当前位置:文档之家› 变压器零序过电流保护整定中零序电流反向问题的研究

变压器零序过电流保护整定中零序电流反向问题的研究

变压器零序过电流保护整定中零序电流反向问题的研究
变压器零序过电流保护整定中零序电流反向问题的研究

变压器零序过电流保护整定中零序电流反向问题的研究

摘要:探讨了变压器零序过流保护整定计算中可能出现的零序电流反向问题,分析了其产生机理及其对保护的影响,并在此基础上对常用的变压器零序过流保护整定方法进行了改进,计及反向零序电流的影响,满足保护选择性的要求,同时将改进后的变压器零序过流保护整定方法成功运用于开发的变压器保护整定计算程序中。

关键词:电力系统;变压器;零序过流保护;零序电流反向

0、引言

变压器接地故障后备保护作为变压器绕组、引线、相邻元件接地故障的后备保护,对中性点直接接地的普通变压器接地保护可由两段式零序过电流保护构成,若高中压侧均直接接地,高中压侧均应装设零序方向过电流保护,方向指向本侧母线;对中性点可能接地或不接地运行的变压器,应配置两种接地保护,一种接地保护用于变压器中性点接地运行状态,通常采用2段式零序过流保护,另一种接地保护用于变压器中性点不接地运行状态,这种保护的配置与变压器的中性点绝缘水平、过电压保护方式以及并联运行的变压器台数有关,多为零序过电压保护和零序电流电压保护。因此,零序过电流保护是变压器接地故障后备保护的主要形式。

规程规定,I段零序过电流保护的动作电流应与被保护侧母线上出线的零序保护I段或快速主保护相配合,当有选择性要求时,应增设零序方向元件。一般情况下,校核动作电流是否能躲过对侧母线发

生接地故障时流过保护的最大零序电流,以确定是否需要增设零序方向元件。II段零序过电流保护的动作电流应与相邻线路零序电流保护的后备段配合。

但是,实际整定计算在校核对侧母线接地故障流过保护的最大零序电流时,往往忽略了反向零序电流的出现及其影响。对于零序方向保护,当发生区外接地故障时,流过保护的零序电流的方向与保护正向相同时,称该零序电流为反向零序电流,这一现象也相应地称为零序电流反向。在实际系统中,若变电站具备两台及以上的三绕组或自耦变压器,由于变压器参数的不一致或接地方式的不一致,可能出现零序电流反向。这时,若保护动作电流无法躲过该反向零序电流,保护将存在误动的隐患。

目前,零序电流反向问题还未给予相应的关注,在相关文献和资料中少有提及,规程中也未对反向零序电流的处理方法做出明确的规定。因此,本文在分析零序电流反向问题机理的基础上对变压器零序过电流保护的一般整定计算方法提出了相应的改进方法,以处理零序电流反向问题,满足保护选择性的要求,并已将该改进整定方法运用于开发的变压器保护整定计算系统中。

1、零序电流反向问题研究

零序电流反向按产生机理主要可分为由变压器接地方式不一致和由变压器参数不一致引起的两类,但产生反向零序电流可能是两者共同作用的结果。下面对两类问题分别加以分析,并简要论述零序电流反向对保护的影响。

1.1、变压器接地方式不一致引起的零序电流反向

一般规定当变电站的变压器多于一台时,应将部分变压器的中性点接地,以保持变压器中性点接地数目不变,从而保持零序电流的分布基本不变,因此可能由于变电站内变压器接地方式的不一致,而导致零序反向电流的出现。

图1显示了由于变压器接地方式不一致而出现反向零序电流的一种典型情况。T 1和T 2为同一变电站内的两台三绕组变压器,按照规定,T 1为Y/Y 0/△接法,T 2为Y 0/Y 0/△接法,T 1的110kV 侧零序方向保护B 1为待整定保护。当保护对侧母线A 上发生接地故障时,零序电流由故障点经T 2和T 1的中、低压绕组入地,因此将会出现如图所示的反向零序电流I rev ,该反向零序电流与保护B 1和B 4的动作电流方向相同。

1.2、变压器参数不一致引起的零序电流反向

变电站内的多台三绕组变压器或自耦变压器即使在接地方式相同时,也可能由于变压器参数的不一致而出现反向零序电流。如图2所示,变电站有三台三绕组变压器T 1~T 3并联运行,其中T 1和T 2为

Y 0/Y 0/△接法,T 3为Y/Y 0/△接法,由于历史的原因T 1和T 2参数不一致,T 1的110kV 侧零序方向保护B 1为待整定保护。

当保护对侧220kV 母线发生接地故障时,零序网络如图3所示,其中y 1为110kV 母线左侧系统等效零序导纳,y 2为220kV 母线右侧系统等效零序导纳,y 11~y 13分别为T 1高、中、低压绕组的零序导纳,y 21~y 23分别为T 2高、中、低压绕组的零序导纳,y 3为T 3中、低压绕组的零序导纳。可以证明当满足式(1)时,将出现如图2所示的反向零序电流I rev 。

1.3、零序电流反向对保护的影响

变压器零序方向保护作为被保护母线上出线接地故障的后备保护,在正常情况下,保护可以躲过对侧母线接地故障时流过保护的零序电流或故障电流方向与保护正向相反,故保护不存在误动的可能性。但是,在零序电流反向时,由于反向零序电流与整定保护及其对侧保护方向相同,因此若保护无法躲过该反向零序电流,则当对侧母线上出线发生接地故障时,保护存在越级动作的隐患,从而失去后备保护的选择性。

如图4所示,并联三绕组变压器T 1和T 2高、中压侧零序方向保护的正向如图所示,B 1为待整定保护。设B 1的动作电流和动作时间分别为I dz1和t dz1,B 4的动作电流和动作时间分别为I dz2和t dz2,其中可能出现t dz1≤t dz2。由于变压器运行方式或参数不一致,当保护对侧母线的出线上发生接地故障时,流过保护的零序电流可能反向,出现如图所示的反向零序电流I rev ,该反向零序电流与保护动作电流方向相同。若B 1无法躲过该反向零序电流,B 1和B 4都会启动,但由于B 1的动作时间等于或小于B 4的动作时间,因此可能出现B 1先于B 4动作

的情况,即B

1发生越级动作,致使变压器T

1

失电,保护动作不满足

选择性要求。

2、主变零序保护的改进整定计算方法

鉴于零序电流反向问题对保护选择性的影响,我们在进行上述研究的基础上,改进了一般整定方法。该整定方法在按一般整定方法计算的基础上,进一步校核保护动作电流能否躲过对侧母线接地故障流过保护的最大反向零序电流,若不能躲过,则将继续与本变电站其他变压器的对侧主变零序保护配合。同时,在开发的主变零序保护整定计算程序中运用了改进整定方法,该程序能够自动确定可能出现零序电流反向的运行方式、故障以及配合变压器组。

在变电站的多台变压器中,并不是所有的变压器之间都会出现零序电流,如参数相同、在所有运行方式下的运行状态都相同的变压器之间就不会出现反向零序电流,因此若两台变压器之间不可能出现反向零序电流时相应保护不应该配合,以尽可能地提高保护定值灵敏度,缩短动作时间;另一方面,若两台变压器之间在正常运行方式和正常检修方式下可能出现反向零序电流,则其保护必须配合。因此,程序首先在适当的范围内进行运行方式组合,切断或改变元件的运行状态,以保证在进行较少次故障计算的基础上较准确地判断需要配合的变压器组,以确保与可能出现零序电流反向的变压器保护配合,与不可能出现零序电流反向的变压器保护不配合。

基于以上考虑,主变零序保护改进整定计算方法的主要思想为:首先计算保护与被保护母线上出线的配合定值;当本变电站具有两台及以上的三绕组或自耦变压器时,自动进行运行方式组合,计算指定

整定方式和运行方式组合形成的方式下对侧母线接地故障流过保护的零序电流,将零序电流正向和反向的情况加以区分,根据零序电流反向的情况自动确定需要配合的变压器保护,形成配合变压器保护集,并在出现反向零序电流的方式故障下计算保护与配合变压器保护集中保护的配合定值,最后校核保护最终定值是否能躲过最大正向零序电流,以确定是否需要增设零序方向元件。程序实现的基本流程如图5所示。

3、算例

以图6所示网络为例,各元件的正序、零序阻抗参数如图所示,系统基准容量100MVA,整定三绕组变压器T3的中压侧零序方向保护。以下整定计算显示了反向零序电流对保护定值的巨大影响。

1)、计算与线路6的配合定值:

2)、计算保护对侧母线12发生接地故障流过保护的零序电流:

流过保护的最大正向零序电流:1847.938A

流过保护的最大反向零序电流:533.124A

配合变压器集:T 1、T 2

3)、与线路配合定值无法躲过最大反向零序电流,与变压器T 1和T 2的高压侧零序保护配合:

与T 1配合:

与T 2配合:

5)、确定方向元件状态: 保护定值无法躲过对侧母线12发生接地故障流过保护的最大正向零序电流,需要增设方向元件。

4、结语

本文分析了主变零序保护整定计算中出现的零序电流反向问题及其原因,以及零序电流反向对保护的影响,并在此基础上对一般的主变零序保护整定方法提出了改进方案,以计及反向零序电流的影响,满足选择性的要求,该方案已在江西主变零序保护整定计算程序中得到应用。

零序电流保护的整定计算-精选.

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。 最新文件仅供参考已改成word文本。方便更改

低压侧零序电流保护

低压侧中性线零序电流保护使用商榷 低压接地故障保护的设置应能防止人身间接电击以及电气火灾、电气设备损坏、线路损坏等事故。低压侧中性点直接接地的变压器,低压侧单相接地短路应选择下列保护方式,保护装置应带时限动作于跳闸。 一、用高压侧的过电流保护: 高压侧过电流保护灵敏性符合要求时,对低压侧单相接地短路的保护作用。用于校验高压侧过电流保护灵敏性的低压侧短路电流,仅取变压器低压侧母线上的短路电流,也就仅能可靠地保护到变压器低压侧母线。距离变压器再远的低压侧,短路电流小至灵敏性不符合要求时,该处及以远线路处的接地故障就保护不到。高压侧的过电流保护,对低压侧接地短路的保护范围是有限的,并不能保护全低压系统。 二、低压侧中性线上的零序电流保护: 变压器低压侧中性线上所设置的零序电流保护的一次动作电流,应躲过正常运行时,变压器中性线上流过的最大不平衡电流。按国家标准 GB1094-1-5《电力变压器》规定:应不超过变压器额定电流的25%。变压器低压侧低压配电回路一般较多,变压器低压侧中性线上的零序电流保护的一次动作电流整定值大,灵敏度低保护范围小;整定电流值小,灵敏度

高保护范围大。零序保护的一次动作电流整定值大,如仅保护低压母线,则与高压侧的过电流保护重复;整定电流小,保护可深入到个别配电线路不长回路的末端,但也未必能保护到截面远距离回路末端,也不能保证保护全低压系统;不论整定电流大小,选择性很差。低压系统中,只要有一回路的接地故障,变压器零序保护动作,使该变压器全部低压系统停电,扩大了停电范围,各回路全部停电,故障发生在哪一回路,一时难以确定,故障点查找困难,排除故障时间长。从保护分工的角度要求,各保护应对其后的设备、线路起保护作用,保护上下级的整定值、动作时限达到协调配合,才能达到保护可靠、有选择、速动的要求。有一些地区,中性点直接接地的变压器,变压器中性点引出两条母线,一条母线同相母线一同设至变压器低压总断路器,在低压屏底部接地并分设N母线和PE母线;另一条母线在变压器下就近直接接地,这样使单相接地故障电流将通过两条母线回流至变压器中性点,套在变压器中性线上的零序电流互感器中,未流过全部故障电流,零序电流互感器测得的故障电流不准确,保护动作也不可靠。中性点直接接地的变压器中性点不应直接就近接地,应同相母线一同敷设至变压器低压屏底接地。 三、低压侧断路器的三相电流保护: 在变压器低压侧设有各级低压断路器,变压器低压侧的总断路器,一般均选用较先进的带智能控制器的框架式断路器,智能控制器有过载长延时、短路短延时、短路瞬时、接地故障保护功能。低压各配电出线回路还设有分回路断路器,大容量配电回路也会选用带智能控制器的框架式断路

第六节 变压器的零序电流保护

二、变电所多台变压器的零序电流保护

每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。电流继电器起动后,常开触点闭合,起动时间继电器KT1。时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。。若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。 零序电流保护的整定计算: 动作电流: (1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以 (2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。 设零序电压元件的动作电压为U dz.0,则 U dz.0=3I0X0.T 零序电流元件的动作电流为 动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。根据经验,零序电压继电器的动作电压一般为5V。当电压互感器的变比为nTV时,电压继电器的一次动作电压为 U dz.0=5n TV 变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。即 灵敏度校验:按保证远后备灵敏度满足要求进行校验 返回 第二节微机保护的硬件框图简介 微机保护硬件示意框图如下图所示。

三段式零序电流保护(精)

实习(实训报告 实习(实训名称:电力系统继电保护课程设计学院: 专业、班级: 指导教师: 报告人: 学号: 时间: 2017年 1月 5日 目录 1设计题 目 ...............................................................................................................................3 2分

析设计要求 (4) 2.1设计规定 (5) 2.2本线路保护 计 .......................................................................................................................6 2.3 系统等效电路图.............................................................................. . (7) 3三段式零序电流保护整定计 算 ............................................................................................8 3.1 三段式零序电流保护中的原则 ...........................................................................................9 3.2 M侧保护 1零序电流保护Ⅰ段整定 (10) 3.3 N侧保护 1零序电流保护Ⅰ段整 定 (11) 4 零序电流保护评 价 ..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13 4.2零序电流保护的优缺点………………………………………………………………… ..13 5 总 结 (1) 4 参考文 献 .......................................................................................................................................... 15 1设计题目 如图 1所示为双电源网络中,已知线路的阻抗km X /4. 01Ω=, km X /4. 10Ω=,两侧系统等值电源的参数:

变压器零序方向过流保护

零序方向过流保护小结 变压器高压侧(110kV及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。 一、变压器接地后备保护概述 变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。 对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。 对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。 综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。 二、零序方向过流保护逻辑 零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁, 所示。 图1 零序方向过流保护逻辑框图 零序电压闭锁元件的零序电压取自TV开口三角。 零序过流元件的零序电流可以自产,也可取自中性点零序TA。 零序方向元件的方向电压,可以取开口三角电压,也可以取自产,但方向电流必须取自产,而不能取中性点专用零序TA的电流。其原因在于,中性点零序电流对方向没有选择性。

零序电流及方向

零序电流及方向保护 一、零序电流方向保护的基本原理; 1、基本原理; 零序电流保护: 在正常运行时没有零序电流,只有在接地短路时才有零序电流。 并且流过保护的零序电流大小反应了短路点的远近; 当短路点越近时,保护动作越快,短路点越远保护动作得越慢。 输电线路零序电流保护是反应输电线路一端零序电流的保护。反应输电线路一端电气量变化的保护由于无法区分本线路末端短路和相邻线路始端的短路,为了在相邻线路始端短路不越级跳闸。 所以反应输电线路一端电气量弯化的保护都要做成多段式保护。零序电流一段的任务: 保护本线路的一部分。它的定值按躲过本线路末端(实质是躲过相邻线路始端)接地短路时流过保护的最大零序电流整定(其他整定条件姑且不论)。 零序电流二段的任务: 能以较短的延时尽可能地切除本线路范围内的故障。 零序电流三段的任务: 应可靠保护本线路的全长,在本线路末端金属性接地短路时有一定的灵敏系数。 零序电流四段的任务:

起可靠的后备作用。第四段的定值应不大于300A,用它保护本线路的高阻接地短路。在110KV的线路上,零序电流保护中的第四段还应作为相邻线路保护的后备。 零序电流保护只能用来保护接地故障,所以对于两相不接地的短路和三相短路不能起到保护作用。另外零序一段保护范围受运行方式的影响也较大,有时可能保护范围缩得很小,这一点比同样保护接地故障的接地距离一段要逊色得多。但是零序电流保护的最后一段——零序过电流保护,由于很灵敏,保护过渡电阻的能力很强,这一点又比接地距离第三段强; 所以,现在有一些高压电网中有线路纵联保护,又配有保护接地短路的三段式的接地距离保护,并有双重化的保护配置,所以,生产一种保护装置的型号,把零序电流保护的第一段省略而只配零序电流保护二、三段; 零序电流保护中: 零序电流的大小与中性点接地的变压器的多少有很大关系。 零序方向继电器的原理、实现方法、性能评述: 零序方向继电器的最基本思想是比较零序电压的零序电流的相位来区分正、反方向的接地短路。 零序电流以母线流向被保护线路的方向为其正方向。 如果系统中各元件零序阻抗的阻抗角为80°,正方向短路时,零序电压超前零序电流的角度为:-100°,反方向短路时,零序电压超前零序电流的角度为80°;ARG表示的幅角,是分子相量超前分母相量

零序保护整定的计算~

零序电流保护的整定计算 变压器的零序电抗 1、Y/ △联接变压器 当变压器 Y 侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压 器绕组中没有零序电流,相当于零序网络在变压器丫侧断开(如图1所示)。 图1: Y/△联接变压器丫侧接地短路时的零序网络 2、Y0/ △联接变压器 当丫0 侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。 每相零序电压包括两部分:一部分是变压器丫0侧绕组漏抗上的零序电压降10X1 ,另一部 分是变压器丫0侧的零序感应电势 Ilc0X lc0 (Ilc0 为零序励磁电流, X lc0 为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0 ' X Ho Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多 倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这 时变压器的零序电抗等于0.8?1 .0倍正序电抗。即:X0=(0.8?1 .0)(X I +X H )= (0.8?1 .0)X1 o 本网主变零序电抗一般取 0.8 X1

图3: YO/△联接变压器YO 侧接地短路时的零序网络简化 零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电 流可按下式近似地计算: Ibp.js =Kfzq x fwc x ID(3)max 式中Kfzq ――考虑短路过程非周期分量影响的系数,当保护动作时间在 0.1S 以下时 取为2;当保护动作时间在0.3S ?0.1S 时取为1 .5 ;动作时间再长即大于0.3S 时取为1; fwc ――电 流互感器的10%^差系数,取为0.1 ; ID(3)max ——外部三相短路时的最大短路电流。 ID 图 2: YO/ Xi

10kv保护整定计算

金州公司窑尾电气室10kv 保护整定 1. 原料立磨主电机(带水电阻)整定 接线方式:A 、B 、C 三相式 S=3800kW In=266A Nct=400/5 保护型号:DM-100M 万力达 1.1保护功能配置 速断保护(定值分启动,启动后) 堵转保护(电机启动后投入) 负序定时限电流保护 负序反时限电流保护 零序电压闭锁零序电流保护 过负荷保护(跳闸\告警可选,启动后投入) 过热保护 低电压保护 过电压保护 工艺联跳(四路) PT 断线监视 1.2 电流速断保护整定 1.2.1 高值动作电流:按躲过电机启动时流经本保护装置的最大电流整定: Idz'.bh=Krel ×Kk* In 式中: Krel----可靠系数,取1.2~1.5 Kk 取值3 所以 Idz'.bh=Krel ×Kk* In/80=1.2×3.5×266/80=13.97A 延时时间:t=0 s 作用于跳闸 1.2.2 低值动作电流 Idz'.bh=Krel ×Kk* In/Nct=1.2×2*266/80=7.98A 延时时间:t=0 s 作用于跳闸 1.3负序电流定时限负序保护 lm i N i N k K K I Iop I K K 9.0577.0≤ ≤ Iop=2.4A 延时时间:T=1s 作用于跳闸 1.4 负序电流反时限负序保护(暂不考虑)

1.5 电机启动时间 T=12s 1.6低电压保护 U * op = Krel st.min *U Un=(0.5~0.6)Un 取0.6Un 故 U * op =60V 延时时间:t=0.5 s 作用于跳闸 1.7零序电压闭锁零序电流保护 I0=10A/Noct=0.17A 延时时间:t=0.5 s 作用于跳闸 1.8 过电压保护 Uop =k*Un=115V 作用于跳闸 延时时间:t=0.5 s 1.9 负序电压 U2op=0.12In=12V 1.10 过负荷保护电流电流 Idz'.bh=Krel × In/Nct=1.1×266/80=3.63A 取3.63A 延时时间:t=15 s 作用于跳闸 二、差动保护MMPR-320Hb 电机二次额定电流Ie=264/80=3.3A 1、 差动速断电流 此定值是为躲过启动时的不平衡电流而设置的,为躲过启动最大不平衡电流,推荐整定值按下式计算: t s k dz I K I tan ?=, k K :可靠系数,取1.5 t s I tan 为电流启动倍数取2In 则: =?=?l t s k j dz n I K I tan 1.5*2*264/80=9.9A 作用于跳闸 2、 比率差动电流 考虑差动灵敏度及匝间短路,按以下公式整定 dz I =0.5 In/Nct =1.65A 作用于跳闸 3、 比率制动系数:一般整定为0.5。 4、 差流越限 Icl=0.3Idz =0.3*1.65=0.495A 取0.5A 2 DM-100T 变压器保护功能配置 三段复合电压闭锁电流保护 反时限过电流保护 过负荷保护(跳闸或告警可选择)

变压器零序保护

变压器零序保护 变压器零序保护适用于110kV及以上电压等级的变压器。主变压器零序保护由零序电流、零序电压、间隙零序电流元件构成。根据变压器中性点接地方式的不同,设置不同的保护形式。 1.变压器中性点直接接地时的保护 变电站单台或并列运行的变压器中性点接地运行时,其接地保护一般采用零序电流保护,可从变压器中性点处零序电流互感器上取得零序电流。正常情况下,零序电流互感器中没有电流,当发生接地短路时,有零序电流通过,使零序保护动作。一般零序电流保护方式由两段构成。 2.中性点可接地也可不接地运行的变压器零序保护 为了限制短路电流并保证系统中零序电流的大小和分布不受系统运行方式变化的影响,变电站中通常只有部分变压器的中性点接地。变压器中性点不接地的运行方式有时根据需要也可以切换为中性点接地运行方式。 (1)全绝缘变压器。全绝缘变压器除了装设零序电流保护作为变压器中性点直接接地运行时的保护外,还应增设零序电压保护,作为变压器中性点不接地运行时的保护。 (2)中性点设有放电间隙的分级绝缘变压器。中性点设有放电间隙的分级绝缘变压器,除了装设零序电流保护作为变压器中性点直接接地运行的保护外,还应增设零序电流电压保护,作为变压器中性点不接地运行时的保护。 变压器中性点接地运行时,零序电流保护投入;变压器中性点如不接地运行,当电网发生单相接地故障且失去中性点时,中性点不接地的变压器中性点将出现零序电压,放电间隙击穿,间隙零序电流启动,跳开变压器,将事故切除,避免间隙放电时间过长。如果万一放电间隙拒动,则零序电压启动将变压器切除。 (3)中性点不设放电间隙的分级绝缘变压器。对中性点不设放电间隙的分级绝缘变压器,其中性点绝缘水平较低。为了防止中性点绝缘在工频过电压作用下损坏,当发生接地故障时,应采用零序电压保护先断开中性点不接地的变压器,后采用零序电流保护断开中性点接地的变压器。

变压器需要配备零序保护的三种情况

变压器需要配备零序保护的三种情况 零序保护分为零序电流保护和零序电压保护,通常会配以继电器或微机保护装置进行电路的保护。正常情况下,三根线的向量和为零,零序电流互感器无零序电流。当人体触电或者其他漏电情况下:三根线的向量和不为零,零序电流互感器有零序电流,一旦达到设定值,则保护动作跳闸。变压器需要配备零序保护的情况一般有三种: 1. 变压器高压侧中性点直接接地运行 对变压器高压侧中性点直接接地的自耦变压器和三绕组变压器采用零序过电流保护,取自变压器中性点的零序CT安装无方向零序保护,在主变两侧分别装上零序保护,了为满足选择性可增设零序方向元件。方向元件用各断路器侧CT的自产零序电流。主变中性点零序电流互感器的极性接线可以将中性点零序电流保护指向本侧母线或主变侧。采用断路器处的零序电流保护,和一般高中压侧方向指向各自的母线,但当中压侧不无源时,高压侧零序方向可指向主变。指向母线保护的范围以为断路器电流互感器安装处开始,需要与线路零序保护配合。指向主变变压器,需要主变压器另一侧出线的接地保护相配合。采用主变中性点处地零序电流保护,则保护范围比断路器处零序电流保护比要宽一些。小浪底目前运行的主变中性点零序电流保护无方向,这样的整定配合比较清晰方便,一是限制跳开母联断路器,二是限制跳开本侧开关。 2. 多台变压器同时运行,只需要1-2台接地运行 若不止一台变压器时,运行方式往往只允许1-2台接地运行,设计采用中性点零序电流继电器与经相邻变压器中性点零序电流继电器控制的零序电压继电器配合使用的变压器保护方案,保护回路设计先跳中性点不接地变压器,然后中性点跳直接接地的变压器,以防止不接地系统故障点的间歇性弧光过电压危及电气设备的安全。为避免全厂所有变压器全部被切的严重后果,保护时间应逐级配合,先断开母联或分断路器,再经零序电压元件跳开中心点不接地主变,最后经零序电流元件跳开中性点接地主变。 3. 变压器中点有可能接地运行 对中性点有可能直接接地运行,也有可能不接地运行的主变,因失去接地中性点引起的电压升高,应装设相应的保护装置。在直接接地时用零序电流保护。在中性点不接地时用零序电压保护或装设放电间隙保护,放到间隙保护起到过电压保护的作用,当放电间隙被击穿形成零序电流通路时,利用接在放电间隙回路的零序电流保护,切除该变压器。变压器采用放电间隙保护,放电间隙装于变压器中性点与地线之间、有棒形、球形、角形等多种形式,实际安装中可以棒形用得最多,零序电压保护动作电压按发生单相接地故障时保护安装处可能出现最大零序电压整定。

(完整版)主变零序保护的知识

主变零序保护的知识 1 概述 变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。本文就变压器的零序电流保护的一些特点进行介绍。 2 零序电流互感器安装位置对保护的影响 零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生, 本文不做讨论)。下面按故障点的不同展开如下分析(见图1): 由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。 3 变压器中性点电流互感器极性试验 一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

变压器零序电流保护的应用

变压器零序电流保护的应用 1概述 变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。本文就变压器的零序电流保护的一些特点进行介绍。 2零序电流互感器安装位置对保护的影响 零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。下面按故障点的不同展开如下分析(见图1): 由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序

电流保护只能对变压器高压侧与低压侧故障进行区分。如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。 3变压器中性点电流互感器极性试验 一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

零序保护整定说明

三、零序保护定值整定介绍 X10kV 配电网采用中性点经消弧线圈接地方式。变电站以一段10kV 母线为一个单元,每段母线独立配置消弧线圈。发生单相接地故障时,接地点将流过整段母线非故障线路对地电容电流总和,简单的系统网络图如下: 参考《工业与民用配电设计手册》,10kV 线路电容电流可按以下公式计算: (1) 电缆线路 la U S S Ica r ?++= 23.0220044.195 A (1) (2)架空线路 无架空地线单回路 3107.2-??=lb U Icb r A (2) 有架空地线单回路 3103.3-??=lb U Icb r A 以上公式中 S----电缆芯线标称截面,mm 2; la ----电缆线路长度,km ; lb ----架空线路长度,km ; Ur----线路额定线路电压,kV ,取10.5kV ; 当电缆线芯为240 mm 2时,按公式(1)计算 la U S S Ica r ?++= 23.0220044.195 A =(95+1.44?240)?10.5?la /(2200+0.23?240) =2.05la 当电缆线芯为300 mm 2时,按公式(1)计算

la U S S Ica r ?++= 23.0220044.195 =(95+1.44?300)?10.5?la /(2200+0.23?300) =2.44la X 电缆线芯规格多为240 mm 2和300 mm 2,有的线路是300 mm 2电缆与240 mm 2 混用,为简化计算,取两种电缆芯电容电流的平均值,有: (3) X 现有10kV 架空线多无架空地线,单回架空线采用公式(2)计算电容电流,有: 3107.2-??=lb U Icb r A =2.7?10.5?310-?lb =0.028lb 综上,10kV 线路对地电容电流按下式计算: Icb Ica Ic += =2.25la +0.028lb (4) 变电站以一段10kV 母线为一个单元独立配置消弧线圈。正常运行时,变电站内各段10kV 母线分列运行,因此,当系统发生单相接地故障时,接地点处按流过一段10kV 母线上所有线路对地电容电流考虑,即 Icn Ic Ic Ic +++=∑...21 (n 为10kV 母线上10kV 出线总数) 系统运行要求当发生单相接地故障时,消弧线圈按过补偿方式对接地电容电流进行补偿,补偿度kc=5%~10%,X 管辖范围内的变电站投运中的消弧装置广泛使用广州智光和上海思源两家公司产品,这两家公司的消弧选线方案具有很好的代表性。经咨询,这两个公司均按过补偿度为5%调节消弧线圈容量,当系统发生单相接地故障,消弧装置瞬时投入电抗器直到接地故障消失。因此馈线自动化开关零序CT 采样值为补偿后的残余接地电容电流,按过补偿5%计算,流经故障线路零序CT 的残流为: 0Ic =5%∑Ic =5%(Icn Ic Ic ...21++) =5%【2.25(la 1+la 2+…+la n )+0.028(lb 1+lb 2+…+lb n )】 (5) 线路正常运行时,对地电容电流均匀分布在整条10kV 馈线中,零序电流整 a 25 . 2 l Ica

三段式电流保护和零序电流保护习题

三段式电流保护和零序电流保护习题 一、 简答题 1. 继电保护的基本任务和基本要求是什么,分别简述其内容。 2. 后备保护的作用是什么,何谓近后备保护和远后备保护。 3. 说明电流速断、限时电流速断联合工作时,依靠什么环节保证动作的选择性,依靠什么环节保证保护动作的灵敏性和速动性。 4. 功率方向继电器90度接线方式的主要优点。 5. 中性点不接地电网发生单相接地时有哪些特征。 6. 简述零序电流方向保护在接地保护中的作用。 二、计算题 1.如下图所示35kV 电网,图中阻抗是按37kV 归算的有名值,AB 线最大负荷9MW ,cos 0.9?=,自启动系数 1.3ss K =。各段保护可靠系数均取1.2(与变压器配合时取1.3),电流继电器返回系数为0.9,变压器负荷各自保护的动作时间为1s 。计算AB 线三段电流保护的整定值,并校验灵敏系数。 ~ S A B 6.39.4Ω Ω C 10Ω 30Ω 30Ω 12Ω 1 T 2 T D E 2. 如图所示35kV 单侧电源放射状网络,确定线路AB 的保护方案。变电所B 、C 中变压器连接组别为Y,d11,且在变压器上装设差动保护,线路A 、B 的最大传输功率为MW P 9max =,功率因数为9.0cos =?,系统中的发电机都装设了自动励磁调节器。自起动系数取1.3。 3. 网络如图所示,已知:线路AB(A 侧)和BC 均装有三段式电流保护, 它们的最大负荷电流分别为120A 和100A ,负荷的自起动系数均为1.8;线路AB 第Ⅱ段保护的延时允许大于1s ;可靠系数2.1,15.1,25.1===I I I I I I rel rel rel K K K ,

中性点直接接地系统的零序电流保护汇总

第三章 中性点直接接地系统的零序电流保护 一、零序电流保护及其在系统中的作用 不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下: 可见零序电流的大小与系统运行方式有关。但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。 图3-31( b )为其短路计算的零序等效网络。 在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。零序电压的方向采用线路高于大地的电压为正。这样,A 母线的零序是电压表示为。 11)(oT o oA Z I U ??-= (3-48) 该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反

利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。 二、中性点直接接地系统变压器中性点接地原则 中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则: (1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。 (2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行; (3)T接于线路上的变压器,以不接地运行为宜。当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂; (4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。 (5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地 运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另

零序电流(零序保护)与剩余电流(漏电保护)的区别

接地故障保护与漏电故障保护的区别 为了防止人身间接触电以及配电线路由于各种原因而遭损坏,引起火灾等事故,保证设备和线路的热稳定性,我国现行的电气设计、施工等有关规范都提出了在低压配电线路中需设置接地故障保护。在国家标准GB50054-95《低压配电设计规范》第4.4.10条明确指出了采用接地故障保护的两种方法,零序电流保护与剩余电流保护(亦称漏电电流保护)。这两种电流保护的基本工作原理相同,但使用范围、安装等要求却有所不同)。 零序电流保护具体应用可在三相线路上各装一个电流互感器(C.T),或让三相导线一起穿过一零序C.T,也可在中性线N上安装一个零序C.T,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA+IB+IC=IO,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),IO=0;当线路上所接的三相负荷不平衡,则IO=IN,此时的零序电流为不平衡电流IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN+Id,是三相不平衡电流与单相接地电流的矢量和。 剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N线一起穿过一个零序C.T,得到三相导线与中性线N的电流矢量和IA+IB+IC+IN,当设有发生单相接地故障时,无论三相负荷平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄漏电流);当发生某一相接地故障时,故障电流中会通过保护线PE及与地相关连的金属构件,即IA+IB +IC+IN≠0,此时数值为接地故障电流Id加正常泄漏电流。 从以上分析可看出,零序电流保护和剩余电流保护两者的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即ΣI=0,并且都用零序C.T作为取样元件。在线路与电器设备正常情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序C.T的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。当发生接地故障是地,各相电流的矢量和不为零,故障电流的零序C.T的环形铁芯中产生磁通,零序C.T的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 零序电流保护一般适合使用于TN接地系统。因为当发生一相接地时,对TN-S 系统Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE和接触阻抗Zf,即Zs=Z1+ZPE+Zf;对于TN-C系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN 和接触电阻Zf,即ZS=Z1+ZPEN+Zf;对于TN-C-S系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN,PE线阻抗ZPE和接触电阻Zf,即ZS=Z1+ZPEN+ZPE+Zf,产生的单相接地故障电流Id=220/ZS,明显大于无故障时的三相不平衡电流,只要整定合适,就可检测出发生接地故障时的零序电流,以切断故障回路。而对IT系统,一般均是使用对供电可靠性要求较高、对单相接地不必要立即切断供电回路、但需发出绝缘破坏监察信号、以维持继续供电一段时间的工矿企业内的不配出中性线的三相三线配电线路。当单相接地时,该故障线

变压器什么情况下需要配备零序保护

变压器什么情况下需要配备零序保护 摘要:零序保护分为零序电流保护和零序电压保护,通常会配以继电器或微机保护装置进行电路的保护。 那关于零序保护你有又了解多少呢?关于变压器什么情况下需要配备零序保护呢? 一、零序保护定义 在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护。 二、零序保护原理简介 三相电流平衡时,没有零序电流,不平衡时产生零序电流,零序保护就是用零序互感器采集零序电流,当零序电流超过一定值(综合保护中设定),综合保护接触器吸合,断开电路。零序电流互感器内穿过三根相线矢量。 正常情况下,三根线的向量和为零,零序电流互感器无零序电流。当人体触电或者其他漏电情况下:三根线的向量和不为零,零序电流互感器有零序电流,一旦达到设定值,则保护动作跳闸。 零序CT安装图 变压器需要配备零序保护的情况一般有三种

1.多台变压器同时运行,只需要1-2台接地运行; 若不止一台变压器时,运行方式往往只允许1-2台接地运行,设计采用中性点零序电流继电器与经相邻变压器中性点零序电流继电器控制的零序电压继电器配合使用的变压器保护方案,保护回路设计先跳中性点不接地变压器,然后中性点跳直接接地的变压器,以防止不接地系统故障点的间歇性弧光过电压危及电气设备的安全。为避免全厂所有变压器全部被切的严重后果,保护时间应逐级配合,先断开母联或分断路器,再经零序电压元件跳开中心点不接地主变,最后经零序电流元件跳开中性点接地主变。 2.变压器中点有可能接地运行; 对中性点有可能直接接地运行,也有可能不接地运行的主变,因失去接地中性点引起的电压升高,应装设相应的保护装置。在直接接地时用零序电流保护。在中性点不接地时用零序电压保护或装设放电间隙保护,放到间隙保护起到过电压保护的作用,当放电间隙被击穿形成零序电流通路时,利用接在放电间隙回路的零序电流保护,切除该变压器。变压器采用放电间隙保护,放电间隙装于变压器中性点与地线之间、有棒形、球形、角形等多种形式,实际安装中可以棒形用得最多,零序电压保护动作电压按发生单相接地故障时保护安装处可能出现最大零序电压整定。 3.变压器高压侧中性点直接接地运行 对变压器高压侧中性点直接接地的自耦变压器和三绕组变压器采用零序过电流保护,取自变压器中性点的零序CT安装无方向零序保护,在主变两侧分别装上零序保护,了为满足选择性可增设零序方向元件。方向元件用各断路器侧CT的自产零序电流。主变中性点零序电流互感器的极性接线可以将中性点零序电流保护指向本侧母线或主变侧。采用断路器处的零序电流保护,和一般高中压侧方向指向各自的母线,但当中压侧不无源时,高压侧零序方向可指向主变。指向母线保护的范围以为断路器电流互感器安装处开始,需要与线路零序保护配合。指向主变变压器,需要主变压器另一侧出线的接地保护相配合。采用主变中性点处地零序电流保护,则保护范围比断路器处零序电流保护比要宽一些。小浪底目前运行的主变中性点零序电流保护无方向,这样的整定配合比较清晰方便,一是限制跳开母联断路器,二是限制跳开本侧开关。

零序方向保护

1采用零序方向保护的意义 我国电力系统中性点接地方式有3种:中性点直接接地、中性点经消弧线圈接地和中性点不接地方式。110 kV及以上电网的中性点均采用第1种接线方式,在这种系统中发生单相接地故障时接地短路电流很大,故称其为大接地电流系统。在大接地电流系统中发生单相接地故障的概率很高,可占总短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速地切除接地短路故障,以免危及电气设备的安全。 大接地电流系统接地短路时,零序电流、零序电压和零序功率的分布与正序分量、负序分量的分布有明显区别: a.当系统任一点单相及两相接地短路时,网络中任何处的三倍零序电流和电压都等于该处三相电流或电压的矢量和,即: 3U0=UA+UB +UC 3I0=IA+I B+IC b.系统零序电流分布只与中性点接地的多少及位置有关,图1为系统接地短路时的零序等效网络。 式中EΣ——电源的合成电动势; Z0T1、Z0T2——变压器T1、T2的零序阻抗; Z01、Z02——短路点两侧线路的零序阻抗。 当发电厂M侧的变压器中性点接地点增多时,Z0T1将减小,从而使I0和I01增大,I02减小。反之,I0和I01减小,I02增大。如果发电厂N侧的中性点不接地,则Z0T2=∞,I01也将增大且等于I0。 两相接地短路时也可得到相应的结论。 c. 故障点的零序电压最高,变压器中性点接地处电压为0,保护安装处的电压U0A=-I0Z0T1,如图2所示。

d. 零序功率S0=I0U0。由于故障点的电压U0最高,对应故障点的S0也最大。越靠近变压器中性点接地处S0越小。在故障线路上,S0是由线路流向母线。 综上所述,中性点直接接地系统发生接地短路时,将产生很大的零序电流分量,利用零序电流分量构成零序电流保护,可作为一种主要的接地短路保护。因为它不反映三相和两相短路,在正常运行和系统发生振荡时也没有零序分量产生,所以有较好的灵敏度。如线路两端的变压器中性点都接地,当线路发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过。为保证各零序电流保护有选择性地动作和降低定值,必须加装方向继电器,使其动作带有方向性。 零序功率方向是零序电流保护中的关键环节。在运行实践中,因方向继电器接线错误而造成的保护误动时有发生。因此做好零序功率方向的校验和接线正确性的判定至关重要。 2 零序功率方向继电器的接线 零序功率方向继电器的正确接线,应使其动作特性为:当被保护线路或元件发生正方向接地故障时,零序电压和零序电流的相位关系应可靠进入继电器的灵敏动作区,而反方向接地故障时,继电器可靠不动作。 传统习惯规定电流正方向为母线流向线路,同时取母线电压为电压升。当发生正方向接地故障时,零序电流超前零序电压为(180°-θ),θ为系统零序电源阻抗角。一般θ角约在85°左右,则零序电流超前零序电压约为95°。 传统的零序功率方向继电器,其动作最灵敏角有电流超前电压110°和电流滞后电压70°两种,即灵敏角为-110°和+70°,一般采用后者。对于灵敏角为-70°的继电器,由于其动作特性与故障情况相反,现场接线方式上考虑将零序电压的极性反向接入,零序电流正极性接入,这样就能够使继电器正确反应故障状态了。 对于微机零序保护装置,其零序电流电压的接入分自产和外接两种情况。微机线路保护装置的零序电压电流均为自产,三相电压电流正极性接入即可。微机变压器保护中不同厂家的产品对零序电压电流的接入有不同要求,其中需要外接零序电压的,必须是正极性接入,这是和传统继电器的区别。 3 用负荷电流及工作电压测量零序功率方向继电器 利用负荷电流及工作电压检验零序功率方向继电器接线正确性之前,必须对电压互感器开口三角引出的L、N线的极性进行核查。 在正常情况下电压互感器开口三角两端电压UNL=0,故ULS=UNS,但L、N无法用试验的方法区分,因此,利用负荷电流及及工作电压检验零序功率方向

相关主题
文本预览
相关文档 最新文档