当前位置:文档之家› 数字信号处理实验——维纳滤波器设计..

数字信号处理实验——维纳滤波器设计..

数字信号处理实验——维纳滤波器设计..
数字信号处理实验——维纳滤波器设计..

实验一 维纳滤波

1. 实验内容

设计一个维纳滤波器:

(1) 产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪,(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。

(2) 估计()i x n ,1,2,3i =的AR 模型参数。假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。

2. 实验原理

滤波目的是从被噪声污染的信号中分离出有用的信号来,最大限度地抑制噪声。对信号进行滤波的实质就是对信号进行估计。滤波问题就是设计一个线性滤波器,使得滤波器的输出信号()y n 是期望响应()s n 的一个估计值。下图就是观测信号的组成和信号滤波的一般模型。

观测信号()()()x n s n v n =+ 信号滤波的一般模型

维纳滤波解决从噪声中提取信号的滤波问题,并以估计的结果与真值之间的误差均方值最小作为最佳准则。它根据()()(),1,

,x n x n x n m --估计信号的当前

值,它的解以系统的系统函数()H z 或单位脉冲()h n 形式给出,这种系统常称为最佳线性滤波器。

维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小。

假设滤波系统()h n 是一个线性时不变系统,它的()h n 和输入信号都是复函数,设

()()()h n a n jb n =+ 0,1,

n

=

考虑系统的因果性,可得到滤波器的输出

()()()()()0

*m y n h n x n h m x n m +∞

===-∑ 0,1,

n

=

设期望信号()d n ,误差信号()e n 及其均方误差()2

E e n ????

分别为

()()()()()e n d n y n s n y n =-=-

()()()()()()22

2

0m E e n E d n y n E d n h m x n m ∞=??

????=-=--?????

?????

∑ 要使均方误差为最小,需满足:

()()

2

0E e n h j ?????=? 整理得()()0E x n j e n *??-=??,等价于()()0E x n j e n *

??-=??

上式说明,均方误差达到最小值的充要条件使误差信号与任一进入估计的输入信号正交,这就是正交性原理。

将()()0E x n j e n *

??-=??展开,得

()()()()00m E x n k d n h m x m +∞

***

=????--=?? ????

?∑

整理得 ()()()0

dx xx m r k h m r m k +∞

*=-=-∑ 0,1,2,

k

= 等价于()()()()()0

dx xx xx m r k h m r k m h k r k +∞

==-=*∑ 0,1,2,

k

=

此式称为维纳-霍夫(Wiener-Holf )方程。解此方程可得到最优权系数

012,,,

h h h ,此式是Wiener 滤波器的一般方程。

定义

121M M h h h h ???

??

??=??

??

??()()()1011xd xd xd xd M r r R r M ???????=????-????

()()()()()()()()

()011102120xx xx xx xx

xx xx xx xx xx xx M M

r r r M r r r M R r M r M r *

*

*

???

-?

?-??=????

--????

则维纳-霍夫方程可写成矩阵形式

xd xx R R h =求逆,得1

xx xd h R R -=

此式表明,已知期望信号与观测数据的互相关函数及观测数据的自相关函数时,可以通过矩阵求逆运算,得到维纳滤波器的最佳解。

3. 实验结果及分析

(1)当L=200,N=6

信噪比为20dB 的滤波效果

信噪比为10dB的滤波效果

信噪比为6dB的滤波效果(2)当L=200,N=60

信噪比为20dB的滤波效果

信噪比为10dB的滤波效果

信噪比为6dB的滤波效果(3)当L=600,N=6

信噪比为20dB的滤波效果

信噪比为10dB的滤波效果

信噪比为6dB的滤波效果

实验分析:别取信号长度为200、600,滤波器长度为6、60,加噪信噪比为20dB、10dB、6dB,组合进行实验。每组实验得到的最小均方误差统计如下表。由此表可以看出,信号长度越长,最小均方误差(绝对值)越大,精度越差;在信噪比较大(误差影响较小)的滤波过程中,滤波器长度约长,最小均方误差(绝对值)越小,精度越好。

表1 最小均方误差统计表

对于相同信号和滤波器(这里取L=200,N=6),信噪比越大,最小距离误差约小;而当信噪比较小时,信号与噪声值接近,导致滤波效果受到影响,最小距离误差变大。

4. 源代码

clear;

clc;

%初始化变量

L=200;

%信号长度

N=6;

%滤波器的阶次

a=0.96;

wn=randn(L,1);

%wn为用于生成信号的噪声信号,随机生成一个L*1矩阵,生成矩阵的元素值在%区间(0.0,1.0)之间

sn=zeros(L,1);

%sn为信号,生成一个L*1的零矩阵

hn=zeros(N,1);

%hn为系统单位脉冲响应生成一个N*1的零矩阵

rxx=zeros(N,1);

%rxx为自相关函数,生成一个N*1的零矩阵

rxd=zeros(N,1);

%rxd为互相关函数,生成一个N*1的零矩阵

yn=zeros(L,1);

%yn为输出信号,生成一个L*1的零矩阵

xt=zeros(L+N,1);

%生成一个(L+N)*1的零矩阵

gn=zeros(L,1);

%gn为yn与sn最小距离误差信号,生成一个L*1的零矩阵

%根据给定公式s(n)=as(n-1)+w(n),生成理想信号

for i=2:L

sn(i,1)=a*sn(i-1,1)+wn(i,1);

end

sn(1,1)=wn(1,1);

subplot(2,2,1);

plot(sn,'r'),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('sn')

%生成期望信号方差cd

cd=(var(wn))/(1-a^2);

%对信号加噪

x1=awgn(sn,20);

x2=awgn(sn,10);

x3=awgn(sn,6);

subplot(2,2,2)

plot(x3,'g'),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('x3');

%生成输入信号与理想信号的互相关函数,此处x1为输入信号,sn为期望信号for i=1:N,

for m=i:1:L,

rxd(i,1)=rxd(i,1)+x3(m,1)*sn(m-i+1,1);

end

end

%生成输入信号的自相关函数

for i=1:N,

for m=i:1:L,

rxx(i,1)=rxx(i,1)+x3(m,1)*x3(m-i+1,1);

end

end

%将自相关函数生成托普勒斯矩阵

rxx1=toeplitz(rxx);

%生成逆矩阵

irxx=inv(rxx1);

%生成滤波器系数h(n)

hn=irxx*rxd;

for i=1:L

xt(i+N,1)=x3(i,1);

end

%实现滤波

for i=1:L,

for m=1:N,

yn(i,1)=yn(i,1)+xt(i+N+1-m,1)*hn(m,1);

end

end

%计算最小均方误差信号en

en=0;

en=cd-(rxd')*hn;

%生成最小距离误差信号gn

gn=yn-sn;

%画出滤波后的信号时域图

subplot(2,2,3);

plot(yn),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('yn');

%画出理想信号与输出信号对比图

subplot(2,2,4);

plot(sn,'r'),axis([0 200 -10 10]),xlabel('时间'),ylabel('幅度'),title('sn与yn对比');

hold on;

plot(yn,'b'),axis([0 200 -10 10]);

hold off;

%画出最小距离误差信号图

figure;

plot(gn),axis([0 200 -2 2]),xlabel('时间'),ylabel('幅度'),title('gn');

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

基于matlab的低通滤波器毕业设计(论文)

基于mat lab的低通滤波器 摘要:调用MA TLAB信号处理工具箱中滤波通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MA TLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。 关键词:滤波器,matlab,c语言,声音 Abstract: call MATLAB signal processing toolbox filtering through the observation filter of input and output signals time domain waveform and spectrum, establish the concept of digital filter. One of the most widely applied is double linear transformation method. The basic design process is: (1) to a given digital filters index converted into analog filter transition index; (2) the design transition simulation filter; (3) transition simulation filter system function will be converted into digital filter system function. MATLAB signal processing toolbox digital filter function design of IIR is bilinear transformation method. Keywords: filter, matlab, the c language, the voice 一.任务: 用matlab软件设计IIR模拟、数字以及各种窗函数的FIR低通滤波器 二.设计目的: (1)了解matlab软件的用途以及用法; (2)了解用冲激响应不变法设计模拟低通滤波器; (3)了解用脉冲响应不变法设计的巴特沃思数字低通滤波器; (4)了解基于汉明窗函数的FIR低通滤波器的设计。 三.设计内容: 3.1用冲激响应不变法设计模拟低通滤波器 3.1.1 设计内容: 要求按照设计指标设计无限冲激响应IIR巴特沃什模拟低通滤波器。 3.1.2 设计原理: 低通滤波器的技术要求用图形表示如下: 1

维纳滤波(带程序)

维纳滤波器的计算机实现 专业:信息与通信工程

实验一 维纳滤波器的计算机实现 一、 实验目的 1.MATLAB 编程实现加性干扰信号的维纳滤波。 2.仿真比较实验结果与理论分析结果,分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。 3.利用维纳预测方法实现对AR 模型的参数估计。 二、 实验原理及方法 维纳滤波实际上就是在最小均方误差条件下探索和确定滤波器的冲激响应h(n)或 系统函数H(z),也就是求解维纳-霍夫方程。假定一个随机信号x(n)具有以下形式: x (n ) = s (n ) + v (n ) 其中,s(n)为有用信号,v(n)为噪声干扰,将其输入一个单位脉冲响应为h(n)的线性系统, 则其输出为: ()()()()m y n s n h m x n m ∞ Λ =-∞ == -∑ 我们希望x (n )在经过系统h(n)后得到y (n ),即s (n )的估计值能尽可能接 近s (n ),按照最小均方误差准则,h(n)应满足下面的正则方程: ()()()xs xx m k h m k m φφ ∞ =-∞ = -∑ 其中,()xs k φ是x(n)与s(n)的互相关函数,()xx m φ是x(n)的自相关函数。 在h(n)满足因果性的条件下,,求解维纳-霍夫方程是一个典型的难题。虽然目前有几种求解h(n)的解析方法,但它们在计算机上实现起来非常困难。因此,本实验中,利用近似方法,即最佳FIR 维纳滤波方法,在计算机上实现随机信号的维纳滤波。 设h(n)为一因果序列,其长度为N ,则 1 ()()()N m y n h m x n m -==-∑ 同样利用最小均方误差准则,h(n)满足下面正则方程: xx xs R h r = xx R 为信号x(n)的N 阶自相关矩阵,xs r 为x(n)与s(n)的互相关函数向量。当xx R 为满秩矩阵 时,可得 1 xx xs h R r -=

维纳滤波器的设计及Matlab仿真实现

Wiener 滤波器的设计及Matlab 仿真实现 1.实验原理 在许多实际应用中,人们往往无法直接获得所需的有用信号,能够得到的是退化了或失真了的有用信号。例如,在传输或测量信号s(n)时,由于存在信道噪声或测量噪声v(n),接受或测量到的数据x(n)将与s(n)不同。为了从x(n)中提取或恢复原始信号s(n),需要设计一种滤波器,对x(n)进行滤波,使它的输出y(n)尽可能逼近s(n),成为s(n)的最佳 估计,即y(n) = )(?n s 。这种滤波器成为最优滤波器。 Wiener 滤波器是“理想”意义上的最优滤波器,有一个期望响应d(n),滤波器系数的 设计准则是使滤波器的输出y(n)(也常用)(?n d 表示)是均方意义上对期望响应的最优线性估计。Wiener 滤波器的目的是求最优滤波系数],,,,,,[,1,0,1, k o o o o w w w w w -=,从而 使])(?)([])([)(2 2 n d n d E n e E n J -==最小。 通过正交性原理,导出 )()(k r k i r w xd x i oi -=-∑∞ -∞ =, 2,1,0,1,-=k 该式称为Wiener-Hopf 方程,解此方程,可得最优权系数},2,1,0,1,,{ -=i w oi 。 Wiener-Hopf 方程的矩阵形式为xd o x r w R =,解方程求得xd x o r R w 1 -= 2.设计思路 下面我们通过具体的例子来说明Wiener 滤波器的设计方法: 考虑如下图所示的简单通信系统。其中,产生信号S(n)所用的模型为 )95.01/(1)(11-+=z z H ,激励信号为)3.0,0(~)(WGN n w 。信号s(n)通过系统函数为)85.01/(1)(12--=z z H 的信道,并被加性噪声)1.0,0(~)(WGN n v 干扰,v(n)与w(n)不相 关。确定阶数M=2的最优FIR 滤波器,以从接收到的信号x(n) = z(n) + v(n)中尽可能恢复发送信号s(n),并用MATLAB 进行仿真。

数字滤波器的设计课程设计

数字信号及MATLAB实现课程设计报告数字滤波器的设计 学院:电气学院 班级: 姓名: 学号: 指导老师: 2014年1月

《数字信号处理及MA TLAB实现》课程设计 目录 目录 (1) 第一章绪论 (2) 1.1.1 数字滤波器的优越性 (2) 1.1.2 数字滤波器的实现方法 (3) 1.1.3主要研究内容 (4) 第二章摘要 (5) 第三章报告正文 (6) 第一节 IIR滤波器的设计 (6) 3.1.1流程框图 (6) 3.1.2 设计步骤 (6) 3.1.3 IIR数字滤波器的设计方法 (7) 3.1.4 MATLAB程序 (9) 3.1.5 运行结果及分析: (10) 第二节 matlab FDATool界面数字滤波器设计 (11) 3.2.1 Faldstool (11) 3.2.2 用Fdatool进行带通滤波器设计 (13) 第三节系统对象滤波器设计 (15) 3.3.1设定系统的仿真对象 (15) 3.3.2系统对象滤波器设计方法 (15) 3.3.3 MATLAB程序仿真设计 (15) 第四章总结 (21) 参考文献 (22)

第一章绪论 1.1.1 数字滤波器的优越性 数字信号处理由于具有精度高、灵活性强等优点,已广泛应用于图像处理、数字通信、雷达等领域。数字滤波技术在数字信号处理中占有极其重要的地位,数字滤波器根据其单位脉冲响应可分为IIR(无限长冲激响应滤波器)和FIR(有限长冲激响应滤波器)两类。IIR滤波器可以用较少的阶数获得很高的选择特性,但在有限精度的运算中,可能出现不稳定现象,而且相位特性不好控制。数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。 数字滤波器又分为无限冲激响应滤波器(IIR)和有限冲激响应滤波器(FIR)。FIR滤波器具有不含反馈环路、结构简单以及可以实现的严格线性相位等优点,因而在对相位要求比较严格的条件下,采用FIR数字滤波器。同时,由于在许多场合下,需要对信号进行实时处理,因而对于单片机的性能要求也越来越高。由于DSP控制器具有许多独特的结构,例如采用多组总线结构实现并行处理,独立的累加器和乘法器以及丰富的寻址方式,采用DSP控制器就可以提高数字信号处理运算的能力,可以对数字信号做到实时处理。DSP(数字信号处理器)与一般的微处理器相比有很大的区别,它所特有的系统结构、指令集合、数据流程方式为解决复杂的数字信号处理问题提供了便利,本文选用TMS320C5509作为DSP处理芯片,通过对其编程来实现IIR滤波器。 对数字滤波器而言,从实现方法上,有FIR滤波器和无限冲激响应(IIR)滤波器之分。由于FIR滤波器只有零点,因此这一类系统不像IIR系统那样易取得比较好的通带与阻带衰减特性。但是IIR系统与传统的通过硬件电路实现的模拟滤波器相比有以下优点: 1、单位冲击响应有无限多项; 2、高效率(因为结构简单、系数小、乘法操作较少) 3、与模拟滤波器有对应关系 4、可以解析控制,强制系统在指定位置为零点 5、有极点,在设计时要考虑稳定性 6、具有反馈,可能产生噪声、误差累积

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

FIR维纳滤波的设计

FIR维纳滤波器的设计 在信号处理的许多实际应用中,人们往往不能直接获得所需要的有用信号,需要从噪声中提取信号。比如,在信号传输过程中,由于存在信道噪声等干扰,在接收端观测到的信号必然与原始信号不同。为了从观测数据中尽可能精确地重现原始信号,而最大成都地抑制噪声,需要设计一种滤波器,其输出尽可能逼近原始信号,成为原始信号的最佳估计。这种滤波器成为最佳滤波器。维纳(Wiener)滤波器就是用来解决这样一类问题的一种滤波器。本文将应用MATLAB并结合实例介绍FIR维纳滤波器的设计方法。 一、维纳滤波的原理 维纳滤波的本质是一种最佳估计问题,采用的是最小均方误差准则。一个线性系统,其单位样本响应为h(n),当输入一个随机信号) ( ) ( ) (n n s n xυ + =其中s(n)表示信号,) (n υ表示噪声,则输出y(n)为 ∑-= m m n x m h n y) ( ) ( ) ( (1) 系统是通过y(n)来估计s(n),因此将其称为s(n)的估计值,用) (?n s表示,即 ) (? ) (n s n y=(2) h(n) ) (? ) (n s n y= ) ( ) ( ) (n n s n xυ + = 图1 维纳滤波器基本框图 图1所示为维纳滤波器的基本框图。 式(1)为一卷积,可以理解为从当前和过去的观察值x(n),x(n-1),x(n-2)…x(n-m),…来估计信号的当前值) (?n s。维纳滤波器一般有三种用途。用当前的和过去的观察值x(n),x(n-1),x(n-2),…来估计当前的信号值) (? ) (n s n y=称为滤波;用过去的观察值来估计当前的或将来的信号值)0 )( (? ) (≥ + =N N n s n y称为预测;

数字滤波器课程设计

课程设计 课程设计名称:数字信号处理课程设计 专业班级:电信1203 学生姓名:刘海峰 学号: 201216020307 指导教师:乔丽红 课程设计时间:2015/07/01-2015/07/06 电子信息工程专业课程设计任务书

说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

一. 技术要求 ?双线性变换法设计切比雪夫II型数字IIR低通滤波器, ?要求通带边界频率为400Hz, ?阻带边界频率分别为500Hz, ?通带最大衰减1dB, ?阻带最小衰减40dB, ?抽样频率为2000Hz, 二. 设计原理 IIR滤波器的设计包括三个步骤:①给出所需要的滤波器的技术指标; ②设计一个H(z)使其逼近所需要的技术指标:③实现所设计的H(z),IIR数字滤波器设计的最通用的方法是借助于模拟滤波器的设计方法。所以IIR数字低通滤波器的设计步骤是:①按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标;②根据转换后的技术指标设计模拟低通滤波器G(s):③再按一定规则将G(s)转换成H(z)。 在此过程中,我们用到了很多MATLAB中的函数,如设计切比雪夫低通滤波器的函数afd_chebl、由直接型转换为级联型的函数dir2cas、双线性变换的函数bilinear等。其中afd _chebl用于实现用模拟指标设计一个低通模拟滤波器,bilinear用于利用双线性变换法将模拟低通滤波器转换为数字低通滤波器。

三.程序流程图

四:源代码(完美版) %归一化低通滤波器技术指标 clc; clear all; Ap=1; %最大通带衰减 As=40; %最小阻带衰减 W=2000; %抽样周期 Wp=400; %通带边界频率 Ws=500; %阻带边界频率 wp=2*pi*Wp/W; %归一化通带边界频率 ws=2*pi*Ws/W; %归一化阻带边界频率 Wp1=tan(wp/2); %模拟低通滤波器通带边界频率 Ws1=tan(ws/2); %模拟低通滤波器阻带边界频率 %归一化切比雪夫II型低通模拟滤波器 [N,Wn]=cheb2ord(Wp1,Ws1,Ap,As,'s'); %确定滤波器阶数和频率尺度缩放因子 [BT,AT]=cheby2(N,As,Wn,'s');%传输函数的系数 [Z,P,K]=cheb2ap(N,As);%最小阻带衰减为As(DB)的N阶归一化模拟切比雪夫2型低通滤波器的零点、极点和增益因子 [H,W]=zp2tf(Z,P,K);%传输函数有理化形式 figure; [P,Q]=freqs(H,W);

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

毕业设计178基于FPGA的FIR滤波器设计

目录 引言 (1) 1.软件及硬件平台 (1) 1.1VHDL语言特点 (2) 1.2MAX PLUS II开发环境 (3) 1.3可编程逻辑器件 (4) 1.4ALTERA公司FLEX10K系列 (5) 2.FIR滤波器基本理论 (6) 2.1数字滤波器概述 (6) 2.2有限长单位冲激响应(FIR)滤波器 (6) 2.2.1 FIR滤波器特点 (6) 2.2.2 FIR滤波器结构 (6) 2.3FIR数字滤波器的实现方法 (8) 3.基于FPGA实现FIR滤波器的研究 (9) 3.1基于乘法器结构的FIR滤波器在FPGA上的实现结构 (9) 3.1.1基于乘累加 FIR 滤波器结构 (9) 3.1.2 基于并行乘法器直接型 FIR 滤波器结构 (10) 3.2基于分布式(DA)算法的FIR滤波器在FPGA上实现结构 (11) 3.2.1 用分布式原理实现FIR滤波器-串行方式 (12) 3.2.2 用分布式原理实现FIR滤波器-并行方式 (13) 3.3CSD码及最优化方法 (14) 4.线性相位FIR滤波器的设计 (16) 4.1FIR滤波器的设计要求 (16) 4.2软件环境和硬件平台选择 (16) 4.3FIR滤波器的设计方案 (16) 4.4各模块设计 (17) 5.仿真结果及分析 (21) 5.1仿真结果 (21) 5.2仿真结果分析 (22) 6.总结 (22) 致谢 (23) 参考文献 (23) ABSTRACT (25)

基于FPGA的FIR滤波器设计 摘要:本文提出了一种采用现场可编程门阵列器件(FPGA)实现FIR数字滤波器的方案,并以Altera公司的FPGA器件EPF10K30为例完成了FIR滤波器的模块化设计过程。底层采用VHDL语言描述设计文件,顶层使用底层产生的模块连接组成FIR滤波器,并在MAX+plusII上进行了实验仿真。仿真结果表明:该设计方案可行,可为今后的数字滤波器模块化研究提供另一种思路。 关键词:VHDL;FPGA;FIR滤波器;Maxplus 引言 许多工程技术领域都涉及到信号,这些信号包括电的、磁的、机械的、热的、声的、光的及生物体的等等。如何在较强的背景噪声和干扰信号下提取出真正的信号并将其用于实际工程,这正是信号处理要研究解决的问题。20世纪60年代,数字信号处理理论得到迅猛发展,理论体系和框架趋于成熟,到现在它已经成长为一门独立的数字信号处理学科。数字滤波器在数字信号处理中占有很重要的地位,它涉及的领域很广,如:通信系统、系统控制、生物医学工程、机械振动、遥感遥测、地质勘探、航空航天、电力系统、故障检测、自动化仪器等。 系统数字滤波是提取有用信息非常重要而灵活的方法,是现代信号处理的重要内容。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应可接近理想特性,且精度很高又容易集成。在现代电子系统中,FIR数字滤波器以其良好的线性特性被广泛使用,属于数字信号处理的基本模块之一。在工程实践中,往往要求对信号处理要有实时性和灵活性,而已有的一些软件和硬件实现方式则难以同时达到这两方面的要求。 硬件描述语言(VHDL)是数字系统高层设计的核心,是实现数字系统设计新方法的关键技术之一。随着可编程逻辑器件在速度和集成度方面的飞速发展,使用FPGA来实现FIR滤波器,既具有实时性,又兼顾了一定的灵活性,越来越多的电子工程师采用FPGA器件来实现FIR滤波器,FIR数字滤波器在数字信号处理系统中应用非常普遍,常被用来对原始(或输入)样本数据进行消除高频、抑制噪声等处理以产生所需的输出。 数字滤波器的好坏对相关的众多工程技术领域影响很大,一个好的数字滤波器会有效地推动众多工程技术领域的技术改造和科学发展。所以对数字滤波器的工作原理、硬件结构和实现方法进行研究具有一定的意义。 本设计将采用现场可编程门阵列器件(FPGA)实现FIR数字滤波器的方案,底层采用VHDL语言描述设计文件,顶层使用底层产生的模块连接组成FIR滤波器,并在Max+plusII上进行实验仿真。由仿真结果判断设计的可行性。 1.软件及硬件平台

维纳维纳滤波实现模糊图像恢复

维纳滤波实现模糊图像恢复 摘要 维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MA TLAB 函数来完成图像的复原。 关键词:维纳函数、图像复原 一、引言 在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。 二、维纳滤波器的结构 维纳滤波自身为一个FIR 或IIR 滤波器,对于一个线性系统,如果其冲击响应为()n h ,则当输入某个随机信号)(n x 时, Y(n)=∑-n )()(m n x m h 式(1) 这里的输入 )()()(n v n s n x += 式(2) 式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即 )(?)(y n s n = 式(3) 因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信 号的真值与其估计值分别为s(n)和)(?n s ,而它们之间的误差 )(?)()(e n s n s n -= 式(4) 则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然

数字信号处理实验——维纳滤波器设计..

实验一 维纳滤波 1. 实验内容 设计一个维纳滤波器: (1) 产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪,(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。 (2) 估计()i x n ,1,2,3i =的AR 模型参数。假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。 2. 实验原理 滤波目的是从被噪声污染的信号中分离出有用的信号来,最大限度地抑制噪声。对信号进行滤波的实质就是对信号进行估计。滤波问题就是设计一个线性滤波器,使得滤波器的输出信号()y n 是期望响应()s n 的一个估计值。下图就是观测信号的组成和信号滤波的一般模型。 观测信号()()()x n s n v n =+ 信号滤波的一般模型 维纳滤波解决从噪声中提取信号的滤波问题,并以估计的结果与真值之间的误差均方值最小作为最佳准则。它根据()()(),1, ,x n x n x n m --估计信号的当前 值,它的解以系统的系统函数()H z 或单位脉冲()h n 形式给出,这种系统常称为最佳线性滤波器。 维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小。

假设滤波系统()h n 是一个线性时不变系统,它的()h n 和输入信号都是复函数,设 ()()()h n a n jb n =+ 0,1, n = 考虑系统的因果性,可得到滤波器的输出 ()()()()()0 *m y n h n x n h m x n m +∞ ===-∑ 0,1, n = 设期望信号()d n ,误差信号()e n 及其均方误差()2 E e n ???? 分别为 ()()()()()e n d n y n s n y n =-=- ()()()()()()22 2 0m E e n E d n y n E d n h m x n m ∞=?? ????=-=--????? ????? ∑ 要使均方误差为最小,需满足: ()() 2 0E e n h j ?????=? 整理得()()0E x n j e n *??-=??,等价于()()0E x n j e n * ??-=?? 上式说明,均方误差达到最小值的充要条件使误差信号与任一进入估计的输入信号正交,这就是正交性原理。 将()()0E x n j e n * ??-=??展开,得 ()()()()00m E x n k d n h m x m +∞ *** =????--=?? ???? ?∑ 整理得 ()()()0 dx xx m r k h m r m k +∞ *=-=-∑ 0,1,2, k = 等价于()()()()()0 dx xx xx m r k h m r k m h k r k +∞ ==-=*∑ 0,1,2, k = 此式称为维纳-霍夫(Wiener-Holf )方程。解此方程可得到最优权系数 012,,, h h h ,此式是Wiener 滤波器的一般方程。 定义

FIR数字滤波器课程设计报告

吉林建筑大学 电气与电子信息工程学院 数字信号处理课程设计报告 设计题目:FIR数字滤波器的设计 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

目录 一、设计目的 (3) 二、设计内容 (3) 三、设计原理 (3) 3.1 数字低通滤波器的设计原理 (3) 3.1.1 数字滤波器的定义和分类 (3) 3.1.2 数字滤波器的优点 (3) 3.1.3 FIR滤波器基本原理 (4) 3.2变换方法的原理 (7) 四、设计步骤 (8) 五、数字低通滤波器MATLAB编程及幅频特性曲线 (9) 5.1 MATLAB语言编程 (9) 5.2 幅频特性曲线 (10) 六、总结 (11) 七、参考文献 (13)

一、设计目的 课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充 二、设计内容 (1)设计一线性相位FIR 数字低通滤波器,截止频率 ,过渡带宽度 , 阻带衰减dB A s 30>。 (2)设计一线性相位FIR 数字低通滤波器,截止频率 ,过渡带宽度 ,阻带衰减dB A s 50>。 三、设计原理 3.1数字低通滤波器的设计原理 3.1.1 数字滤波器的定义和分类 数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。因此,数字滤波器本身既可以是用数字硬件装配成的一台完成给定运算的专用的数字计算机,也可以将所需要的运算编成程序,让通用计算机来执行。 从数字滤波器的单位冲击响应来看,可以分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。滤波器按功能上分可以分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF) [4]。 3.1.2 数字滤波器的优点 相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用将会越来越广泛。同时DSP 处理器(Digital Signal Processor)的出现和FPGA(FieldProgrammable Gate Array)的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。 数字滤波器具有以下显著优点: 精度高:模拟电路中元件精度很难达到10-3,以上,而数字系统17位字长就可以达到10-5精度。因此在一些精度要求很高的滤波系统中,就必须采用数字滤0.2c ωπ=0.4ωπ?<0.2c ωπ=0.4ωπ?<

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

维纳滤波器

西安电子科技大学 统计与自适应信号处理仿真 学院: 班级: 学号: 姓名: 2013年12月

FIR 维纳滤波器 1维纳滤波原理概述 维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且 )()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为 ∑-= m m n x m h n y )()()( (2) 我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称 )(n y 为)(n s 的估计值,用^ )(n s 表示,即 ^ )()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。 图1 维纳滤波器的输入—输出关系 实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x , )1(-n x ,)2(-n x …)(m n x -,…来估计信号的当前值^ )(n s 。因此,用)(n h 进行 过滤问题实际上是一种统计估计问题。 一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值^ )()(n s n y =成为过滤或滤波;从过去的观察值,估计当前的或者将来的信号值)0)(()(^ ≥+=N N n s n y 称为外推或预测;从过去的观察值,估计过去的信号值 )1)(()(^ >-=N N n s n y 称为平滑或内插。因此维纳滤波器又常常被称为最佳线性 过滤与预测或线性最优估计。这里所谓的最佳与最优是以最小均方误差为准则的。 如果我们分别以)(n s 与^ )(n s 表示信号的真实值与估计值,而用)(n e 表示他们

用脉冲响应不变法设计数字滤波器

皖西学院 《数字信号处理》课程设计报告 题目用脉冲响应不变法设计数字滤波器 学院信息工程学院 专业通信工程专业 班级(*** )班 学生姓名陈* 孙** 指导教师吴** 二0一二年十二月

前言 《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB结合后的基本实验后开设的,本课程设计的目的是为了让学生综合数字信号处理和MATLAB并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 IIR数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR滤波器的设计可以采用在模拟滤波器设计的基础上进一步变换的方法。其设计方法主要有间接设计法、直接设计法和最大平滑滤波器设计方法。间接法是借助于模拟滤波器的设计方法进行的。其设计步骤是:先设计过度模拟滤波器得到系统函数,然后将其按某种方法转换成数字滤波器的系统函数。这是因为模拟滤波器的设计方法已经成熟,不仅有完整的设计公式,还有完善的图表和曲线供查阅;另外还有一些优良的滤波器可供我们使用。直接法直接在频域或者时域中设计数字滤波器,由于要解联立方程,设计时需要计算机辅助设计。FIR数字滤波器的单位脉冲响应应是有限长序列。它的设计问题实质上是确定能满足要求的转移序列或脉冲响应的常数问题,它不能采用间接法,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。 目录 第1章绪论 .......................................................................................................................................................... 1.1课程设计的目的及意义 .......................................................................................................................... 1.2课程设计题目描述及要求...................................................................................................................... 1.3数字滤波器的概述 ................................................................................................................................... 1.4数字滤波器的分类 ................................................................................................................................... 1.5数字滤波器的技术指标 .......................................................................................................................... 1.6数字滤波器的设计原理 .......................................................................................................................... 第2章MATLAB介绍 ....................................................................................................................................... 2.1 MATLAB的简介....................................................................................................................................... 2.2 MATLAB的优势和特点.........................................................................................................................

相关主题
文本预览
相关文档 最新文档