当前位置:文档之家› 高考数学数列的概念习题及答案百度文库

高考数学数列的概念习题及答案百度文库

高考数学数列的概念习题及答案百度文库
高考数学数列的概念习题及答案百度文库

一、数列的概念选择题

1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184

B .174

C .188

D .160

2.已知数列{}n a 满足11a =),2n N n *=

∈≥,且()2cos

3

n n n a b n N π

*=∈,则数列{}n b 的前18项和为( ) A .120

B .174

C .204-

D .

373

2

3.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010?

B .20191010?

C .20202020?

D .20192019?

4.已知数列{}

ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )

A .13i =,33j =

B .19i =,32j =

C .32i =,14j =

D .33i =,14j =

5.已知数列{}n a 的前n 项和为(

)*

22n

n S n =+∈N ,则3

a

=( )

A .10

B .8

C .6

D .4

6.在数列{}n a 中,11a =,对于任意自然数n ,都有12n

n n a a n +=+?,则15a =( )

A .151422?+

B .141322?+

C .151423?+

D .151323?+

7.在数列{}n a 中,114a =-,1

11(1)n n a n a -=->,则2019a 的值为( ) A .

4

5

B .14

-

C .5

D .以上都不对

8.数列{}n a 的前n 项和记为n S ,()

*

11N ,2n n n a a a n n ++=-∈≥,12018a =,

22017a =,则100S =( )

A .2016

B .2017

C .2018

D .2019

9.

3

,则 ) A .第8项

B .第9项

C .第10项

D .第11项

10.在数列{}n a 中,12a =,1

1

1n n a a -=-(2n ≥),则8a =( ) A .1-

B .

12

C .1

D .2

11.数列{}n a 满足:12a =,111n

n n

a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-

B .1

6-

C .

16

D .6

12.若数列{a n }满足1112,1n

n n

a a a a ++==-,则2020a 的值为( ) A .2

B .-3

C .12

-

D .

13

13.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和

383969a a a ++???+=( )

A .180

B .160

C .150

D .140

14.已知数列{}n a 的前n 项和为n S ,若*1

n S n N n =∈,,则2a =( ) A .12

-

B .16

-

C .

16

D .

12

15.已知数列{}n a 满足11a =,122

n n a a n n

+=++,则10a =( ) A .

259

B .

145 C .

3111

D .

176

16.数列{}n a 满足1

111,(2)2

n n n a a a n a --==≥+,则5a 的值为( )

A .

18

B .

17 C .

131

D .

16

17.在数列{}n a 中,2

1

n n a n +=+,则{}n a ( ) A .是常数列

B .不是单调数列

C .是递增数列

D .是递减数列

18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )

A .201920212S F =+

B .201920211S F =-

C .201920202S F =+

D .201920201S F =-

19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么

24620201a a a a ++++

+=( )

A .2021a

B .2022a

C .2023a

D .2024a

20.已知数列{}n a 的通项公式为2

n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞

B .(),2-∞

C .(),1-∞

D .(),0-∞

二、多选题

21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54

C .S 2020=a 2022-1

D .a 1+a 3+a 5+…+

a 2021=a 2022

22.设数列{}n a 满足11

02

a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .

21

12

a << B .{}n a 是递增数列 C .2020312

a <<

D .

20203

14

a << 23.已知数列{}n a 满足0n a >,121

n n n a n

a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )

A .11a =

B .121a a =

C .201920202019S a =

D .201920202019S a >

24.已知数列{}n a 中,11a =,1111n n a a n n +??

-=+ ???

,*n N ∈.若对于任意的[]1,2t ∈,不等式

()22212n

a t a t a a n

<--++-+恒成立,则实数a 可能为( ) A .-4

B .-2

C .0

D .2

25.(多选题)已知数列{}n a 中,前n 项和为n S ,且2

3n n n S a +=,则1

n n a a -的值不可能为

( ) A .2

B .5

C .3

D .4

26.已知数列{}n a 满足:12a =,当2n ≥

时,)

2

12n a =

-,则关于数列

{}n a 的说法正确的是 ( )

A .27a =

B .数列{}n a 为递增数列

C .2

21n a n n =+-

D .数列{}n a 为周期数列

27.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12

d =

B .12

d =-

C .918S =

D .936S =

28.已知数列{}2n

n

a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6

D .a 1,a 2,a 3可能成等差数列

29.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤

D .当且仅当0n

S <时,26n ≥

30.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =

C .95S S >

D .6S 与7S 均为n S 的最大值

31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =

D .当8n ≥时,0n a <

32.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )

A .45n a n =-

B .23n a n =+

C .2

23n S n n =-

D .2

4n S n n =+

33.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ??

????

是递增数列

C .0n

S <时,n 的最小值为13

D .数列n n S a ??

?

???

中最小项为第7项 34.在下列四个式子确定数列{}n a 是等差数列的条件是( )

A .n a kn b =+(k ,b 为常数,*n N ∈);

B .2n n a a d +-=(d 为常数,

*n N ∈);

C .(

)

*

2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2

1

n S n n =++(*n N ∈).

35.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =

D .15S 是最大值

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.B 解析:B 【分析】

根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】

3,4,6,9,13,18,24,1,2,3,4,5,

6,

所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-+

+-+

()()1213n n =-+-+

++()()()1111332

2

n n n n -+?--=

+=+.

所以191918

31742

a ?=+=. 故选:B 【点睛】

本小题主要考查数列新定义,考查累加法,属于基础题.

2.B

解析:B 【分析】

将题干中的等式化简变形得2

11n n a n a n --??

= ???

,利用累乘法可求得数列{}n a 的通项公式,由

此计算出(

)32313k k k b b b k N *

--++∈,进而可得出数列{}n

b 的前18项和.

【详解】

)1,2n a n N n *

--=

∈≥,将此等式变形得2

11n n a n a n --??= ???

由累乘法得22

2

3

212

12

11211123n n n a

a a n a a a a a n n --??????

=??=????= ? ? ?????

??

, ()

2cos

3n n n a b n N π*=∈,22cos 3

n n b n π

∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--???

?∴++=--+--

+ ? ????

?

592

k =-,

因此,数列{}n b 的前18项和为()5

91234566921151742

?+++++-?=?-=. 故选:B. 【点睛】

本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.

3.B

解析:B 【分析】

由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】

由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()

20201201912019123 (2019201910102)

a a +-=++++=

=?.

故选:B. 【点睛】

本题考查累加法,重点考查计算能力,属于基础题型.

4.C

解析:C 【分析】

可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】

每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.

20211

110112

-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,

而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】

本题考查数列的基础知识,但是考查却很灵活,属于较难题.

5.D

解析:D 【分析】

根据332a S S =-,代入即可得结果. 【详解】

()()3233222224a S S =-=+-+=.

故选:D. 【点睛】

本题主要考查了由数列的前n 项和求数列中的项,属于基础题.

6.D

解析:D 【分析】

在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减

法求15a . 【详解】

12n n n a a n +=+?, 12n n n a a n +-=?,

12112a a ∴-=?, 23222a a -=?,

34332a a -=?

11(1)2n n n a a n ---=-?,

以上1n -个等式,累加得123

11122232(1)2n n a a n --=?+?+?+

+-?①

2341122122232(2)2(1)2n n n a a n n --=?+?+?++-?+-?②

①- ②得23

112222(1)2n n n a a n --=++++--?

12(12)(1)2(2)2212n n n n n --=--?=-?--,

(2)23n n a n ∴=-?+ ,

151515(152)231323a ∴=-?+=?+,

故选:D 【点睛】

本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.

7.A

解析:A 【分析】

根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】

由114

a =-,111(1)n n a n a -=->知

211

15a a =-= 321415

a a =-

= 41311

14

a a a =-

=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴201934

5

a a == 故选:A 【点睛】

本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题

8.A

解析:A 【分析】

根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】

解:因为12018a =,22017a =,()

*

11N ,2n n n a a a n n +-=-∈≥,

则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-,

543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,

…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++???++=,所以

()100125697989910016S a a a a a a a a =++???++++++

12342016a a a a =+++=.

故选:A . 【点睛】

本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.

9.D

解析:D 【解析】 【分析】

根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】

根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-?=+

而=

所以4541n =+ 解得11n = 故选:D

本题考查了等差数列通项公式的求法及简单应用,属于基础题.

10.B

解析:B 【分析】

通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =-

-,32

1

1121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥

8521

2

a a a ∴===

, 故选:B. 【点睛】

本题考查数列的周期性,考查递推公式的应用,是基础题.

11.A

解析:A 【分析】

根据递推公式推导出(

)4n n a a n N *

+=∈,且有1234

1a a a a

=,再利用数列的周期性可计算

出2018T 的值. 【详解】

12a =,()*111++=

∈-n

n n a a n N a ,212312a +∴==--,3131132

a -==-+,41

1121312a -

==+,5

1132113

a +

==-,()4n n a a n N *+∴=∈,且()123411

23123

a a a a ??=?-?-?= ???,

201845042=?+,因此,()504

2018450421211236T T a a ?+==?=??-=-.

故选:A. 【点睛】

本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.

12.D

解析:D 【分析】

分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果.

由题意知,212312a +==--,3131132a -==-+,41

1121312a -

==+,5

1132113

a +

==-,612312

a +==--,…,

因此数列{}n a 是周期为4的周期数列, ∴20205054413

a a a ?===. 故选D. 【点睛】

本题主要考查的是通过观察法求数列的通项公式,属于基础题.

13.B

解析:B 【分析】

根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】

由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,

7n 的个位数是以7,9,3,1为周期,

所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++???+=8(9317)160?+++=. 故选:B

14.A

解析:A 【分析】

令1n =得11a =,令2n =得2121

2

S a a =+=可解得2a . 【详解】 因为1n S n =

,所以111

11

a S ===, 因为21212S a a =+=

,所以211

122

a =-=-.

15.B

解析:B 【分析】 由12

2n n a a n n +=++转化为11

121n n a a n n +??-=- ?+??

,利用叠加法,求得23n a n =-,即可求解. 【详解】 由122n n a a n n +=+

+,可得121

12(1)1n n a a n n n n +??-==- ?++??

所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+

11111

111222*********n n n n n n ????????

=-+-+-++-+ ? ? ? ?-----??????

??

122113n n ??

=-+=- ???

所以102143105

a =-=. 故选:B. 【点睛】

数列的通项公式的常见求法:

1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;

2、对于递推关系式可转化为1

()n n

a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1

n n a pa q +=+的数列,可采用构造法求解数列的通项公式.

16.C

解析:C 【分析】

根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1

111,(2)2

n n n a a a n a --==

≥+,

所以211

123a =

=+,31131723a ==+,4117

11527a ==+,51

115131215

a ==+

17.D

解析:D 【分析】

由21

111

n n a n n +=

=+++,利用反比例函数的性质判断即可. 【详解】

在数列{}n a 中,21

111

n n a n n +=

=+++, 由反比例函数的性质得:{}n a 是*n N ∈时单调递减数列, 故选:D

18.B

解析:B 【分析】

利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=++++

+++,可得

21n n F S +=+,代入2019n =即可求解.

【详解】

由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++

1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=

123211n n n n F F F F F F ---=++++

+++,

所以21n n F S +=+,令2019n =,可得201920211S F =-,

故选:B 【点睛】

关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出

21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.

19.A

解析:A 【分析】

根据数列的递推关系式即可求解. 【详解】

由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a ++++

+++++=+

3462020562020201920202021a a a a a a a a a a =+++

=+++=+=.

故选:A

解析:A 【分析】

由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于

λ的不等式,解之可得λ的取值范围. 【详解】

由已知得22

1(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,

因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ

本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.

二、多选题 21.BCD 【分析】

由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】

对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可

解析:BCD 【分析】

由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】

对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++

++++++n n n a a a a a a a a a a a a a a +-=----

即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,

()()()135202124264202220202022+++

+++++a a a a a a a a a a a a =---=,故D 正确.

故选:BCD. 【点睛】

本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.

22.ABD 【分析】

构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,

所以当时,,

即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,

解析:ABD 【分析】

构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】

由()1ln 2n n n a a a +=+-,1102

a << 设()()ln 2f x x x =+-, 则()11122x

f x x x

-'=-

=--, 所以当01x <<时,0f x

即()f x 在0,1上为单调递增函数, 所以函数在10,2?? ???

为单调递增函数, 即()()102f f x f ??<<

???

即()131

ln 2ln ln 1222

f x <<<

+<+=,

所以()1

12

f x << , 即

1

1(2)2

n a n <<≥, 所以

2112a <<,20201

12

a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,

1

12

n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 231

32131113ln(2)ln ln 222234

a a a e =+->+>+=+> 因此20202020333

144

a a a ∴<><>,故D 正确 故选:ABD 【点睛】

本题考查了数列性质的综合应用,属于难题.

23.BC 【分析】

根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,

当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则

解析:BC 【分析】

根据递推公式,得到11n n n

n n a a a +-=-,令1n =,得到121

a a =,可判断A 错,B 正确;

根据求和公式,得到1

n n n

S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】

由121n n n a n a a n +=+-可知2111

n n n n n

a n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则12

1

a a =

,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321

111102110n n n n n n n n n n S a a a a a a a a a a a a +++??????-=++

+=-+-+

+-=-= ? ? ???????,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误.

故选:BC. 【点睛】 方法点睛:

由递推公式求通项公式的常用方法:

(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;

(2)累乘法,形如()1

n n

a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1

n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通

项时,常需要构造成等比数列求解;

(4)已知n a 与n S 的关系求通项时,一般可根据11,2

,1n n n S S n a a n --≥?=?=?求解.

24.AB 【分析】

由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,

上述式子累加可得:,, 对于任意的恒成立

解析:AB 【分析】 由题意可得

111

11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n

=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为

()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.

【详解】

111

n n n a a n n

++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则

11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111

122

a a -=-, 上述式子累加可得:111n a a n n -=-,1

22n a n n

∴=-<,

()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,

整理得()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,

对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42??-????

,包含[]1,2,故A 正确;

对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22

??-????

,包含[]1,2,故B 正确;

对C ,当0a =时,不等式()

210t t +≤,解集1,02??

-????

,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2

??-???

?

,不包含[]1,2,故D 错误,

故选:AB. 【点睛】

本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.

25.BD 【分析】

利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,

由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本

解析:BD 【分析】

利用递推关系可得12

11

n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2

3

n n n S a +=

, ∴2n ≥时,1121

33

n n n n n n n a S S a a --++=-=

-, 化为:112

111

n n a n a n n -+==+--,

由于数列21n ??

?

?-??

单调递减, 可得:2n =时,

2

1

n -取得最大值2. ∴1

n n a a -的最大值为3. 故选:BD . 【点睛】

本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.

26.ABC 【分析】

由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,

所以是以2为首项,以1为公差的等差数列, 所以,

即,故C 正确; 所以,故A 正确; ,

解析:ABC 【分析】

由)

2

12n a =

-

1=,再利用等差数列的定义求

得n a ,然后逐项判断. 【详解】 当2n ≥

时,由)

2

12n a =-,

得)

2

21n a +=

1=,又12a =,

所以

是以2为首项,以1为公差的等差数列,

2(1)11n n =+-?=+,

即2

21n a n n =+-,故C 正确;

所以27a =,故A 正确;

()2

12n a n =+-,所以{}n a 为递增数列,故正确;

数列{}n a 不具有周期性,故D 错误; 故选:ABC

27.BD 【分析】

由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.

因为,,所以公差. 故选:BD

解析:BD 【分析】

由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】

因为1937538a a a a +=+=+=, 所以()199998

3622

a a S +?=

==. 因为35a =,73a =,所以公差731

732

a a d -==--. 故选:BD

28.ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】

因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=

解析:ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为

1

112a =+,1(1)2

n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,

相关主题
文本预览
相关文档 最新文档