准确地落在坑的东边.已知东边比西边低70m,忽略空气阻力,且取g = 10m2s-

2.问:

(1)矿坑有多宽?他飞越的时间多长?

(2)他在东边落地时的速度?速度与水平面的夹角?

[解答]方法一:

分步法.

(1)夹角用θ表示,人和车(他)在竖直方向首先做竖直上抛运动,初速度的大小为

vy0 = v0sinθ=

24.87(m2s-1).

取向上的方向为正,根据匀变速直线运动的速度公式

vt - v0 = at,

这里的v0就是vy0,a = -g;当他达到最高点时,vt = 0,所以上升到最高点的时间为t1 = vy0/g =

2.49(s).

再根据匀变速直线运动的速度和位移的关系式

vt2 - v02 = 2as,

可得上升的最大高度为.他从最高点开始再做自由落体运动,下落的高度为

h2 = h1 + h =

100.94(m).

根据自由落体运动公式,得下落的时间为

=

4.49(s).

因此他飞越的时间为

t = t1 + t2 =

6.98(s).

他飞越的水平速度为

vx0 = v0cosθ=

60.05(m2s-1),

所以矿坑的宽度为

x = vx0t =

419.19(m).

(2)根据自由落体速度公式可得他落地的竖直速度大小为

vy = gt =

69.8(m2s-1),

落地速度为

2s-1),

与水平方向的夹角为

φ= arctan(vy/vx) =

49.30?,

方向斜向下.

方法二:

一步法.取向上的方向为正,他在竖直方向的位移为,移项得时间的一元二次方程,解得.这里y = -70m,根号项就是他落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为

t =

6.98(s).

由此可以求解其他问题.

1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即dv/dt = -kv2,k为常数.

(1)试证在关闭发动机后,船在t时刻的速度大小为;

(2)试证在时间t内,船行驶的距离为.

[证明]

(1)分离变量得,

积分,

可得.

(2)公式可化为,

由于v = dx/dt,所以

积分.

因此.证毕.

[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.

由于a = d2x/dt2,

而dx/dt = v,

所以a = dv/dt,

分离变量得方程,xx即可求解.

在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则

dv/dt = -kvn.

(1)如果n = 1,则得,积分得

lnv = -kt +

C.

当t = 0时,v = v0,所以C = lnv0,因此

lnv/v0 = -kt,

得速度为

v = v0e-kt.

而dv = v0e-ktdt,积分得.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.

如果n≠2,可得,读者不妨自证.

1.5一质点沿半径为

0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:

θ= 2 +4t

3.求:

(1)t = 2s时,它的法向加速度和切向加速度;

(2)当切向加速度恰为总加速度大小的一半时,θ为何值?

(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?

[解答]

(1)角速度为

ω= dθ/dt = 12t2 = 48(rad2s-1),

法向加速度为

an = rω2 =

230.4(m2s-2);

角加速度为

β= dω/dt = 24t = 48(rad2s-2),

切向加速度为

at = rβ=

4.8(m2s-2).

(2)总加速度为,

当at = a/2时,有4at2 = at2 + an2,即.由此得,

即,

解得.

所以=3.154(rad).

(3)当at = an时,可得rβ= rω2,

即24t = (12t2)2,

解得.

1.6一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m2s-1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m2s-2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?

[解答]建立水平和垂直坐标系,飞机的初速度的大小为

v0x = v0cosθ,

v0y = v0sinθ.

加速度的大小为

ax = acosα,

ay = asinα.

运动方程为,.

即,.令y = 0,解得飞机回到原来高度时的时间为

t = 0(舍去);(s).

将t代入x的方程求得x = 9000m.

[注意]选择不同的坐标系,例如x方向沿着a的方向或者沿着v0的方向,也能求出相同的结果.

1.7一个半径为R =

1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体

A.在重力作用下,物体A从静止开始匀加速地下降,在Δt =

2.0s内下降的距离h=

0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.

[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.

由于,所以

at = 2h/Δt2 =

0.2(m2s-2).

物体下降3s末的速度为

v = att =

0.6(m2s-1),

这也是边缘的线速度,因此法向加速度为

=

0.36(m2s-2).

1.8一升降机以加速度

1.22m2s-2上升,当上升速度为

2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距

2.74m.计算:

(1)螺帽从天花板落到底面所需的时间;

(2)螺帽相对于升降机外固定柱子的下降距离.

[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为.由题意得h = h1 - h2,所以,解得时间为

=

0.705(s).

算得h2 = -

0.716m,即螺帽相对于升降机外固定柱子的下降距离为

0.716m.

[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程,

由此可计算钉子落下的时间,进而计算下降距离.

1.9有一架飞机从A处向东飞到B处,然后又向西飞回到A处.已知气流相对于地面的速度为u,AB之间的距离为l,飞机相对于空气的速率v保持不变.

(1)如果u = 0(空气静止),试证来回飞行的时间为;

(2)如果气流的速度向东,证明来回飞行的总时间为;

(3)如果气流的速度向北,证明来回飞行的总时间为.

[证明]

(1)飞机飞行来回的速率为v,路程为2l,所以飞行时间为t0 = 2l/v.

(2)飞机向东飞行顺风的速率为v + u,向西飞行逆风的速率为v - u,所以飞行时间为.

(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为,所以飞行时间为

.证毕.

1.10如图所示,一汽车在雨中沿直线行驶,其速度为v1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v

2.今在车后放一长方形物体,问车速v1为多大时此物体刚好不会被雨水淋湿?

[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tanα= l/h.

方法一:

利用xx.根据xx得

v1 = v2sinθ+ v3sinα,

其中v3 = v⊥/cosα,而v⊥= v2cosθ,

因此v1 = v2sinθ+ v2cosθsinα/cosα,

即.证毕.

方法二:

利用正弦定理.根据正弦定理可得,所以,即.

方法三:

利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t时间内,雨滴的位移为

l = (v1–v2sinθ)t,

h = v2cosθ?t.

两式消去时间t即得所求.证毕.

2.12质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x–.

[证明]当物体在直线上运动时,根据牛顿第二定律得方程

利用v = dx/dt,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.

[讨论]此题中,力是位置的函数:

f = f(x),利用变换可得方程:

mvdv = f(x)dx,积分即可求解.

如果f(x) = -k/xn,则得.(1)当n = 1时,可得.利用初始条件x = x0时,v = 0,所以C = lnx0,因此,

即.

(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,

因此,

即.

当n = 2时,即证明了本题的结果.

2.13一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:

(1)小球速率随时间的变化关系v(t);

(2)小球上升到最大高度所花的时间T.

[解答]

(1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变量得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论]

(1)如果还要求位置与时间的关系,可用如下步骤.

由于v = dx/dt,所以,即,积分得,当t = 0时,x = 0,所以,因此.(2)如果小球以v0的初速度向下做直线运动,取向下的方向为正,则微分方程变为,

用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g改为-g得出.由此可见:

不论小球初速度如何,其最终速率趋于常数vm = mg/k.

2.14如图所示:

光滑的水平桌面上放置一固定的圆环带,半径为R.一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk.设物体在某时刻经A点时速率为v0,求此后时刻t物体的速率以及从A点开始所经过的路程.

[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即

N = mv2/R.

物体所受的摩擦力为

f = -μkN,

负号表示力的方向与速度的方向相反.

根据xx第二定律得,即.

积分得.当t = 0时,v = v0,所以,因此.

解得.

由于,积分得,当t = 0时,x = x0,所以C = 0,因此.

2.15如图所示,一半径为R的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.

[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为

F = mgtgθ.

珠子做圆周运动的半径为

r = Rsinθ.

根据xx公式得

F = mgtgθ= mω2Rsinθ,

可得,解得.

2.16如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx,而位移x = Acosωt,其中k,A和ω都是常数.求在t = 0到t =π/2ω的时间间隔内弹力予小球的冲量.

[解答]方法一:

利用冲量公式.根据冲量的定义得

dI = Fdt = -kAcosωtdt,

积分得冲量为,方法二:

利用动量定理.小球的速度为

v = dx/dt = -ωAsinωt,

设小球的质量为m,其初动量为

p1 = mv1 = 0,

末动量为

p2 = mv2 = -mωA,

小球获得的冲量为

I = p2–p1 = -mωA,

可以证明k =mω2,因此

I = -kA/ω.

2.17一个质量m = 50g,以速率的v = 20m2s-1作匀速圆周运动的小球,在周期内向心力给予小球的冲量等于多少?

[解答]小球动量的大小为

p = mv,

但是末动量与初动量互相垂直,根据动量的增量的定义

得,

由此可作矢量三角形,可得.因此向心力给予小球的的冲量大小为

=

1.41(N2s).

[注意]质点向心力大小为F=mv2/R,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω= v/R 运动,拉力的大小就是向心力

F = mv2/R = mωv,

其分量大小分别为

Fx = Fcosθ= Fcosωt,

Fy = Fsinθ= Fsinωt,

给小球的冲量大小为

dIx = Fxdt = Fcosωtdt,

dIy = Fydt = Fsinωtdt,

积分得,,

合冲量为,所前面计算结果相同,但过程要复杂一些.

2.18用棒打击质量

0.3kg,速率等于20m2s-1的水平飞来的球,球飞到竖直上方10m的高度.求棒给予球的冲量多大?设球与棒的接触时间为

0.02s,求球受到的平均冲力?[解答]球上升初速度为

= 14(m2s-1),

其速度的增量为

=

24.4(m2s-1).

棒给球冲量为

I = mΔv =

7.3(N2s),

对球的作用力为(不计重力)

F = I/t =

366.2(N).

2.19如图所示,3个物体

A、B、C,每个质量都为M,B和C靠在一起,放在光滑水平桌面上,两者连有一段长度为

0.4m的细绳,首先放松.B的另一侧则连有另一细绳跨过桌边的定滑轮而与A相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A和B起动后,经多长时间C也开始运动?C开始运动时的速度是多少?(取g = 10m2s-2)

[解答]物体A受到重力和细绳的拉力,可列方程

Mg–T = Ma,

物体B在没有拉物体C之前在拉力T作用下做加速运动,加速度大小为a,可列方程T = Ma,

联立方程可得

a = g/2 = 5(m2s-2).

根据运动学公式,可得B拉C之前的运动时间

=

0.4(s).

此时B的速度大小为

v = at = 2(m2s-1).

物体A跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A和B 拉动C运动是一个碰撞过程,它们的动量守恒,可得

2Mv = 3Mv`,

因此C开始运动的速度为

v` = 2v/3 =

1.33(m2s-1).

2.22如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R.设马对雪橇的拉力总是平行于路面.雪橇的质量为m,它与路面的滑动摩擦因数为μk.当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?

[解答]取弧长增加的方向为正方向,弧位移的大小为

ds = Rdθ.

重力的大小为

G = mg,

方向竖直向下,与位移元的夹角为π+θ,所做的功元为,积分得重力所做的功为.摩擦力的大小为

f =μkN =μkmgcosθ,

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理答案(第三版)汇总

大学物理答案(第三版)汇总

习题七 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同? 答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化. 力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点. 何谓微观量?何谓宏观量?它们之间有什么联系? 答:用来描述个别微观粒子特征的物理量称为微

观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量. 气体宏观量是微观量统计平均的结果. 7.6 计算下列一组粒子平均速率和方均根速率? 解:平均速率 2 8642150 24083062041021++++?+?+?+?+?= = ∑∑i i i N V N V 7.2141 890== 1 s m -? 方均根速率 2 8642150240810620410212 23222 2 ++++?+?+?+?+?= =∑∑i i i N V N V 6 .25= 1 s m -? 7.7 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数). (1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)?v v v f 0 d )( (5)?∞ d )(v v f (6)?2 1 d )(v v v v Nf 解:)(v f :表示一定质量的气体,在温度为T 的平

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

中国石油大学华东大学物理2-2第十六章课后习题答案

习题16 16-6在均匀密绕的螺绕环导线内通有电流20A ,环上线圈 400匝,细环的平均周长是40cm ,测得环内磁感应强度是1.0T 。求: (1)磁场强度; (2)磁化强度; (3)磁化率; (4)磁化面电流的大小和相对磁导率。 [解] (1) 螺绕环内磁场强度 由nI d L =??l H 得 1 -42 m 100.2104020400??=??== -A L nI H (2) 螺绕环内介质的磁化强度 由M B H -= μ得 1-547 m 1076.710210 40 .1??=?-?= -= --A H B M πμ (3) 磁介质的磁化率 由H M m χ=得 8.381021076.74 5 m =??==H M χ (4)环状磁介质表面磁化面电流密度 -15m 1076.7??==A M j 总磁化面电流 A L j dL M I L 55101.34.01076.7?=??=?=?='? 相对磁导率 8.398.3811m 0r =+=+== χμμH B

16-7.一绝对磁导率为μ1的无限长圆柱形直导线,半径为R 1,其中均匀地通有电流I 。导线外包一层绝对磁导率为μ2的圆筒形不导电磁介质,外半径为R 2,如习题16-7图所示。试求磁场强度和磁感应强度的分布,并画出H -r ,B-r 曲线。 [解] 将安培环路定理∑?=?I d L l H 应用于半径为r 的同心圆周 当0≤r ≤1R 时,有 2 2 1 12r R I r H πππ?= ? 所以 2 112R Ir H π= 2111 112R Ir H B πμμ== 当r ≥1R 时,有I r H =?π22 所以r I H π22= 在磁介质内部1R ≤r ≤2R 时,r I H B πμμ22222== 在磁介质外部r ≥2R 时,r I H B πμμ20202 ==' 各区域中磁场强度与磁感应强度的方向均与导体圆柱中电流的方向成右手螺旋关系。 H -r 曲线 B-r 曲线 习题16-7图 R 1 R 2 本图中假设 B 2 12 1μμ>r r 1

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2 。

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理波动学公式集

大学物理波动学公式集波动学 1.定义和概念 简谐波方程:x处t时刻相位 振幅 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A——振动量最大值决定于初态x0=Acosφ 初相φ——x=0处t=0时相位(x0,V0)V0= –Aωsinφ 频率ν——每秒振动的次数 圆频率ω=2πν决定于波源如:弹簧振子ω=m k/ 周期T——振动一次的时间单摆ω=l g/ 波速V——波的相位传播速度或能量传播速度。决定于介质如:绳V=μ / T光速V=C/n 空气V=ρ / B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 方法、定律和定理 x 旋转矢量法:

如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A ?在x方向的投影。 相干光合成振幅: A= φ?++cos 2212221A A A A 其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1) 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) I **布儒斯特定律: 当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。I p 称布儒斯特角,其满足: tg i p = n 2/n 1 公式 振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t) *波动能量:2221 A ρωω= I=V A V 222 1 ρωω=∝A 2 *驻波: 波节间距d=λ/2 基波波长λ0=2L 基频:ν0=V/λ0=V/2L; 谐频:ν=nν0 *多普勒效应: 机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度)

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

大学物理 上海交通大学 16章 课后习题答案

习题16 16-1.如图所示,金属圆环半径为R,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端 a、b间的电势差。 解:(1)由法拉第电磁感应定律 i d dt ε Φ =- ,考虑到圆环内的磁通量不变,所以,环中的感应电动势 i ε=; (2)利用: () a ab b v B dl ε=?? ? ,有: 22 ab Bv R Bv R ε=?= 。 【注:相同电动势的两个电源并联,并联后等效电源电动势不变】 16-2.如图所示,长直导线中通有电流A I0.5 =,在与其相距cm 5.0 = d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4 = l,宽cm 0.2 = a。 不计线圈自感,若线圈以速度cm/s 0.3 = v沿垂直于长导线的方向向右运动,线圈中的感生电动势多大? 解法一:利用法拉第电磁感应定律解决。 首先用0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 则矩形线圈内的磁通量为: 00ln 22 x a x I I l x a l dr r x μμ ππ ++ Φ=?= ? , 由 i d N d t ε Φ =- ,有: 11 () 2 i N I l d x x a x dt μ ε π =--? + ∴当x d =时,有: 04 1.9210 2() i N I l a v V d a μ ε π - ==? +。 解法二:利用动生电动势公式解决。 由0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11 NB l v ε= , 远端部分:22 NB lv ε= , 则:12 εεε =-= 004 11 () 1.9210 22() N I N I al v l v V d d a d d a μμ ππ- -==? ++。 16-3.如图所示,长直导线中通有电流强度为I的电流,长为l的金属棒ab与长直导线共面且垂直于导线放置,其a端离导线为d,并以速度v 平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a、U b的电势大小。 解法一:利用动生电动势公式解决: () d v B dl ε=?? 2 I v d r r μ π =? ,

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

大学物理_刘果红_波动学基础

波动学基础 前言:许多振动系统都不是孤立存在的,它们的周围常有其它物质。当某个系统振动时,它将带动周围同它有一定联系的物体随之一起振动,于是该物体的振动就被周围的物质传播开来,形成波动过程。即:波动是振动的传播过程。 波可分为两大类:机械波、电磁波。这两类波虽本质不同,但都有波动的共同特征:具有一定的传播速度,都伴随着能量的传播,且都能产生反射、折射、干涉等现象 一、机械波的产生与传播 1、产生机械波的条件 (1)、波源——是一个在一定条件下的振动系统,是波动能量的供给者。 (2)、弹性媒质——是一种用弹性力相互联系着的质点系,它是形成机械波、传播机械波所不可缺少的客观物质。 2、波动的形成过程 首先有一振动系统——波源,在它周围有彼此以弹性力相联系的弹性媒质。波动形成时有三个要点: A、波动的传播是由近及远的(相对于波源而言),即有先后次序。 B、传播的是振动状态或周相,质点本身不向前运动。 C、波动在传播时,具有空间周期性和时间周期性 3、机械波与机械振动的关系 波动是振动的传播过程,而振动是产生波动的根源,这是两者的联系。 振动研究的是振动质点离开平衡位置的位移是如何随时间作周期性变化的,即y =f (t);波动研究的是弹性媒质中不同位置彼此以弹性力相联系的质点群,它们的位移(相对自己的平衡位置)随时间作周期性变化的情况,即y =f (,t)。对平面谐波而言,讨论的是波线上各质点的运动情况,故有y =f (x,t),这是两者的区别。 4、机械波的类型与波速 波动按其振动方式的不同,可分为两大类: 横波——波的传播方向与质点振动方向垂直。其图象的外形特征是有突起的波峰和凹下的波谷。各质点的振动情况形成一个具有波峰和波谷的正弦或余弦波形。 纵波——波的传播方向与质点振动方向相同。其外形特征是具有稀疏和稠密的区域,即各质点的振动形成一个具有密集和稀疏相间的完整波。若将纵波中各质点的位移逆时针转过90度,讨论情况就与纵波一致了。

大学物理II练习册答案16

大学物理练习 十六 一、选择题 1.一束波长为λ的平行单色光垂直入射到一单缝 AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则 BC 的长度为 [A ] (A) λ (B)λ/2 (C) 3λ/2 (D) 2λ 解: P 是中央亮纹一侧第一个暗纹所在的位置,λθk a C B ==sin (k=1) 2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝 上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [ B ] 解: 0 304sin ===θλλ θa k a 可得k=2, 可分成的半波带数目为4个. 3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某 点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。 (B )光强之和。 (B ) 振动振幅之和的平方。 (D )振动的相干叠加。 [D ] 解: 所有面积元发出的子波各自传到P 点的振动的相干叠加. 4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。若 使单缝宽度a 变为原来的23 ,同时使入射的单色光的波长λ变为原来的3/4,则 屏幕C 上单缝衍射条纹中央明纹的宽度x ?将变 为原来的 (A) 3/4倍。 (B) 2/3倍。 (C) 9/8倍。 (D) 1/2倍。 (E )2倍。 [ D ] 解:a f x λ 2=? C 屏 f D L A B λ

5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [ C ] (A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动; (D) 变宽,同时向上移; (E) 变宽,不移动。 解: ↑a ↓?x 6.某元素的特征光谱中含有波长分别为λ1=450nm 和λ2=750nm (1nm=10-9m )的光谱线。在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [ D ] (A) 2,3,4,5……… (B) 2,5,8,11…….. (C) 2,4,6,8……… (D) 3,6,9,12…….. 解: 2211sin λλθk k d == 6,103 ,52121====k k k k 当.....)3,2,1( 32==n n k 7.设星光的有效波长为55000A ,用一台物镜直径为1.20m 的望远镜观察双星时, 能分辨的双星的最小角间隔δθ是 [ D ] (A) rad 3102.3-? (B) rad 5104.5-? (C) rad 5108.1-? (D) rad 7106.5-? 解:

《大学物理》(第三版)第16章习题及答案

习题十六 16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的 m 29.0m μλ=,试求这些星球的表面温度. 解:将这些星球看成绝对黑体,则按维恩位移定律: 3- 红限)波长有多大? 解:(1)已知逸出功eV 2.4=A 据光电效应公式2 2 1m mv hv =A + 则光电子最大动能: A hc A h mv E m -=-== λ υ2m ax k 21

eV 0.2J 1023.310 6.12.41020001031063.6191910 834=?=??-????=---- m 2 m ax k 2 1)2(mv E eU a = = ∴遏止电势差 V 0.210 6.11023.319 19 =??=--a U 此? 1秒钟落到2m 1地面上的光子数为 2 1198347 m s 1001.21031063.6105888----??=?????= ==hc E n λ 每秒进入人眼的光子数为

1 1462192 s 1042.14 /10314.31001.24 --?=????==d n N π 16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量. 解:电子的静止质量S J 1063.6,kg 1011.93431 0??=?=--h m 当 2 0c m h =υ时, 则 p 或 ? ε与∴ 5)(00=-=-= υ υυ υυυε h h E k 已知 2.10=λλ 由2.10=∴=υ υλυc 2.110=υυ则 52 .01 12.110==-=-υυυ

大学物理论文(波动与光学)

波动与光学 (感谢老师这学期为我们的付出,敬佩老师的教学态度,经此我们学到了很多东西,真的很感谢) 对于光的认识简史:光是人类和生物生存和发展所必需的,人们对于它的认识却经历了漫长而曲折的过程。最早的人们认为光是由微粒构成的,牛顿就是微粒说的创始人和坚持者,而惠更斯明确的提出了光是一种波,直至19世纪托马斯—-菲涅耳从实验和理论上建立了光的波动理论。但他们的认识持有机械论的观点。19世纪中叶光的电磁理论的建立使人们对于光的认识更近一步,但关于介质的问题仍是矛盾重重,有待解决。终于于19世纪末迈克尔逊实验及爱因斯坦的相对论得出结论:光是一种电磁波,它的传播不需要任何介质。 首先我们从简单的波动与振动讲起,这是光的波动说的理论基石。关于振动的理论描述我们有它的简谐振动函数x=Acos(ωt+φ) A Φω是描述简谐运动的三个特征量,通过微分关系我们可以分别得到速度与加速度的公式。由于简谐运动于匀速圆周运动有许多相似之处,所以在许多方面我们应用参考圆来研究他们的运动。由简谐运动的动力学方程得k=mω2从这里我们可以对简谐运动下一个动力学定义:质点在与平衡位置成正比而反向的合力的作用下的运动叫简谐运动,由此还可以推出T A 的公式,对于简谐振动的能量我们经过一系列的微分与动力学方程推导我们得到机械能=势能与动能之和而他们的平均值各占一半。而实际问题中常会遇到几个简谐运动的合成。我们讨论同意直线相同频率的简谐运动的合成。经过矢量图法我们可以推得A的合成与φ的函数关系公式。 波动。一定扰动的传播称为波动。再此主要研究机械波的一些相关性质的理论。如声波,地震波,水波等。虽然各类波的性质不同但他们在形式上由许多相同的特征规律。我们所讲的简谐波的传播是需要介质的,他的传播形式都要经过介质的传播,这一点是不同于光的。描述波的运动需要波函数,由于简谐波上的任意质元都在做简谐运动因而简谐波是有周期的,一个周期所传播的距离称为波长λ=uT波形曲线可以详细描述波的运动。弹性介质中波是靠质元的弹性力来传播的,可以说弹性越强波的传播就越大,而质元的质量越大就越不容易被带动,这些都有定量的公式来表述的。能量密度ω与与密度振幅频率有一定的函数关系。对于波来说更重要的是它传播能量的本领,可以用波强I来表示I=wu 。实际上波在介质的传播中介质总要吸收一部分能量,这叫做波的吸收。对于波的传播方向的规律惠更斯原理有:介质中任意波面上的各点都可以看做发射子波的波源,其后任意时刻这些子波的包迹就是新的波振面。两列频率以及振幅相同而传播方向相反的简谐波叠加形成新的波,所形成的新的波并不是简谐波。 前面我们对于经典机械波理论有了简单的认识,后来的托马斯杨等人就是建立它的基础上产生了波动学说,就此从波的角度进行进一步的阐述。 众所周知的托马斯杨的双缝干涉实验使光的波动说又向前进了一大步(1)光的波动性的确定: 1801年,托马斯·杨用强烈的单色光照射到开有窄缝的不透光的遮光板上,通过窄缝的光又照射到置与单缝之后的开有两条窄缝的不透光的遮光板上。从双缝通过的两列光波就是同频率的,巧妙地获取了相干光源。从双缝后的光屏上明、暗相间的条纹,终于实现了证明光具有波动性的光的干涉实验。 1804年,菲涅耳用一束光照射到开有小孔的不透光的遮光板上,在遮光板之后的毛玻璃屏上,看见了除中央为亮的亮斑,周围是明、暗相间的圆环。成功地实现了光的衍射。之后,夫琅和费单缝衍射实验又问世。以上光的干涉和衍射现象,从实验的角度有力证明光是

大学物理课后习题答案第一章

第一章 质点运动学 1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度; (2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度. [解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m), 经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1), v (2) = 12×2 - 6×22 = 0 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0, 第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒. 1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得 a = (n – 1)v o /t , (1) 根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:. 计算得加速度为:= 0.4(m·s -2). 1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长? (2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法. (1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为 v y 0 = v 0sin θ = 24.87(m·s -1). 取向上的方向为正,根据匀变速直线运动的速度公式 v t - v 0 = at , 这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为 t 1 = v y 0/g = 2.49(s). 再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m). 人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), v a 2 2(1)(1)n s a n t -= +2 2(1)(1)n s a n t -= +2 2(51)30 (51)10 a -= +2 22h t g =70m 22.5o 图1.3

相关主题
文本预览
相关文档 最新文档