当前位置:文档之家› 金属粉末的注射成型

金属粉末的注射成型

金属粉末的注射成型

金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。

在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。注射后,模具中的混合物开始固化,形成绿色零件。最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。

相对于传统的金属加工方法,金属粉末注射成型具有以下优势:

首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。

然而,金属粉末注射成型也存在应用范围的限制。首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。其次,较大的尺寸限

制了MIM在制造大尺寸、高精度的零件上的应用。此外,与其他成型方法

相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。

尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。随着制造技术的进步和材料属

性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创

新的解决方案。

金属粉末的注射成型

金属粉末的注射成型 金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。 在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。注射后,模具中的混合物开始固化,形成绿色零件。最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。 相对于传统的金属加工方法,金属粉末注射成型具有以下优势: 首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。 然而,金属粉末注射成型也存在应用范围的限制。首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。其次,较大的尺寸限

制了MIM在制造大尺寸、高精度的零件上的应用。此外,与其他成型方法 相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。 尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。随着制造技术的进步和材料属 性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创 新的解决方案。

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.doczj.com/doc/1e19310546.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

金属注射成型工艺流程

金属注射成型工艺流程 金属注射成型工艺是一种把金属粉末用压力注入模具中,再经过冷却形成金属型腔的工艺。这种方法可以生产外观精美、结构复杂、尺寸精密的金属零件,并且可以在不影响零件尺寸和性能的情况下,更换不同金属材料。金属注射成型工艺的特点是可靠性高、工艺流程简单,且制造的零件精度高、力学性能好,因此,金属注射成型工艺得到了越来越多的应用。 金属注射成型工艺的具体流程如下: 1.属粉末准备:用经过特殊处理的金属粉末制备模具。常用的金属粉末材料有铝合金、铜合金、钢铁合金和不锈钢粉末。 2.具制备:根据图纸进行模具结构设计,然后制备模具,通常是由两部分组成:底座和模穴。 3.压料:将金属粉末倒入模坯,再用压力将粉末完全填入模具内。 4.浇注:注入融化的金属粉末,在模穴内快速融化形成金属型腔。 5.却:冷却模具,使金属型腔冷却凝固成型,并保持尺寸精度。 6.洗:清洗模具,以防止模具附着有害物质和废物。 7.离:从模具中分离出成型零件,有可能要用特殊工具刮开模具,然后手动小心分离出成型零件。 金属注射成型工艺具有生产成本低、精度高、质量稳定、产量大、成型速度快等优势,它比传统的机加工工艺具有更多的优势,可以应用于航空航天、汽车、电子、家用电器等多个领域,日益成为各类金属零件的主要生产工艺。

但金属注射成型工艺也存在着不足。其中,模具投资较大,模具设计和制造技术要求也比较高;另外,在产品设计和制造过程中,模具位置及模具结构受到较大的限制,从而影响零件的尺寸、形状及表面精度。 总之,金属注射成型工艺是一种非常重要的金属成型工艺,它具有生产成本低、精度高、质量稳定、产量大、成型速度快等优势,可以大大改善传统的机械加工工艺,为工业生产提供了质量高、工艺简单、成本低的零部件替代方案。

粉末注射成形

粉末注射成形 简介 粉末注射成形是一种先进的制造技术,它使用粉末作为原料,通过注射成形的方式制造出所需的零件或产品。相比传统的制造方法,粉末注射成形具有更高的精度、更好的表面质量以及更广泛的适用性。它在诸多领域中得到了广泛应用,包括汽车制造、航空航天、医疗器械等。 工艺流程 粉末注射成形的工艺流程通常包括以下几个步骤: 1.原料准备:选择合适的粉末材料,通常是金属或陶 瓷材料。粉末材料需要经过严格的筛选和处理,以确保其质量和均匀性。 2.模具设计与制造:根据零件或产品的设计要求,设 计出相应的注射模具。模具通常由耐磨材料制成,以确保其寿命和精度。

3.粉末注射:将预先加热的粉末注入模具的注射腔中。 注射压力和速度需要控制得当,以确保完整的填充和均匀 的分布。 4.成型和固化:在注射完成后,模具会进一步冷却和 固化,使得粉末颗粒结合在一起。这个过程通常使用冷却 水或其它冷却介质进行。 5.脱模和后处理:成型完成后,从模具中取出零件或 产品,进行脱模。接下来,可能需要进行表面处理、热处 理或其它后续加工,以达到最终的要求。 优势和应用 1. 高精度 粉末注射成形具有很高的制造精度。由于粉末颗粒能够充 分填充模具腔体并保持均匀分布,所以成品的尺寸偏差很小。这一优势使得粉末注射成形在需要高精度零件的制造中得到广泛应用,如精密仪器、光学设备等。

2. 准确的复杂结构 粉末注射成形能够制造出几何形状复杂的零件和产品。由 于注射成形过程是在模具中进行,所以可以通过设计合适的模具来实现对几何结构的精确控制。这使得粉末注射成形成为一种制造高复杂度零件的理想选择,如涡轮叶片、齿轮等。 3. 节约材料和成本 相比传统的制造方法,粉末注射成形具有更高的材料利用率,减少浪费。由于粉末注射成形不需要额外的切削过程,所以材料的损耗较小。此外,由于粉末注射成形可以一次性完成整个零件的制造过程,所以生产效率较高,降低了制造成本。 4. 广泛的适用性 粉末注射成形可以适用于多种材料,包括金属和陶瓷等。 不同的材料可以通过调整工艺参数来满足不同的要求。这使得粉末注射成形在各个领域中都得到了广泛的应用,如汽车制造、航空航天、医疗器械等。

MIM(金属粉末注塑成型)技术介绍

MIM(金属粉末注塑成型)技术介绍 MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件 近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。 MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下 采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具 型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。 MIM产品的特点: 1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的 金属零部件 ; 2、 MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80 ~ 1.6 μm ,重量范围在 0.1 ~200g。尺寸精度高(± 0.1% ~±0.3% ),一般无需后续加工 ; 3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产 ; 4、产品质量稳定、性能可靠,制品的相对密度可达95% ~ 99% ,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。 MIM技术优势

参数MIM传统 PM机械加工精密铸造相对密度98%98%100%98%拉伸强度高低高高 延伸率高低高高 硬度高低高高 复杂程度高低高中 表面粗糙度高中高中 量产可行性高高低中 材料范围高高高中- 高成本中低高中

MIM与传统粉末冶金相对比 MIM可以制造复杂形状的产品,避免更多的二次机加工。 MIM产品密度高、耐蚀性好、强度高、延展性好。 MIM 可以将 2 个或更多 PM 产品组合成一个MIM产品,节省材料和工序。MIM与机械加工相对比 MIM设计可以节省材料、降低重量。 MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。MIM通过模具一次成形复杂产品,避免多道加工工序。 MIM可以制造难以机械加工材料的复杂形状零件。 MIM与精密铸造相对比 MIM 可以制造薄壁产品,最薄可以做到0.2mm 。 MIM产品表面粗糙度更好。 MIM更适宜制细盲孔和通孔。 MIM大大减少了二次机加工的工作量。 MIM可以快速的大批量、低成本制造小型零件。 MIM材料范围 常用 MIM材料应用领域: 材料体系合金牌号、成分应用领域 低合金钢Fe-2Ni, Fe-8Ni汽车、机械等行业的各种结构件不锈钢316L ,17-4PH医疗器械、钟表零件 硬质合金WC-Co各种刀具、钟表、手表钨合金W-Ni-Fe, W-Ni-Cu, W-Cu军工业、通讯、日用品钛合金Ti,Ti-6Al-4V医疗、军工结构件 磁性材料Fe,Fe14 Nd2 B,SmCo5各种磁性能部件

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

金属粉末注射成型技术

金属粉末注射成型技术 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种先进的制造工艺,结合了粉末冶金和塑料注射成型技术,广泛应用于金属零件的制造。MIM技术以其高精度、高复杂性和高效 率的特点,成为近年来制造业领域的热门技术。 一、MIM工艺简介 金属粉末注射成型技术是将金属粉末与有机材料(通常为热熔型塑料)混合,经过塑化、成型、脱脂和烧结等多个工艺步骤,最终形成 具有金属特性的零件。该技术的基本步骤包括:原料准备、混合、注 射成型、脱脂和烧结。 1. 原料准备 金属粉末是MIM技术的关键原料,其粒径通常为10~20μm,且具 有良好的流动性和可压缩性。可以使用的金属粉末有不锈钢、合金钢、铁基合金、钛合金等。同时,还需准备有机材料(通常是聚丙烯、聚 氨酯或类似材料)作为粘结剂。 2. 混合 将金属粉末和有机材料进行混合,通常采用机械搅拌或球磨的方法,确保金属粉末均匀分布在有机材料中。 3. 注射成型

混合料经过塑化,放入注射成型机中进行注射成型。注射成型机通 过加热熔融的混合料,并将其注入模具中,在一定的温度和压力下形 成所需的零件形状。 4. 脱脂 注射成型后,零件经过脱脂工艺,将有机材料从混合料中去除。通 常使用热处理或溶剂处理方法进行脱脂。 5. 烧结 脱脂后的零件被置于特定的高温环境中,金属粉末与有机材料经过 烧结而成。在烧结过程中,金属颗粒之间发生冶金结合,形成致密的 金属零件。 二、MIM技术的优势 金属粉末注射成型技术相比其他金属加工方式具有以下几个显著优势: 1. 复杂形状 MIM技术可以制造复杂形状的金属零件,包括细小孔洞、薄壁结构、内部腔体等。这种高精度和高复杂性的加工能力,使得MIM技术在航 空航天、医疗器械、汽车零部件等领域得到广泛应用。 2. 材料多样性

金属粉末注射成型工艺特殊过程控制要求

金属粉末注射成型工艺(MIN)特殊过程控制要求一、金属粉末注射成型的概念和原理 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二、金属粉末注射成型工艺流程及其特殊过程控制要求 1、金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2、粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性以合适注射成形和位置坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘接剂,近年来逐渐从单凭经验选择向根据对脱脂方法及对粘接剂功能的要求,有针对性地设计粘接剂体系的发展方向。粘接剂一般是由低分子组元与高分子组元再加上一些必要的添加剂构成。低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成型坯强度。二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。通常采用的粘接剂组要有:热塑性体系(石蜡基、油基和热塑性聚合物基)、凝胶体系、热固性体系和水溶性体系。 3、混炼;混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。这牵涉粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。这一工艺步骤目前已知停留在依靠经验摸索的水平上,最终评价混炼工艺好坏的一个重要指标就是所得到喂料的均匀和一致性。MIM喂料的混合是在热效应和剪切力的联合作用下完成的。混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,

金属注射粉末成型工艺介绍

金属注射粉末成型工艺介绍 金属粉末注射成型(Metal Injection Molding,简称MIM)是一种新的零部件制备技术,它是将塑料注射成型技术引入到粉末冶金领域而形成的一种全新的零部件加工技术。众所周知,塑料注射成形技术能生产出各种形状复杂且价格低廉的塑料制品,但塑料制品强度不高,为了改善其性能,在塑料中添加金属粉末以得到强度较高、耐磨性好的制品。现在,这一想法已发展为最大限度地提高固体粒子含量,并在随后的脱脂烧结过程中完全去除粘结剂,从而使成形坯致密化。这种新的粉末冶金成型方法被称为金属粉末注射成型。 金属注塑成型(MIM)工艺特点 1、金属注塑成型技术可以概括为:现代塑料注塑成型技术+粉末冶金技术。 2、MIM工艺流程为: 状态下(~150℃)用注射成型机注入模腔内固化成形;然后用化学或热分解的方法将成形坯中的粘结剂脱除;最后经烧结致密化得到最终产品。有的烧结产品还可进行进一步致密化处理、热处理或机加工。 4、MIM技术特点: ---- 可以直接制备出具有最终形状和尺寸的复杂零部件。例如:非对称零件,带沟槽、横孔、盲孔的零件,壁厚变化比较大的零件,表面带花纹和文字的零件等。产品性能优越由于MIM产品微观组织均匀,没有铸造工艺中出现的粗大结晶组织和成分偏析,产品密度高,产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀,要明显优于精密铸造材料和传统粉末冶金材料。 ---- 可以实现零部件一体化。由于加工技术或材料性能的原因,有些部件采用传统技术制造时,需要加工成几个零件来组装,有时几个零件的材料还不一样。采用MIM技术则可以直接制成一个整体的复合部件。 ---- 材料适应性广。可以说:能制成合适粉末的任何材料都可以用MIM技术制造零部件。 ---- 生产成本低。主要表现在:可以减少甚至消除机加工,劳动强度低,大幅度的提高生产效率;原材料利用率高,避免切削加工中的浪费;生产线高度自动化,工序简单,可连续大批量生产。 5、MIM主要参数:MIM尺寸精度可达±0.3%;密度控制在 93~98%实体密度以上;最大尺寸<100mm,推荐长径比<20,厚度范围0.2~8mm之间,重量范围在0.05~200g之间, 重量<50g 对MIM来说更经济;表面粗糙度0.4~1.6微米;机械性能可与精细材料相比拟;复杂性,几何形状可以和塑料注塑相比拟;可以

金属粉末注射成型

金属粉末注射成型 简要: 金属粉末注射成型(MetalPowderInjectionMolding,简称MIM)技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。金属注射成型是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用模具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确地将设计思想转变为为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革[1]。 关键词:金属粉末注射成型的发展现状及现状工艺流程工艺特点粘接剂流 动分析研究展望 正文: 一、金属粉末注射成型的发展现状及现状 1.国外概况[2][3][5] 金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。以Riverst和Wiech于70 年代发明的专利为起点,开始了金属粉末注射成形技术。Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF奖。但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。 德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于控制生坯的变形,保证了烧结后的尺寸精度。同时,由于利用了聚醛树脂极性连接金属粉末,故适合于多种粉末的注射。这种工艺不仅大大降低了生产成本,提高了生产率,并且可生产尺寸较大的零件和制品,扩大了MIM的应用范围,从而使MIM真正成为一种具有竞争力的PM近净成型技术。 作为该项技术的发明国美国。MIM技术已经广泛的应用于航天、摩托车、汽车、医疗器械、食品机械、计算机、通信设备、五金工具、仪器仪表、钟表等各

金属粉末注射成型技术

金属粉末注射成型技术 金属粉末注射成型(Metal Powder Injection Molding,简称MIM) 技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复 杂形状的金属制品。MIM技术结合了传统的注射成型和金属粉末冶金技术 的优点,能够高效、精确地制造出形状复杂的金属部件。下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。 一、工艺原理 MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。最后,进行去 脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。 二、材料特点 MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、 铁合金等。这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满 足各种应用领域的需求。金属粉末的粒度一般在5-20μm之间,可以根据 制品要求进行选择。此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。 三、工艺流程 MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和 后处理等环节。首先,需要根据制品要求选择合适的金属粉末和添加剂, 并对其进行筛选和处理。然后,将金属粉末与增塑剂、溶剂等辅助剂进行

混合,形成可塑性的混合料。接下来,将混合料装入注射机中,通过高压 力将混合料注射至模具腔穴中。然后,将近成型的部件进行烧结,使其实 现致密化和结合。最后,通过去脱模、除渣、表面处理等后处理工艺,得 到最终的金属部件。 四、应用领域 MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。在电子通讯领域,MIM技术可以制造小型高精度的连接器、 插件等零部件,满足电子设备不断减小体积和提高性能的需求。在汽车工 业领域,MIM技术可以制造发动机零部件、制动系统零部件、传感器等关 键零部件,提高零部件的精度和强度。在医疗器械领域,MIM技术可以制 造人工关节、手术器械等复杂形状的金属部件,满足医疗器械对精度和生 物相容性的要求。在军工领域,MIM技术可以制造高强度、高精度的武器 部件,提高武器系统的性能和可靠性。 综上所述,金属粉末注射成型技术是一种高效、精确制造复杂形状金 属部件的先进技术。它结合了注射成型和金属粉末冶金技术的优点,可以 满足各种领域对金属部件的高精度、高性能要求。随着科技的发展,MIM 技术在各个领域中的应用将会进一步拓展。

金属粉末注射成型工艺技术

金属粉末注射成型工艺技术 一、引言 金属粉末注射成型是一种先进的制造工艺技术,它通过将金属粉末与添加剂混合,然后在高温和高压的条件下注射到模具中,最终形成所需的金属零件。这种工艺技术具有高精度、复杂形状和优良性能的特点,被广泛应用于航空航天、汽车制造、医疗器械等领域。本文将全面、详细地探讨金属粉末注射成型工艺技术。 二、金属粉末注射成型的工艺流程 金属粉末注射成型工艺技术的流程可以分为以下几个步骤: 2.1 粉末制备 在金属粉末注射成型工艺中,粉末的质量和性能对最终产品的质量和性能有着重要影响。因此,粉末的制备是关键的一步。通常采用的方法包括机械合金化、电解还原、气相沉积等。 2.2 粉末混合 在粉末制备完成后,需要将金属粉末与添加剂进行混合。添加剂的作用是提高粉末的流动性和可压性,从而更好地填充模具。 2.3 注射成型 混合好的金属粉末和添加剂被注入注射成型机中,然后在高温和高压的条件下注射到模具中。注射成型过程中,金属粉末会充分热塑,填充整个模具腔。 2.4 烧结 注射成型后的零件需要进行烧结处理,以提高其密度和机械性能。烧结过程中,金属粉末颗粒之间会发生结合,形成致密的结构。

2.5 后处理 经过烧结处理后的零件可能需要进行后处理,如去除表面氧化层、研磨抛光等,以提高表面质量和精度。 三、金属粉末注射成型的优势和应用 金属粉末注射成型工艺技术具有以下优势: 3.1 高精度 金属粉末注射成型可以制造出复杂形状的零件,并且具有较高的尺寸精度和表面质量。 3.2 材料利用率高 金属粉末注射成型可以有效利用原材料,减少材料浪费。 3.3 机械性能优良 经过烧结处理的金属粉末注射成型零件具有较高的密度和机械性能,可以满足各种工程应用的需求。 金属粉末注射成型工艺技术在许多领域得到了广泛应用: 3.4 航空航天领域 金属粉末注射成型可以制造出轻量化、高强度的零件,满足航空航天领域对材料性能和质量的要求。 3.5 汽车制造领域 金属粉末注射成型可以制造出复杂形状的汽车零件,提高汽车的性能和安全性。 3.6 医疗器械领域 金属粉末注射成型可以制造出高精度、耐磨的医疗器械零件,提高医疗器械的性能和可靠性。

金属粉末注射成型

金属粉末注射成型 一( 金属粉末注射成型的概念和原理 粉末冶金不仅是一种材料制造技术, 而且其本身包含着材料的加工和处理, 它以少无切削的特点越来越受到重视, 并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属,非金属及金属高分子复合等) , 而且已发展成为制取各种高性能结构材料、特种功能材料和极限条件下工作材料、各种形状复杂的异型件的有效途径。近年来, 粉末冶金技术最引人注目的进展, 莫过于粉末注射成型(MIM )迅速实现产业化, 并取得突破性进展。[1] 金属注射成型,Metal Injection Molding,,简称MIM~是传统的粉末冶金工艺 与塑料成型工艺相结合的新工艺~是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术~利用模具可注射成型, 快速制造高密度、高精度、复杂形状的结构零件, 能够快速准确地将设计思想转变为为具有一定结构、功能特性的制品, 并可直接批量生产出零件,是制造技术行业一次新的变革[2]。 其注射机理为:通过注射机将金属粉末与粘接剂的混合物以一定的温度~速度 和压力注人充满模腔~经冷却定型出模得到一定形状、尺寸的预制件~再脱出预制件中的粘接剂并进行烧结~可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末~有机粘接剂?混料?成型?脱脂?烧结?后处理?成品。 二(金属粉末注射成型的工艺流程[3] 2.1金属粉末的选择 首先根据产品的技术要求和使用条件选择粉末的种类~然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在0.5,20μ,,从理论上讲~粉末

金属粉末注射成形工艺

金属粉末注射成形工艺 金属粉末注射成形,又被称为金属三维打印,是一种先进的制造技术,可以快速、高效地制造出复杂形状的金属零部件。该工艺使用金属粉末作为原料,通过注射成形技术将粉末逐层堆积并熔化,最终形成所需的零部件。 金属粉末注射成形工艺主要包括以下几个步骤: 1. 材料准备:首先需要选择适合的金属粉末作为原料,常用的金属粉末包括不锈钢、铝合金、钛合金等。这些粉末需要经过筛分、分类和预处理等工艺,以保证其质量和性能。 2. 粉末注射:将经过处理的金属粉末注入注射成形机中,通过气压或机械力推动粉末向成型腔体注入,并形成具有预定形状的初模。 3. 粉末固化:在注射成形过程中,粉末通过高温或加热装置进行固化,使其达到一定的强度和硬度。固化后的金属粉末形成一层层的堆积。 4. 层层熔化:通过高能激光束或电子束熔化技术,对已固化的粉末进行局部加热,使其熔化并与下一层的金属粉末融合在一起。重复这个过程,直到完成整个零件的制造。 5. 后处理:完成熔化过程后,金属零件需要经过去渣、退火、热处理等后续工艺,以进一步提高零件的性能,去除残留的应力和瑕疵。

金属粉末注射成形工艺具有以下优点: 1. 快速高效:相比传统的制造工艺,金属粉末注射成形工艺可以大大缩短制造周期,节约人力和时间成本。 2. 复杂形状:金属粉末注射成形技术可以制造出具有复杂形状的零部件,包括中空结构、内腔结构等。 3. 材料选择多样:金属粉末注射成形工艺可以使用多种金属粉末作为原料,满足不同材料性能和需求。 4. 资源节约:由于金属粉末注射成形工艺是按需制造,不需要额外加工或切割,可以最大限度地节约材料,减少废料产生。 然而,金属粉末注射成形工艺也存在一些挑战,如技术难度高、成本较高等。随着技术的不断进步和成熟,相信金属粉末注射成形工艺将在未来得到更广泛的应用,成为制造业领域的新宠。金属粉末注射成形工艺是一项颇具潜力的新兴制造技术,它在汽车、航空航天、医疗器械等许多行业都有广泛应用的前景。下面将进一步探讨金属粉末注射成形工艺的特点、应用领域以及存在的挑战。 金属粉末注射成形工艺还被称为3D打印,其最大的特点在于 可以制造出具有复杂形状和内部结构的零部件。与传统的制造工艺相比,金属粉末注射成形工艺具有以下几个优势: 1. 可制造复杂结构:传统制造工艺对于具有复杂内部结构和中

2024年金属粉末注射成型技术市场前景分析

2024年金属粉末注射成型技术市场前景分析 摘要 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种将金属粉末与高聚物混合,注射成型后再通过烧结工艺制作金属制品的先进制造技术。本文对MIM技术的发展历程、市场现状以及未来发展进行了分析和展望。通过对市场前景的分析,发现MIM技术具有广泛的应用领域和良好的市场前景。 引言 金属粉末注射成型技术是一种高效、精密和经济的金属制造工艺。其利用粉末冶金和塑料注射成型的优势,可以制造出形状复杂、精度高的金属制品,广泛应用于汽车、电子、航空航天等领域。本文将对MIM技术的市场前景进行详细分析,以期为相关领域的投资者和研发人员提供参考。 MIM技术的发展历程 MIM技术起源于20世纪60年代,最初是用于制造零件和工具,随着材料科学和制造工艺的不断进步,MIM技术也得到了迅猛发展。1990年代初,MIM技术开始应用于生物医疗领域,例如制造人工关节和植入式器械等。随着制造工艺和设备的不断改进,MIM技术的应用领域不断扩展,目前已广泛应用于汽车、电子、航空航天等领域。

MIM技术的市场现状 目前,MIM技术在全球范围内得到了广泛的应用和发展。据市场调研机构的数据显示,2019年全球MIM市场规模超过10亿美元,并且预计在未来数年内会有更快 的增长速度。MIM技术的市场主要分布在北美、欧洲和亚洲地区。 在应用领域方面,汽车行业是MIM技术的主要应用领域之一。由于MIM技术可 以制造出形状复杂、精度高的零部件,因此被广泛应用于发动机、转向系统、传动装置等关键部件的制造。此外,MIM技术也被广泛应用于电子、医疗器械、航空航天等领域,为各种领域的制造商提供了高效、精密和经济的解决方案。 MIM技术的市场前景 MIM技术具有广阔的市场前景。首先,随着科技水平和工艺设备的不断进步,MIM技术的成本逐渐降低,制造效率大大提高,使得MIM技术在更多行业的应用变 得可行。其次,随着全球汽车行业的发展和现代化需求的增加,对形状复杂、精度高的金属零部件的需求也在不断增长,为MIM技术提供了巨大的市场机遇。此外,航 空航天、电子和医疗器械等行业的快速发展也为MIM技术的应用提供了广阔的市场 空间。 然而,MIM技术在市场应用中仍然面临一些挑战。首先,MIM技术还存在一定的制造工艺难题,例如控制粉末配比、注射成型过程中的气泡问题等,需要进一步改进和解决。其次,相较于传统金属加工技术,MIM技术的材料成本和设备投入仍然较高,需要进一步优化和降低成本。

金属粉末注塑成型技术

金属粉末注塑成型技术 金属粉末注塑成型技术是一种近几十年来快速发展的制造工艺。它采用了注塑成型技术和金属粉末冶金技术相结合的方法,可以生产出复杂形状、精密尺寸的金属零件。该技术适用于各种金属材料,例如铝合金、不锈钢、钢铁等,广泛应用于汽车、航空、军工、医疗等领域。 金属粉末注塑成型技术的工艺流程主要包括:金属粉末的制备、注塑成型和后处理。首先,通过机械粉碎、球磨和筛选等工艺,将金属制成细小的粉末。然后,将金属粉末注入到注塑机中,加入适量的增塑剂等辅助物质,进行混合和预热,使金属粉末达到一定流动性。接下来,将金属粉末注射到模具中,施加一定的压力,使其充分填充模具的空腔,并在一定的温度下进行固化。最后,取出固化好的零件,进行去除模具、清洁和表面处理等后处理工艺。 金属粉末注塑成型技术的优点有以下几个方面:首先,它可以生产出复杂形状、高精度的金属零件,能够实现一次成型,减少了二次加工的工序。其次,由于采用了模具成型,可以保证零件的尺寸稳定性和一致性,提高了产品质量。此外,注塑成型过程中使用的是金属粉末,可以有效利用材料,节约资源。最后,该技术可以生产出高强度、高耐磨、高耐腐蚀的金属零件,具有很高的使用价值。 然而,金属粉末注塑成型技术也存在一些问题和挑战。首先,金属粉末的制备工艺比较复杂,需要控制粉末的粒度、形状和成分等参数,要求较高的生产设备和技术。其次,金属粉末注塑成型的工艺条件要求较高,需要保证金属粉末的流动性和固化性能,在温度、压力和时间等方面进行精确控制。此外,由于金属粉末注塑成型的工艺是高温高压的,有一定的安全风险,需要注意安全操作。

对于金属粉末注塑成型技术的研究和发展,目前存在一些热点和趋势。首先,随着3D打印技术的发展,金属粉末注塑成型技术与3D打印技术的 结合成为研究的热点之一、其次,注塑成型工艺参数和模具设计对产品质 量和性能的影响也是研究的重点。此外,新型材料和合金的研发,以及注 塑成型技术在新兴领域的应用也是未来的研究方向。 综上所述,金属粉末注塑成型技术是一种先进的金属制造工艺,具有 高精度、高强度和高性能的特点。它在各个领域的应用前景广阔,有助于 提高产品质量和节约资源。然而,该技术还存在一些问题和挑战,需要进 一步的研究和探索。相信随着技术的进步和创新,金属粉末注塑成型技术 将得到更广泛的应用和推广。

相关主题
文本预览
相关文档 最新文档