当前位置:文档之家› 水中钙镁含量的测定实验报告

水中钙镁含量的测定实验报告

水中钙镁含量的测定实验报告
水中钙镁含量的测定实验报告

水中钙镁离子含量测定.doc

实验十四水硬度的测定 一实验目的 1、了解硬度的常用表示方法; 2、学会用配位滴定法测定水中钙镁含量,钙含量的原理和方法 3、掌握铬黑T,钙指示剂的使用条件和终点变化。 二、实验原理 1、总硬度、钙硬度、镁硬度的概念及表示方法; 水的硬度主要是指水中含可溶性的钙盐和镁盐。总硬度通常以每L 水中含的碳酸钙的mg数,即mg/L. 钙硬度即每1L 水中含的钙离子的m g数,mg/L. 镁硬度即每1L 水中含的镁离子的m g数,mg/L 2 总硬度的测定条件与原理 测定条件:以N H3-NH4Cl 缓冲溶液控制溶液pH=10,以铬黑T 为指示剂,用EDTA 滴定水样。 原理:滴定前水样中的钙离子和镁离子与加入的铬黑T指示剂络合,溶液呈现酒红色,随着EDTA的滴入,配合物中的金属离子逐渐被EDTA夺出,释放出指示剂,使溶液颜色逐渐变蓝,至纯蓝色为终点,由滴定所用的EDTA的体积即可换算出水样的总硬度。 3 钙硬度的测定条件与原理; 测定条件:用NaOH溶液调节待测水样的pH为13,并加入钙指示剂,然后用EDTA 滴定。 原理:调节溶液呈强碱性以掩蔽镁离子,使镁离子生成氢氧化物沉淀,然后加入指示剂用EDTA滴定其中的钙离子,至酒红色变为纯蓝色即为终点,由滴定所用 的EDTA的体积即可算出水样中钙离子的含量,从而求出钙硬度。 4、相关的计算公式 总硬度=(CV1) EDTA M CaCO3/0.1 钙硬度=(CV2) EDTA M Ca/0.1 镁硬度= C(V1-V2)M Mg/0.1

三实验步骤 实验步骤思考题 总硬度的测定 1、水硬度的测定包括哪些内容?如何 用100mL吸管移取三份水 测定? 样,分别加5mL NH3-NH4Cl 缓冲 2、我国如何表示水的总硬度,怎样换溶液,2~3 滴铬黑T 指示剂,用 EDTA标准溶液滴定,溶液由酒红 算成德国硬度? 色变为纯蓝色即为终点。 3、用Zn2+标准溶液标定EDTA标准溶液 有二种方法,水硬度的测定实验中所用EDTA应 用哪种方法标定? 4、怎样移取100mL水样? 5、为什么测定钙、镁总量时,要控制 pH=10?叙述它的测定条件。 6、测定总硬度时,溶液中发生了哪些 反应,它们如何竞争 7、如果待测液中只含有Ca2+,能否用铬黑T 为指示剂进行测定? 钙硬度测定 8、测定钙硬度时,为什么加2mL6mol· L-1NaOH 用100mL吸管移取三份水样,分别加2mL 6mol· L -1 NaOH -1 NaOH 溶液使溶液的pH=12~13?叙述它的测定条件。 9、为什么钙指示剂能在pH=12~13 的条件下指 溶液,5~6 滴钙指示剂,用EDTA 示终点? 标准溶液滴定,溶液由酒红色变 为纯蓝色即为终点。 10、怎样减少测定钙硬度时的返红现象? 11、怎样做空白实验,为什么要做空白实验, 实验中为什么不做? 12、怎样表示实验结果? 13、如水样中含有Al3+、Fe3+、Cu2+,能否用 铬黑T 为指示剂进行测定,如可以,实验应该 如何做? 四实验数据记录与处理

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

声速测定实验报告

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

水中钙镁离子含量及总硬度的测定

水中钙镁离子含量及总硬度的测定 目的 1、了解水的硬度的测定意义和水硬度常用表示方法。 2、掌握EDTA法测定水中Ca2+、Mg2+含量的原理和方法。 原理 工业中将含有较多钙、镁盐类的水称为硬水,水的硬度是将水中Ca2+、Mg2+的总量折合成CaO或CaCO3来计算。每升水中含1mgCaO定为1度,每升水含10mgCaO称为一个德国度(°)。水的硬度用德国度(°)作为标准来划分时,一般把小于4°的水称为很软水,4°~8°的水称为软水,8°~16°的水称为中硬水,16°~32°的水称为硬水,大于32°的水称为很硬水。 用EDTA进行水的总硬度及Ca2+、Mg2+含量的测定时可先测定Ca2+、Mg2+的总量,再测定Ca2+量,由总量与Ca2+量的差求得Mg2+的含量,并由Ca2+、Mg2+总量求总硬度。 Ca2+、Mg2+总量的测定:用NH3-NH4Cl缓冲溶液调节溶液的PH=10,在此条件下,Ca2+、Mg2+均可被EDTA准确滴定。加入铬黑T指示剂,用EDTA标准溶液滴定。在滴定的过程中,将有四种配合物生成即CaY、MgY、MgIn、CaIn,它们的稳定性次序为:CaY﹥MgY﹥MgIn﹥CaIn(略去电荷) 由此可见,当加入铬黑T后,它首先与Mg2+结合,生成红色的配合物MgIn,当滴入EDTA时,首先与之结合的是Ca2+,其次是游离态的Mg2+,最后,EDTA 夺取与铬黑T结合的Mg2+,使指示剂游离出来,溶液的颜色由红色变为蓝色,到达指示终点。设消耗EDTA的体积为V1。 Ca2+含量的测定:用氢氧化钠溶液调节待测水样的PH=12,将Mg2+转化为Mg(OH)2沉淀,使其不干扰Ca2+的测定。滴加少量的钙指示剂,溶液中的部分Ca2+立即与之反应生成红色配合物,使溶液呈红色。当滴定开始后,随着EDTA的不断加入,溶液中的Ca2+逐渐被滴定,接近计量点时,游离的Ca2+被滴定完后,EDTA 则夺取与指示剂结合的Ca2+使指示剂游离出来,溶液的颜色由红色变为蓝色,到达指示终点。设滴定中消耗EDTA的体积为V2。 仪器及药品 仪器:50ml酸式滴定管,50ml移液管,250ml锥形瓶,10ml量桶。 药品:10%NaOH溶液,PH=10的缓冲溶液,铬黑T指示剂(将1g铬黑T指示剂与100g分析纯NaCl混合、磨细,装瓶备用),EDTA标准溶液,钙指示剂(1g 钙指示剂与100g分析纯NaCl混合、磨细,装瓶备用)。 内容及步骤 用移液管吸取水样50.00ml于250ml三角瓶中,加5ml PH=10的缓冲溶液,再加少许(约0.1g)铬黑T混合指示剂,用EDTA标准溶液滴定至酒红色变为纯蓝色。记录EDTA用量V1(ml)。重复1~2次。 另取50.00ml水样于250ml锥形瓶中,加入5ml10%NaOH溶液摇匀,加入少许(约0.1g)钙指示剂,用EDTA标准溶液滴定至酒红色变为纯蓝色。记录EDTA 用量V2(ml)。重复1~2次。按下式计算: (EDTA)×V2×M(Ca)×1000 C ρCa(mg/L)= -------------------------- 50.00

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生 器输出的正弦电压信号接到发射超声 换能器上,超声发射换能器通过电声 转换,将电压信号变为超声波,以超 声波形式发射出去。接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。

移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:λf v =就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。 2.相位比较法 实验接线如下图所示。波是振动状态的传播,也可以说是位相的传播。在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。声波波源和接收点存在着位相差,而这位相差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的位相关系中得出,并可利用示波器的李萨如图形来观察。 位相差?和角频率ω、传 播时间t 之间有如下关系: t ?=ω? 同时有,t πω2=, v l t =,v T =λ(式中T 为周期) 代入上式得:λπ?l 2= 当 2λn l = (n=1,2,3,...)时,可得π?n =。 由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Ф=2π)。 实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。当相位差改变π时,相应距离l 的改变量即为半个波长。根据波长和频率即可求出波速。 3.超声波的发射与接收——压电陶瓷换能器

大化实验 水硬度的测定 钙镁总量的测定

实验十二水硬度的测定 一实验目的 1、了解硬度的常用表示方法; 2、学会用配位滴定法测定水中钙镁含量,钙含量的原理和方法 3、掌握铬黑T,钙指示剂的使用条件和终点变化。 二、实验原理 1、总硬度、钙硬度、镁硬度的概念及表示方法; 水的硬度主要是指水中含可溶性的钙盐和镁盐。总硬度通常以每L水中含的碳酸钙的mg数,即mg/L. 钙硬度即每1L水中含的钙离子的mg数,mg/L. 镁硬度即每1L水中含的镁离子的mg数,mg/L 2 总硬度的测定条件与原理 测定条件:以NH3-NH4Cl 缓冲溶液控制溶液pH=10,以铬黑T为指示剂,用EDTA滴定水样。 原理:滴定前水样中的钙离子和镁离子与加入的铬黑T指示剂络合,溶液呈现酒红色,随着EDTA的滴入,配合物中的金属离子逐渐被EDTA夺出,释放出指示剂,使溶液颜色逐渐变蓝,至纯蓝色为终点,由滴定所用的EDTA的体积即可换算出水样的总硬度。 3 钙硬度的测定条件与原理; 测定条件:用NaOH溶液调节待测水样的pH为13,并加入钙指示剂,然后用EDTA滴定。 原理:调节溶液呈强碱性以掩蔽镁离子,使镁离子生成氢氧化物沉淀,然后加入指示剂用EDTA滴定其中的钙离子,至酒红色变为纯蓝色即为终点,由滴定所用的EDTA的体积即可算出水样中钙离子的含量,从而求出钙硬度。 4、相关的计算公式 总硬度=(CV1)EDTA M CaCO3/0.1 钙硬度=(CV2)EDTA M Ca/0.1 镁硬度=C(V1-V2)M Mg/0.1 三实验步骤 实验步骤思考题 总硬度的测定1、水硬度的测定包括哪些内容?如何测定?

用100mL 吸管移取三份水样,分别加5mL NH 3-NH 4Cl 缓冲溶液,2~3滴铬黑T 指示剂,用EDTA 标准溶液滴定,溶液由酒红色变为纯蓝色即为终点。 2、 我国如何表示水的总硬度,怎样换算成德国硬度? 3、 用Zn2+标准溶液标定EDTA 标准溶液有二种方法,水硬 度的测定实验中所用EDTA 应用哪种方法标定? 4、 怎样移取100mL 水样? 5、 为什么测定钙、镁总量时,要控制pH=10?叙述它的测 定条件。 6、 测定总硬度时,溶液中发生了哪些反应,它们如何竞争 7、如果待测液中只含有Ca2+,能否用铬黑T 为指示剂进行测定? 钙硬度测定 用100mL 吸管移取三份水样,分别加2mL 6mol ·L -1 NaOH 溶液,5~6滴钙指示剂,用EDTA 标准溶液滴定,溶液由酒红色变为纯蓝 色即为终点。 8、测定钙硬度时,为什么加2mL 6mol ·L-1NaOH 溶液使溶液 的pH=12~13?叙述它的测定条件。 9、为什么钙指示剂能在pH=12~13的条件下指示终点? 10、怎样减少测定钙硬度时的返红现象? 11、怎样做空白实验,为什么要做空白实验,实验中为什么不做? 12、怎样表示实验结果? 13、如水样中含有Al3+、Fe3+、Cu2+,能否用铬黑T 为指示 剂进行测定,如可以,实验应该如何做? 四 实验数据记录与处理 总硬度的测定 序号 1 2 3 自来水体积V 水/mL V 初/mL V 终/mL V 总/mL 平均体积V 1/mL 总硬度/mg/L

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

试验八水中钙镁含量的测定资料

试验八水中钙镁含量 的测定

实验八水中钙、镁含量的测定 实验目的: 1.掌握EDTA法测定水硬度的原理和方法。 2.了解测定水的硬度的意义和我国常用的硬度表示方法。 3. 掌握铬黑T和钙指示剂的性质、应用及终点时颜色的变化。 实验原理: 通常称含较多量Ca2+、Mg2+的水叫硬水,水的总硬度是指水中Ca2+、Mg2+的总量。硬度小于5~6度的一般可称为软水。硬度有暂时硬度和永久硬度之分。凡水中含有钙、镁的酸式钙酸盐,遇热即成钙酸盐沉淀而失去其硬度则为暂时硬度;凡水中含有钙、镁的硫酸盐、氯化物、硝酸盐等所成的硬度称为永久硬度。 硬度又分为钙硬和镁硬,由Ca2+离子形成的硬度称为“钙硬”,由Mg2+离子形成的硬度称为“镁硬”,暂时硬度和永久硬度的总和称为“总硬”。 因此,水的总硬度即水中钙、镁总量的测定,为确定用水性质量和进行水的处理提供依据。 1.水的总硬度测定:一般采用络合滴定法,在pH≈10的氨性缓冲溶液中,以铬黑T(EBT)为指示剂,用EDTA标准溶液直接测定Ca2+、Mg2+的总量。由EDTA浓度和用量,可计算出水的总硬度。 滴定过程:由于K CaY>K MgY>K Mg·EBT,铬黑T先与部分Mg络合为Mg-EBT(酒红色)。当EDTA滴入时,EDTA与Ca2+、Mg2+络合,终点时EDTA夺取Mg-EBT中的Mg2+,将EBT置换出来,溶液由酒红色转为纯蓝色。 滴定前:EBT +Me(Ca2+、Mg2+)=Me-EBT

(蓝色) pH=10 (紫红色) 滴定开始至化学计量点前:H 2Y 2- + Ca 2+ = CaY 2- + 2H + H 2Y 2- + Mg 2+ = MgY 2- + 2H + 计量点时:H 2Y 2- + Mg-EBT = MgY 2- + EBT +2H + (紫蓝色) (蓝色) 2.测定水中钙硬:在溶液pH ≥12时,以钙指示剂作为指示剂,用EDTA 标准溶液滴定水中Ca 2+,由EDTA 浓度和用量,可算出水钙硬。由总硬度减去钙硬即为镁硬。 3水的硬度表示方法有多种,目前我国采用两种表示方法: (1)一种是以CaO 的mg ?L -1计,以水中Ca 2+、Mg 2+的总量换算为CaO 含量。表示1L 水中所含CaO 的mg 数,其硬度表示为: ) (水 11000)(-???L mg V M cV CaO EDTA (2)是以度(°)计,1硬度单位表示十万份水中含一份CaO , 1°=10ppmCaO ,其硬度表示为: ) (水 ο100)(??V M cV CaO EDTA 式中 C EDTA —EDTA 标准溶液的浓度 mol ?L -1; V EDTA —滴定时用去的EDTA 标准溶液的体积; V 水样—水样的体积(mL ); 4.滴定时,Fe 3+、Al 3+等干扰离子用三乙醇胺掩蔽;Cu 2+、Pb 2+、Zn 2+等重金属离子可用KCN 、Na 2S 或巯基乙酸掩蔽。 试剂

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

声速的测量实验报告

声速的测量实验报告 声速的测量实验报告 1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬测量时间 张海涛发声 贾兴藩测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间 17∶30 温度 21℃ 发声时间 0.26 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。

声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称比热[容]比,它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(11.710-6)Jmol-1K-1为摩尔气体常量。) 标准干燥空气的平均摩尔质量为Mst =28.9668710-3kg/mol b.在标准状态下(T088273.15 K,p88101.388kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2)

水中钙、镁含量的测定—配位滴定法

—配位滴定法〖实验目的〗 (1)了解水的硬度的表示方法。 (2)掌握EDTA法测定水中钙、镁含量的原理和方法。 (3)正确判断铭黑T和钙指示剂的滴定终点。 〖实验用品〗 仪器:酸式滴定管、容量瓶、移液管、锥形瓶、烧杯、细口试剂瓶、量筒。 药品: EDTA、CaCO 3、MgCl 2 ·H 2 O、固体pH=10氨性缓冲溶液、HCl水溶液、NaOH溶液 络黑T指示剂:将1g铬黑T指示剂与100g干燥的纯NaC1混合,研细备用。 钙指示剂:将1g钙指示剂与100g干燥的纯NaC1混合,研细备用。 试样:自来水、矿泉水 〖实验原理〗 水的总硬度通常是指水中钙、镁的总量。各国对水的硬度表示方法有所不同。我国采用Ca2+、Mg2+总量折合成CaO来计算水的硬度,硬度单位以度(°)表示,一个硬度单位代表1L 水中含10mgCaO。 一般饮水的总硬度不得超过25°,各种工业用水对硬度有不同的要求,如酿酒以硬水为宜,锅炉用水则必须是软水。因此,测定水的总硬度有很重要的实际意义。 用EDTA法测定水的总硬度,即在PH=10的氨性缓冲溶液中,以络黑T(EBT)作为指示剂,用EDTA标准溶液直接滴定水中的Ca2+、Mg2+,直到溶液由酒红色变为纯兰色,即为终点。反应式如下: 滴定前:EBT+M(Ca2+,Mg2+ )=M-GEBT (兰色) (酒红色) 滴定开始到等量点前:M+EDTA=M-EDTA 等量点:M-EBT+EDTA=M-EDTA+EBT (酒红色) (兰色) 滴定时,Fe3+、Al3+等干扰离子可用三乙醇胺予以掩蔽,Ca2+、pb2+、Zn2+等重金属离子可用KCN、Na 2 S或巯基乙酸予以掩蔽。 铬黑T与Ca2+络合较弱,所呈颜色不深,终点变化不明显。当水样中的Mg2+的含量较低时(一般要求相对Ca2+来说须有5% Mg2+存在),用铬黑T指示剂往往得不到敏锐的终点。这时,可在加铬黑T前于被滴定液中加入适量Mg2+—EDTA溶液(也可在标定前于EDTA溶液中加入适量Mg2+),使终点变色敏锐。 钙硬度测定原理与总硬度测定原理相同,但溶液的PH值应大于12,使Mg2+生成Mg(OH)2 沉淀,所用的指示剂为钙指示剂。滴定达终点时,溶液也是由酒红色变为兰色。 镁硬度可由总硬度减去钙硬度而得到。 根据下式计算水的总硬度: 水的总硬度(CaOmg·L-1): (°)=c(EDTA)*V 1(EDTA)*M(CaO)*(103mg*g-1)/[V(H 2 O)*(10mg*g-1)] 钙硬度(CaOmg·L-1): (°)=c(EDTA)*V 2(EDTA)*M(CaO)*(103mg*g-1)/[V(H 2 O)*(10mg*g-1)] 镁硬度(CaOmg·L-1)=总硬度-钙硬度 式中:c(EDTA)为EDTA标准溶液的浓度;V 1(EDTA)为测总硬度时耗EDTA的体积(ml);V 2 (EDTA) 为测钙硬度时,所耗EDTA的体积(ml);V 水 为测定时所取水样的体积(ml)。〖操作步骤〗 1 0.02mol·L-1EDTA标准溶液的配制与标定 (1)0.02mol·L-1EDTA标准溶液的配制

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

声速的测量实验报告.doc

声速的测量实验报告 不会写声速的测量实验报告的朋友,下面请看我给大家整理收集的声速的测量实验报告,仅供参考。 声速的测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬——测量时间 张海涛——发声 贾兴藩——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称"比热[容]比",它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T 是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。)

标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下 (T0�8�8273.15 K,p�8�8101.3�8�8kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2) (T0=273.15K) c.然而实际空气总会有一些水蒸气。当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。经过对空气平均摩尔质量 M 和质量热容比8�0 的修正,在温度为t、相对湿度为r 的空气中,声速为 (在北京大气压可近似取p�8�4 101kPa;相对湿度r 可从干湿温度计上读出。温度t℃时的饱和水汽压ps可用 lgps�8�810.286�8�2 d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。 引起偏差的原因有: ~状态参量的测量误差 ~理想气体理论公式的近似性 实验方法: A. 脉冲法:利用声波传播时间与传播距离计算声速 实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器

大物实验报告声速测定(DOC)

声速测定 引言:本实验使用了超声声速测定仪、低频信号发生器(DF1027B)、示波器 (ST16B)设计了共振干涉法、相位比较法、时差法来进行超声速的测定,并对实验数据进行处理、分析,最终得出声速,并与理论值进行比较。 关键词:声速测定。 Abstract:This experiment uses the ultrasonic velocity measurement instrument (DF1027B), low frequency signal generator, oscilloscope (ST16B) design the resonance interferometry, phase comparison method, the time difference method for supersonic were measured, and the experimental data processing and analysis, finally obtains the speed of sound, and compared with the theoretical value. 一、实验目的 1、了解超声波换能器的工作原理和功能; 2、学习不同方法测定声速的原理和技术; 3、熟悉测定仪和示波器的调节和使用; 4、测定声速在空气中的传播速度。 二、仪器设备 ZKY_SS超声声速测定仪、低频信号发生器、示波器。 三、实验原理 由波动理论得知,声波的传播速度v与声波频率和波长之间的关系为。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。 压电陶瓷换能器 本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。 如图1所示,S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。

《声速测量》实验报告

《声速测量》实验预习报告 一、 实验原理 1. 理论计算 理想气体中声波的传播速度为 M RT v γ= 其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=8.31441J/(mol ·K) 在室温t 下,干燥空气中的声速为 01T t v v + = 其中,s m v /5.3310=,K T 15.2730=。 但实际中空气并不是干燥的,所以修正的结果为 ??? ? ? ?+???? ? ?+=p rp T t v s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1?=。 2. 实验方法 由于λf v =,故只要测出频率和波长,就可以求出声速。 其中,声波频率由声源振动频率得到,再用相位法测得波长即可。波可以看成是相位的传播。沿传播方向上的任意两点,只要他们的振动状态相同,即同相或者相位差为2π的整数倍,

这时两点间的距离应等于波长λ的整数倍,即λn l=。 当在发射器的声波中沿传播方向移动接受器时,总可以找到一 个位置,使得接受器接受到的电信号和发射器的激励电信号同 相。继续移动接受器,知道接受的信号再一次和激励电信号同 相的时候,移过的距离必然等于声波的波长。利用利萨如图形 在两个电信号同相或反相时椭圆退化为友斜或左斜直线即可 判断。 二、实验步骤 1.连接电路。函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的 通道2相连。函数信号发生器置于正弦波输出,频率置于100kHz 档,输出幅度调到峰值10V左右。 2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。先将函数信号发生器的频率调节到40kHz左右,然后细调频率,使接受器输出信号最大,记下此频率,即超声 波频率。实验过程中若有改变,记下最大最小值,最后取平均 值。 3.用相位法测波长。利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处 理。得到波长的平均值。计算声速。 4.在测量开始和结束时,先后记录室温t1和t2,以及相对湿

测量水中钙镁离子总含量

实验目的:测量水中钙、镁离子的总含量 1.了解配位滴定法基本原理和方法。 2.了解水的硬度的概念及其表示方法。 实验原理 含有钙、镁离子的水叫硬水。测定水的总硬度就是测定水中钙、镁离子的总含量,可用EDTA配位滴定法测定: 滴定前: M + EBT M-EBT (红色) 主反应: M + Y MY 终点时: M-EBT + Y MY + EBT (红色) (蓝色) 滴定至溶液由红色变为蓝色时,即为终点。 滴定时,Fe3+、Al3+等干扰离子可用三乙醇胺予以掩蔽;Cu2+、Pb2+、Zn2+等重属离子,可用KCN、Na2S或巯基乙酸予以掩蔽。 水的硬度有多种表示方法,本实验要求以每升水中所含Ca2+、Mg2+总量(折算成CaO的质量)表示,单位mg?L-1。 器材和药品 1.器材天平(0.1g、0.1mg),容量瓶(100mL),移液管(20mL),酸式滴定管(50mL),锥形瓶(250mL)等。 2.药品 HC1(1∶1),乙二胺四乙酸二钠(Na2H2Y?2H2O,A.R.),碱式碳酸镁[Mg(OH)2?4MgCO3?6H2O,基准试剂],NH3-NH4Cl缓冲溶液(pH=10.0),三乙醇胺(1∶1),铬黑T指示剂(0.2%氨性乙醇溶液)等。 实验方法 一、Mg2+标准溶液的配制(约0.02mol?L-1) 准确称取碱式碳酸镁基准试剂0.2~0.25g,置于100mL烧杯中,用少量水润湿,盖上表面皿,慢慢滴加1∶1 HC1使其溶解(约需3~4mL)。加少量水将它稀释,定量地转移至100mL容量瓶中,用水稀释至刻度,摇匀。 其浓度计算: 二、EDTA标准溶液的配制与标定 1.EDTA标准溶液的配制(约0.02mol?L-1) 称取2.0g乙二胺四乙酸二钠(Na2H2Y?2H2O)溶于250mL蒸馏水中,转入聚乙烯塑料瓶中保存。 2.EDTA标准溶液浓度的标定 用20mL移液管移取Mg2+标准溶液于250mL锥形瓶中,加入10mL氨性缓冲溶液和3~4滴EBT指示剂,用0.02mol?L-1EDTA标准溶液滴定,至溶液由紫红色变为蓝色即为终点。平行标定3次。EDTA浓度计算:,取三次测定的平均值。 三、水的总硬度测定 用20mL移液管移取水样于250mL锥形瓶中,加氨性缓冲溶液6mL,1∶1三乙醇胺溶液3mL,EBT 指示剂3~4滴,用EDTA标准溶液滴定,至溶液由紫红色变为蓝色即为终点。平行测定3次。 水的总硬度计算:,取三次测定的平均值。 2 实验原理 2.1 乙二胺四乙酸(简称EDTA,常用H4Y表示)难溶于水,常温下其溶解度为0.2g·L-1,在分析中不适用,通常使用其二钠盐配制标准溶液。乙二胺四乙酸二钠盐的溶解度为120g·L-1,可配成0.3mol·L-1以上的溶液,其水溶液pH=4.8,通常采用间接法配制标准溶液。 标定EDTA溶液常用的基准物有Zn、ZnO、CaCO3、Bi、Cu、MgSO4·7H2O、Hg、Ni、Pb。等。通常选用其中与被测组分相同的物质作基准物,这样滴定条件较一致。 EDTA溶液若用于测定石灰石或白云石中CaO、MgO的含量,则宜用CaCO3为基准物。首先可加HCl溶液与之作用,其反应如下: CaCO3+2HCl═CaCl2+H2O+CO2↑

声速测量实验报告

一、实验项目名称:声速测量 二、实验目的: 1.学会测量超声波在空气中传播速度的方法。 2.理解驻波和振动合成理论。 3.学会逐差法进行数据整理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 三、实验原理: 1. 声波在空气中的传播速度: 在标况下,干燥空气中的声速为v=331.5m/s,T=273.15K。室温t℃时,干燥空气的声速为v=v。(1+t/T。)^(1/2) 2. 测量声速的实验方法:v=fλ式中,v声速,f声源震动频率,波长。 I.相位法 波是震动状态的传播,即相位的传播。若超声波发生器发出的声波是平面波,当接受器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接受到的信号与发射器的激励电信号同相。继续移动接受器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。 需要说明的是,在实际操作中,用示波器测定电信号时,由于换能器振动的传递或放大电路的相移,接受器端面处的声波与声源并不同相,总是有一定的相位差。为了判断相位差并测量波

长,可以利用双踪示波器直接比较发射器的信号和接收器的信号,进而沿声波传播方向移动接收器寻找同相点来测量波长;也可以利用李萨如图形寻找同相或反相时椭圆退化成直线的点。 II.驻波法 按照波动理论,超声波发生器发出的平面声波经介质到接收器,若接收面与发射面平行,声波在接收面处就会被垂直反射,于是平面声波在两端面间来回反射并叠加。当接收端面与当接受端面与发射头间的距离恰好等于半波长的整数倍时,叠加后的波就形成驻波。此时相邻两波节(或波腹)间的距离等于半个波长(即)。当发生器的激励频率等于驻波系统的固有频率(本实验中压电陶瓷的固有频率)时,会产生驻波共振,波腹处的振幅达到最大值。 声波是一种纵波。由纵波的性质可以证明,驻波波节处的声压最大。当发生共振时,接收端面处为一波节,接收到的声压最大,转换成的电信号也最强。移动接收器到某个共振位置时,示波器上又会出现了最强的信号,继续移动接收器到某个共振位置,再次出现最强的信号,则两次共振位置之间距离为λ/2。四、实验仪器: 声速测试仪、信号发生器、示波器。 五、实验内容及步骤: 用驻波法测声速 (1)按图连接电路,将信号发生器的输出端与声速仪的输出

相关主题
文本预览
相关文档 最新文档