当前位置:文档之家› 离散数学勘误表

离散数学勘误表

离散数学勘误表
离散数学勘误表

离散数学勘误表

《离散数学》-教案.doc

《离散数学》教案 第一章集合与关系 集合是数学中最基本的概念,又是数学各分支、自然科学及社会科学各领域的最普 遍采用的描述工具。集合论是离散数学的重要组成部分,是现代数学中占有独特地位的 一个分支。 G. Cantor( 康脱 ) 是作为数学分支的集合论的奠基人。1870 年前后,他关于无穷序列的研究导致集合论的系统发展。 1874 年他发表了关于实数集合不能与自然数集合建立 一一对应的有名的证明。 1878 年,他引进了两个集合具有相等的“势”的概念。然 而,朴素集合论中包含着悖论。第一个悖论是布拉利 - 福尔蒂的最大序数悖论。 1901 年罗素发现了有名的罗素悖论。 1932 年康脱也发表了关于最大基数的悖论。集合论的现代公理化开始于1908 年策梅罗所发表的一组公理,经过弗兰克尔的加工,这个系统称 为策梅罗 - 弗兰克尔集合论( ZF),其中包括 1904 年策梅罗引入的选择公理。另外一种系 统是冯·诺伊曼 - 伯奈斯 - 哥德尔集合论。公理集合论中一个有名的猜想是连续统假设(CH)。哥德尔证明了连续统假设与策梅罗 - 弗兰克尔集合论的相容性,科恩证明了连续统假设与策梅罗 - 弗兰克尔集合论的独立性。现在把策梅罗 - 弗兰克尔集合论与选择公理一起称为 ZFC系统。 一、学习目的与要求 本章目的是介绍集合的基本概念,讲授集合运算的基本理论,关系的定义与运算。 通过本章的学习,使学生了解集合是数学的基本语言,掌握主要的集合运算方法和关系运 算方法,为学习后续章节打下良好基础。 二、知识点 1.集合的基本概念与表示方法; 2.集合的运算; 3.序偶与笛卡尔积; 4.关系及其表示、关系矩阵、关系图; 5.关系的性质,符合关系、逆关系; 6.关系的闭包运算; 7.集合的划分与覆盖、等价关系与等价类;相容关系; 8.序关系、偏序集、哈斯图。

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为:Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: x(R(x) Q(x)) 或x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) →y(R(y) E(f(x,y),1)))) c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)→b(B(b) E(f(a),b) c(S(c) E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。 (5分) (P→(Q→R))(R→(Q→P))(PQR)(PQR) ((PQR)→(PQR)) ((PQR) →(PQR)). ((PQR)(PQR)) ((PQR) (PQR)) (PQR)(PQR) 这是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (PQR(PQR(PQR(PQR(PQR(PQR 2.设个体域为{1,2,3},求下列命题的真值(4分) a)xy(x+y=4) b)yx (x+y=4) a) T b) F 3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。(4分) x(F(x)→G(x))→(xF(x)→xG(x)) x(F(x)→G(x))→(yF(y)→zG(z)) x(F(x)→G(x))→yz(F(y)→G(z)) xyz((F(x)→G(x))→(F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

《离散数学》考试题库及答案(三)

《离散数学》考试题库及答案 一、 填空 10% (每小题 2分) 1、 若P ,Q 为二命题,Q P ?真值为1,当且仅当 。 2、 对公式),()),(),((y x xR z x zQ y x yP ?∨?∧?中自由变元进行代入的 公 式 为 。 3、 )) (()(x xG x xF ??∧?的 前 束 范 式为 。 4、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A (x )关于y 的自由的, 则 被称为全称量词消去规则,记为US 。 5、 与非门的逻辑网络为 。 二、 选择 30% (每小题 3分) 1、 下列各符号串,不是合式公式的有( )。 A 、R Q P ?∧∧)(; B 、)()((S R Q P ∧→→; C 、R Q P ∧∨∨; D 、S R Q P ∨∧∨?))((。 2、 下列语句是命题的有( )。 A 、2是素数; B 、x+5 > 6; C 、地球外的星球上也有人; D 、这朵花多好看呀!。 3、 下列公式是重言式的有( )。 A 、)(Q P ??; B 、Q Q P →∧)(; C 、P P Q ∧→?)(; D 、P Q P ?→)( 4、 下列问题成立的有( )。 A 、 若C B C A ∨?∨,则B A ?; B 、若C B C A ∧?∧,则B A ?; C 、若B A ???,则B A ?; D 、若B A ?,则B A ???。 5、 命题逻辑演绎的CP 规则为( )。 A 、 在推演过程中可随便使用前提; B 、在推演过程中可随便使用前面演绎出的某些公式的逻辑结果; C 、如果要演绎出的公式为C B →形式,那么将B 作为前提,设法演绎出C ;

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学习题

第一章习题 1.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。(1)2是无理数。 (2)5能被2整除。 (3)现在开会吗? (4)x+5>0 (5)这朵花真是好看! (6)2是素数当且仅当三角形有三条边。 (7)雪是黑色的当且仅当太阳是从东方升起。 (8)2000年10月1日天气晴好。 (9)太阳系以外的星球上有生物。 (10)小李在宿舍里。 (11)全体起立。 (12)4是2的倍数或是3的倍数。 (13)4是偶数且是奇数。 (14)李明和王华是同学。 (15)蓝色和黄色可以调配成绿色。 1..2 将上题中的命题符号化,并讨论他们的真值。 1.3判断下列各命题的真值。 (1)若2+2=4,则3+3=6; (2)若2+2=4,则3+3≠6; (3)若2+2≠=4,则3+3=6; (4)若2+2≠=4,则3+3≠=6; (5)2+2=4,当且仅当3+3=6; (6)2+2=4,当且仅当3+3≠6; (7)2+2≠4,当且仅当3+3=6; (8)2+2≠4,当且仅当3+3≠6; 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号; (2)如果今天是1号,则明天是3号; 1.5将下列命题符号化。 (1)2是偶数不是素数; (2)小王不但聪明而且用功; (3)虽然天气冷。老王还是来了; (4)他一边吃饭,一边看电视; (5)如果天下大雨,他就乘公交汽车来; (6)只有天下大雨,他才乘公交汽车来; (7)除非天下大雨,否则他不乘公交汽车来; (8)不经一事,不长一智; 1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。(1)p∨(q∧r);

离散数学教案

学习目标: 1.深刻理解序偶、笛卡尔积、关系、集合的划分与覆盖、等价关系、等价类、商集、相容关系、(最大)相容类、偏序关系、极大元、极小元、上(下)界、上(下)确界、最大(小)元、全序关系、良序关系等概念; 2.掌握集合的交、并、差、补、对称差的运算及其运算规律; 3.掌握关系的交、并、逆、复合运算、闭包运算及其性质; 4.掌握关系的矩阵表示与关系图; 5.深刻理解关系的自反性、反自反性、对称性、反对称性与传递性,掌握其判别方法; 6.掌握集合的覆盖与划分的联系与区别; 7.掌握偏序关系的判别及其哈斯图的画法;会求偏序集中给定集合的极大元、极小元、上(下)界、上(下)确界、最大(小)元。 主要内容: 1.集合的基本概念及其运算 2.序偶与笛卡尔积 3.关系及其表示 4.关系的性质及其判定方法 5.复合关系与逆关系 6.关系的闭包运算 7.等价关系与相容关系 8.偏序关系 重点: 1.关系的性质及其判别; 2.关系的复合运算及其性质; 3.等价关系与等价类、等价关系与集合的划分的联系; 4.偏序关系判别及其哈斯图的画法、偏序集中特异位置元素的理解。 难点: 1.关系的传递性及其判别; 2.等价关系的特性; 3.偏序关系的哈斯图的画法;偏序集中特异位置元素的求法。 教学手段: 通过多个实例的精讲帮助同学理解重点与难点的内容,并通过大量的练习使同学们巩固与掌握关系的性质及其判别、关系的复合运算及其性质、等价关系的特性、偏序关系的哈斯图的画法及偏序集中特异位置元素的求法。 习题: 习题3、1:4,6;习题3、2:3(8),4(12),6(m);习题3、4:1 (2)、(4),3;习题3、5:1,4;习题3、6:2,5,6;习题3、7:2,5,6;习题3、8:1(1)-(6);习题3、9:3(2)、(4),4(3);习题3、10:1 ,4,5。

《离散数学》及答案

《离散数学》+答案 一、选择或填空: 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6) 44

离散数学题库

常熟理工学院20 ~20 学年第学期 《离散数学》考试试卷(试卷库01卷) 试题总分: 100 分考试时限:120 分钟 题号一二三四五总分阅卷人得分 一、单项选择题(每题2分,共20分) 1.下列表达式正确的有( ) (A)(B)(C)(D) 2.设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,下列( )命题的真值为 真。 (A)(B)(C)(D) 3.集合A={1,2,…,10}上的关系R={|x+y=10,x,y A},则R 的性质为( ) (A)自反的(B)对称的(C)传递的,对称的(D)传递的 4.设,,其中表示模3加法,*表示模2乘法,在集合上 定义如下运算: 有称为的积代数,则的积代数幺元是( ) (A)<0,0> (B)<0,1> (C)<1,0> (D)<1,1> 5.下图中既不是Eular图,也不是Hamilton图的图是( ) 6.设为无向图,,则G一定是( ) (A)完全图(B)树(C)简单图(D)多重图 7.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我有时间”符号化为()。 (A) P Q (B)Q P (C)P Q (D) 8.在有n个结点的连通图中,其边数() (A)最多有n-1条(B)最多有n 条(C)至少有n-1条(D)至少有n条 9.设A-B=,则有() (A)B=(B)B(C)A B (D)A B 10.设集合A上有3个元素,则A上的不同的等价关系的个数为() (A)5 (B)7 (C)3 (D)6 二、填空题(每题2分,共20分)

1.n个命题变元组成的命题公式共有种不同的等价公式。 2.设〈L,≤〉为有界格,a为L中任意元素,如果存在元素b∈L,使,则称b是a 的补元。 3.设*,Δ是定义在集合A上的两个可交换二元运算,如果对于任意的x,y∈A,都有 ,则称运算*和运算Δ满足吸收律。 4.设T是一棵树,则T是一个连通且的图。 5.一个公式的等价式称作该公式的主合取范式是指它仅由组成。 6.量词否定等价式? ("x)P(x) ?,? ($x)P(x) ?。 7.二叉树有5个度为2的结点,则它的叶子结点数为。 8.设是一个群,是阿贝尔群的充要条件是。9.集合S={α,β,γ,δ}上的二元运算*为 * αβγδ αδαβγ βαβγδ γβγγγ δαδγδ 那么,代数系统中的幺元是,α的逆元是。 10.设A={<1,2>,<2,4>,<3,3>},B={<1,3>,<2,4>,<4,2>} = 。 = 。 三、判断题(每题1分,共10分) 1.命题公式是一个矛盾式。() 2.,若,则必有。() 3.设S为集合X上的二元关系,则S是传递的当且仅当(S S)S。() 4.任何一棵二叉树的结点可对应一个前缀码。() 5.代数系统中一个元素的左逆元一定等于该元素的右逆元。() 6.一个有限平面图,面的次数之和等于该图的边数。() 7.A′B = B′A () 8.设*定义在集合A上的一个二元运算,如果A中有关于运算*的左零元θl和右零θr,则A中 有零元。() 9.一个循环群的生成元不是唯一的。() 10.任何一个前缀码都对应一棵二叉树。() 四、解答题(5小题,共30分) 1.(5分)什么是欧拉路?如何用欧拉路判定一个图G是否可一笔画出? 2.(8分)求公式 (P∨Q)R 的主析取范式和主合取范式。

离散数学教案

学习目标: 1.深刻理解序偶、笛卡尔积、关系、集合的划分与覆盖、等价关系、等价类、商集、相容关系、(最大)相容类、偏序关系、极大元、极小元、上(下)界、上(下)确界、最大(小)元、全序关系、良序关系等概念; 2.掌握集合的交、并、差、补、对称差的运算及其运算规律; 3.掌握关系的交、并、逆、复合运算、闭包运算及其性质; 4.掌握关系的矩阵表示和关系图; 5.深刻理解关系的自反性、反自反性、对称性、反对称性和传递性,掌握其判别方法; 6.掌握集合的覆盖与划分的联系与区别; 7.掌握偏序关系的判别及其哈斯图的画法;会求偏序集中给定集合的极大元、极小元、上(下)界、上(下)确界、最大(小)元。 主要内容: 1.集合的基本概念及其运算 2.序偶与笛卡尔积 3.关系及其表示 4.关系的性质及其判定方法 5.复合关系和逆关系 6.关系的闭包运算 7.等价关系与相容关系 8.偏序关系 重点: 1.关系的性质及其判别; 2.关系的复合运算及其性质; 3.等价关系与等价类、等价关系与集合的划分的联系; 4.偏序关系判别及其哈斯图的画法、偏序集中特异位置元素的理解。 难点: 1.关系的传递性及其判别; 2.等价关系的特性; 3.偏序关系的哈斯图的画法;偏序集中特异位置元素的求法。 教学手段: 通过多个实例的精讲帮助同学理解重点和难点的内容,并通过大量的练习使同学们巩固和掌握关系的性质及其判别、关系的复合运算及其性质、等价关系的特性、偏序关系的哈斯图的画法及偏序集中特异位置元素的求法。 习题:

习题 3.1:4,6;习题 3.2:3(8),4(12),6(m );习题 3.4:1 (2)、 (4),3;习题 3.5:1,4;习题 3.6:2,5,6;习题 3.7:2,5,6;习题 3.8:1(1)-(6);习题3.9:3(2)、(4),4(3);习题3.10:1 ,4,5。 3.1 集合的基本概念 集合(set)(或称为集)是数学中的一个最基本的概念。所谓集合,就是指具有共同性质的或适合一定条件的事物的全体,组成集合的这些“事物”称为集合的元素。 集合常用大写字母表示,集合的元素常用小写字母表示。若A 是集合,a 是A 的元素,则称a 属于A ,记作a A ∈;若a 不是A 的元素,则称a 不属于A ,记作。若组成集合的元素个数是有限的,则称该集合为有限集(Finite Set),否则称为无限集(Infinite Set)。 常见集合专用字符的约定: N —自然数集合(非负整数 集) I (或Z )—整数集合(I +,I -) Q —有理数集合(Q +,Q -) R —实数集合(R +,R -) F —分数集合(F +,F -) 脚标+和-是对正、负的区分 C —复数集合 P —素数集合 O —奇数集合 E —偶数集合 幂集 定义 3.1.1 对于每一个集合A ,由A 的所有子集组成的集合,称为集合A 的幂集(Power Set),记为 ()P A 或2A .即(){}P A B B A =?。 例如:{,,}A a b c =, (){,{},{},{},{,},{,},{,},{,,}}P A a b c a b b c a c a b c φ=。 定理3.1.1 如果有限集A 有n 个元素,则其幂集()P A 有2n 个元素。 证明 A 的所有由k 个元素组成的子集数为从n 个元素中取k 个的组合数。 (1)(2)(1)! k n n n n n k C k ---+= L 另外,因A φ?,故()P A 的元素个数N 可表示为 1 201n k n k n n n n n k N C C C C C ==++++++=∑L L 又因 0()n n k k n k n k x y C x y -=+= ∑ 令 1x y == 得 02n n k n k C ==∑ 故()P A 的元素个数是2n 。 人们常常给有限集A 的子集编码,用以表示A 的幂集的各个元素。具体方法是: 设12{,,,}n A a a a =L ,则A 子集B 按照含i a 记1、不含i a 记0(1,2,,)i n =L 的规定

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学全部试卷

离散数学试题与答案试卷一 一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+ x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 8.图的补图为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ?; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A B C

?;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。 A.{4,3}Φ 3、设A={1,2,3},则A上的二元关系有()个。 A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() Rο是自反的; A.若R,S 是自反的,则S Rο是反自反的; B.若R,S 是反自反的,则S Rο是对称的; C.若R,S 是对称的,则S Rο是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s t s p A R= ∧ =则P(A)/ R=() < > ∈ s (| || |} {t ) , ( | , A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是() 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4 度结点。 A.1;B.2;C.3;D.4 。

离散数学教案范本

《离散数学》教案 课目:第一章命题逻辑 教师:熊建英 学时: 12课时

Ⅰ教学提要 一、教学对象(人数) 学生:信息安全专业本科二年级学生50人 二、教学目标(任务) 各小结中知识点掌握程度(* 理解;** 基本掌握;***熟练掌握) 三、教学要求 (一)学生:着重知识点的学习,积极思考,参与提问。 (二)教官:严格纪律,严密组织、保持良好教学秩序,确保教学效果。 四、教官分工 主讲教师1名:负责教案编写,课堂的组织教学,教学总结编写。

五、本章重点 1、利用联接词构造复合命题公式 2、真值表的构建 3、等值演算 4、复合命题公式转化为主析取范式、主合取范式的方法 5、推理证明 六、本章难点 1、利用命题公式演算、真值表进行等值判断和公式类型判断 2、利用命题公式演算、真值表转化主析取范式、主合取范式 3、将现实背景下的条件约束构造为命题公式 七、教学方法 采用课堂教授,主要使用多媒体课件,部分内容及例题用黑板解释。 八、课时分配 1.1 命题及联接词2课时; 1.2 命题公式及其赋值2课时; 1.3 等值式2课时; 1.4 析取范式与合取范式2课时; 1.5 推理理论与消解法2课时; 1.6 命题逻辑应用案例2课时; 九、场地器材 多媒体教室 十、参考书目 1、杨圣洪、张英杰、陈义明:《离散数学》,科学出版社,2011年。 2、屈婉玲、耿素云、张立昂:《离散数学》,高等教育出版社,2008年。 3、屈婉玲、耿素云、张立昂:《离散数学学习指导与习题解析》,高等教育出版社,2008年。

Ⅱ教学进程 1.1 命题及联接词(2课时) 一、教学内容 1、命题的概念表示与分类 2、五种基本的联接词的逻辑关系 3、复合命题的符号化 4、复合命题的真值判断 二、课程时间安排 1、首先介绍本课程的性质,任务和教学安排,对学生明确提出教学上的要求(10分钟) 2、介绍离散数学学科的发展历史(20分钟) 3、命题与真值、命题的分类、简单命题符号化(15分钟) 4、联结词与复合命题(35分钟) 5、本次课小结(10分钟) 三、教学实施 (一)创设意境、导入课程(10分钟) 目的 体会离散数学理论在现实生活中的应用、是计算机专业多门核心课程的基础,让学生明白“离散数学”课程作用和意义。 1、从生活应用中理解逻辑推理作用,及离散数学学习意义; 如:犯罪推理、电路设计、人事安排的最优方案、网络中最优路径等; (1)逻辑推理问题范例(PPT展示一个犯罪推理案例) (2)离散数学是一门可以对逻辑推理规律建立相应的符号运算系统,解决此类问题的科学。 2、离散数学与其他专业课程的联系; (1) 涉及多门计算机专业中很多专业课程,如:编程语言、数据结构、操作系统、数据数据加密。

离散数学答案

02任务_000 1 试卷总分:100 测试时间:0 单项选择题 一、单项选择题(共10 道试题,共100 分。) 1. 设集合A = {1, a },则P(A) = ( ). A. {{1}, {a}} B. {,{1}, {a}} C. {{1}, {a}, {1, a }} D. {,{1}, {a}, {1, a }} 2. 集合A={1, 2, 3, 4}上的关系R={|x=y且x, y A},则R的性质为(). A. 不是自反的 B. 不是对称的 C. 传递的 D. 反自反 3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A. {a,{a}}A B. {1,2}A C. {a}A D. A 4. 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>}, 则h =(). A. f?g B. g?f C. f?f D. g?g

5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包. A. 自反 B. 传递 C. 对称 D. 自反和传递 6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ). A. A B,且A B B. B A,且A B C. A B,且A B D. A B,且A B 7. 设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集上的元素5 是集合A的(). A. 最大元 B. 最小元 C. 极大元 D. 极小元 8. 若集合A的元素个数为10,则其幂集的元素个数为(). A. 1024 B. 10 C. 100 D. 1 9. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A. 0 B. 2 C. 1

文本预览