当前位置:文档之家› 多态气固相流传热系数测定

多态气固相流传热系数测定

验一多态气固相流传热系数测定

实验目的

实验原理

自然界和工程上,热量传热的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。本实验将一直经为20mm温度为T0的小钢球,置于温度为恒定Tf的周围环境中,由于Tf不等于T0,小球必要受到加热或冷却而温度变为T,在传热过程中,小球的温度显然随时间而变化,这是一个非定态导热过程。在实验中所用钢球体积非常小,而导热系数又比较大,课可以认为钢球不存在温度梯度,整个球体内温度是均匀一致的,于是根据热平衡原理,球体热量随时间变化应等于通过对流换热向周围环境的散热速率。

通过实验可测得钢球在不同环境和流动状态下的冷却曲线,有温度记录仪记下T-t的关系,可计算得出a 和Nu的值。

对于气体在20

Nu=ads/λ=0.37Re0.6Pr1/p

若在静止的流体中换热:Nu=2

物体的突然加热和冷却过程属于非定导热过程,此时物体的内温度,即空间位置是时间函数,T=f(x,y,z,t),物体在导热介质的加热过程或冷却过程中,导热速率同时取决于物体内部的导热热阻以及与环境的外部对流热阻。为了简化,不少问题可以忽略两者之一进行处理。然而能否简化,需要一个判据,通常定义无因次数毕奥数,及物体内部导热热阻与物体外部对流热阻之比进行判断。Bi=内部导热热租/外部对流热阻=(?/λ)/(1/a)=aV/λ A

式中(?/λ)/(1/a)为特征尺寸,对于球体为R/3

若Bi数很小,?/λ《1/a,表明内部导热系数《外部对流热阻,此时可忽略内部导热热租,可简化为这个物体的温度均匀一致,是温度仅为实践的函数,即T=f(t)。

这种关系简化为具有均一性质处理的方法,成为集总参数法。实验表明,只要Bi<0.1,忽略内部热阻计算,其误差不大于5%,通常为工程计算所允许。

多项选择

1.请选择正确的实验装置图。

A.

B.

C.

D.

E.

2.请选择本次实验正确的工艺参数。

A. 小球加热温度控制在400至500℃

B. 小球冷却曲线采集控制结束的判据应该是过余温度的98.2%

C. 流化床、固定床和强制对流操作时,风机的流量为

D. 自然对流实验时应尽量减少小球附近的大气扰动

3.请选择本次实验的正常实验结果。

A. 小球在不同状态下的对流传热系数大小依次为流化床>固定床>强制对流>自然对流

B. 通过对实验数据计算得到的毕奥准数 Bi>0.1

C. 小球在不同状态下的对流传热系数大小依次为固定床>流化床>强制对流>自然对流

D.

问答

1.影响热传递的因素有哪些?

2.毕奥数的物理含义是什么?

3.本实验对小球体的选择有哪些要求,为什么?

4.自然对流条件下实验要注意哪些问题?

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

对流传热系数的测定实验报告

. . .. . . 浙江大学 化学实验报告 课程名称:过程工程原理实验甲 实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验容和原理 (2) 1.间壁式传热基本原理 (2) 2.空气流量的测定 (2) 3.空气在传热管对流传热系数的测定 (2) 3.1牛顿冷却定律法 (2) 3.2近似法 (2) 3.3简易Wilson图解法 (2) 4.拟合实验准数方程式 (2) 5.传热准数经验式 (2) 四、操作方法与实验步骤 (2) 五、实验数据处理 (2) 1.原始数据: (2) 2.数据处理 (2) 六、实验结果 (2) 七、实验思考 (2)

一、实验目的和要求 1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径; 2)把测得的数据整理成形式的准数方程,并与教材中公认 经验式进行比较; 3)了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验流程与装置 本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。 空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。 注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。

传热系数与给热系数

传热系数K 和给热系数α的测定 一. 实验目的 1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法; 2. 掌握借助于热电偶测量壁温的方法; 3. 学会给热系数测定的试验数据处理方法; 4. 了解影响给热系数的因素和强化传热的途径。 二. 基本原理 1.传热系数K 的理论研究 在工业生产和科学研究中经常采用间壁式换热装置 来达到物料的冷却和加热。这种传热过程系冷、热流 体通过固体壁面进行热量交换。它是由热流体对固体 壁面的 对流给热,固体壁面的热传导和固体对冷流体的对 流给热三个传热过程所组成。如图1所示。 由传热速率方程知,单位时间所传递的热量 Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示 Q=()1w h h t T A -α (2) 或 Q=()t t A w c c -2α (3) 对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -?=δ λ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式 Q=KA t T A t t A t t A t T c c w m w w h h w 1 112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111 ++= (6) ()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7) 图1传热过程示意图

从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略 K ≈()21,ααf (8) 要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。该方法的基本处理过程是将(7)式研究的对象分解成两个子过程如(8)式所示,分别对21,αα进行研究,之后再将21,αα合并,总体分析对K 的影响,这有利于了解影响传热系数的因素和强化传热的途径。 当1α>>2α时,2α≈K ,反之当1α<<2α时,1α≈K 。欲提高K 设法强化给热系数小的一侧α,由于设备结构和流体已定,从(9)式可知,只要温度变化不大,1α只随1u 而变, ()1111111,,,,,λμραp c u d f = (9) 改变1u 的简单方法是改变阀门的开度,这就是实验研究的操作变量。同时它提示了欲提高K 只要强化α小的那侧流体的u 。而流体u 的提高有两种方法: (1)增加流体的流量; (2)在流体通道中设置绕流内构件,导致强化给热系数。 由(9)式,π定理告诉我们,π=7-4=3个无因次数群,即: ()1111111,,,,,λμραp c u d f = ? ???? ??=λμμ ρλαp c du f d , (10) 经无因次处理,得: c b o a Nu Pr Re = (11) 如果温度对流体特性影响不大的系统,并且温度变化范围不大,则式(11)可改写为:b a Nu Re = 式中:c o a a Pr =。 2.传热系数K 和α的实验测定

气汽对流传热系数的测定实验

《气-汽对流传热系数的测定》实验 一、仪器设备简介 流程如图,冷空气由风机13,经孔板流量计11计量后,进入换热器内管,并与套管环隙中蒸汽换热。空气被加热后,排入大气。空气的流量可用控制阀9调节。 1 、蒸汽发生器 2、蒸汽管 3、补水口 4、补水阀 5、排水阀 6、套管换热器 7、放气阀 8、冷凝水回流管 9、空气流量调节阀 10、压力传感器 11、孔板流量计 12、空气管 13、风机 二、试验目的、任务 1、掌握传热膜系数α及传热系数K 的测定方法。 2、通过实验掌握确定传热膜系数准数关联式中的系数A 和指数m 、n 的方法。 3、通过实验提高对α准数关联式的理解,并分析影响α的因素,了解工程上强化传热的措施。 三、实验原理及步骤 1、实验原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变式对流传热准数关联式的一般形式为: Nu=A·R e m ·P r n ·G r p 对于强制湍流而言,G r 准数可以忽略,故 Nu=A· R e m ·P r n 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量R e m 和P r 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,既得到直线方程: lg(Nu/P r 0.4)=lgA+mlgR e 在双对数坐标中作图,找出直线斜率,即为方程的指数m 。在直线上任取一点的函数值带入方程式中,则可得到系数A ,即 A=Nu/(P r 0.4·R e m ) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联式。应用微机,对多变量方程进行一次回归,就能同时得到A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其准数定义式分别为:

综合传热系数的测定实验

实验1综合传热系数的测定实验 一、实验目的 1.了解间壁式传热元件的结构。 2.了解观察水蒸气在水平管外壁上的冷凝现象,并判断冷凝类型。 3.通过对内管是光滑管的空气—水蒸气简单套管换热器的实验研究,掌握空气在圆形光滑直管中强制对流传热系数的测定的实验方法,加深对其概念和影响因素的理解。确定关联式Nu=Are m Pr0.4中常数A、m的值。 4.掌握传热系数测定的实验数据处理方法。 5.掌握孔板流量计的使用。 6.掌握DC-3A微音气泵的使用。 二、实验内容及基本原理 (一)实验内容 1.观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型。 2.测定不同流速下简单套管换热器的对流传热系数α。 3.对实验数据通过Excel进行处理,求关联式Nu=A·Re m Pr0.4中常数A、m的值;并绘制曲线。 4.实验原始记录 光滑管记录: 5.实验数据处理与分析 数据处理 光滑管:实验结果列表和作图:

(二)实验原理 1.准数方程 空气在圆形直管中作湍流流动的给热准数方程: ),,,d l Gr f Nu Pr (Re 1= (1-1) 式中 l —为管长,m ; d —为管径,m ; 强制对流时,G r 可忽略;对气体而言,原子数相同(如单原子、双原子…)的气体Pr 为一常数,当50>d l 其影响亦可忽略,故上式可写为: (Re)f N u = (1-2) 一般可写成 m u A N Re = (1-3) 其中A 为常数,λ αd Nu = , μρdu =Re 。 2.准数方程中各参数的测定和计算 (1)α值的计算:空气传热膜系数α可以通过测定总传热系数(K )进行测取。K 与α有下列关系: 2 1 11αλδα+ +=s K (1-4) 因管壁很薄,可将圆壁看成平壁。 这里因是空气,故不计污垢热阻,上式中s λδ为黄铜管壁热传导的热阻,壁厚0.001米, 黄铜导热系数λs =377(W/m·k), 故δ/λs =2.7×10-6 ;1/α2为蒸气冷凝膜的热阻,α2=2×104 ,故 1/α2=5×10-5,空气传热膜系数α在100上下,热阻1/α=1×10-2 ,对比之下,上述两项热阻均可忽略,即K ≈α。 其测定方法可用牛顿冷却定律进行: m t S K Q ???= (1-5) ()进出t t c V Q p s -ρ= (1-6) m p s t S t t c V K ??= ≈) -(进出ρα (1-7) 式中:V s —空气体积流量,m 3/s (由流量计测取) ρ—流经流量计处的空气密度,kg/m 3;

对流传热系数测定实验

对流传热系数测定实验 一、实验目的 a)测定空气在传热管的对流传热系数,掌握空气在传热管的对流传热系数的测定方法。 b)把测得的实验数据整理成Nu=BRe n形式的准数方程式,并与教材中相应公式进行比较。 c)通过实验提高对准数方程式的理解,了解影响传热系数的因素和强化传热的途径。 二、实验装置 实验装置如图1所示,由蒸汽发生器、风机、套管换热器、流量调节阀及不锈钢进、出口管道、温度测量和流量测量装置等组成。 1. 风机 F1. 旁路阀 2. 孔板流量计 3. 空气压力变送器 4. 蒸汽放空口 5. 冷凝液排放口 6. 玻璃视镜 7. 套管换热器 F2. 空气流量调节阀 F3. 蒸汽流量调节阀 8. 加水装置F4. 进水阀 13. 蒸汽发生器 T. 蒸汽温度 t1、t2 . 空气进、出口温度 T w1、T w2. 空气出口和进口侧的管壁温度 图1 空气-水蒸气传热实验装置示意图 三、对流传热及参数测取 空气从漩涡风机吸入,经孔板流量计计量后进入套管换热器的管(紫铜管),与来自蒸汽发生器的饱和水蒸汽在套管换热器进行换热。被空气冷凝下来的冷凝水经冷凝液排放口排入蒸汽发生器的加水装置。进入套管换热器的空气进、出口温度t1、t2分别由铜—康铜热电偶测出。换热管两端管壁温度T w1、T w2同样也分别由埋在管(紫铜管)外壁上的铜—康铜热电偶测出。蒸汽温度T由蒸汽发生器根据管路的实际状况实现自动控制,T由热电阻PT100测得。空气流量通过F2、F2的组合调节来改变或通过变频器改变,由孔板流量计测量,并通过压力变送器测出空气的压力。套管换热器管(紫铜管)的规格为:φ20×2 mm,换热管

总传热系数的测定 附最全思考题

聊城大学实验报告 课题名称:化工原理实验 实验名称:总传热系数的测定 姓名:元险成绩: 学号:1989 班级: 实验日期:2011-9-18 实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。

总传热系数的测定 一、实验目的 1.了解换热器的结构,掌握换热器的操作方法。 2.掌握换热器总传热系数K 的测定方法。 3.了解流体的流量和流向不同对总传热系数的影响 二、基本原理 在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。换热器性能指标之一是传热系数K 。通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。 传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。 传热速率方程式: Q =kS ?t m (1) 通过换热器所传递的热量可由热量恒算式计算,即 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2) 若实验设备保温良好,Q 损可忽略不计,所以 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3) 式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);?t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。 ?tm 为换热器两端温度差的对数平均值,即 12 1 2ln t t t t t m ???-?=? (4) 当212≤??t t 时,可以用算术平均温度差(2 12t t ?+?)代替对数平均温度差。由上式所计算出口的传热系数K 为测量值K 测。 传热系数的计算值K 计可用下式进行计算: ∑+++=S i R K λδαα11 10计 (5) 式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。 当管壁和垢层的热阻可以忽略不计时,上式可简化成:

12固体小球对流传热系数的测定讲解

固体小球对流传热系数的测定 A 实验目的 工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。了解与测定各种环境下的对流传热系数具有重要的实际意义。 通过本实验可达到下列目的: (1) 测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。 (2) 了解非定常态导热的特点以及毕奥准数(Bi )的物理意义。 (3) 熟悉流化床和固定床的操作特点。 B 实验原理 自然界和工程上,热量传递的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。 当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。 通过对导热的研究,傅立叶提出: dy dT A Q q y y λ-== (1) 式中: dy dT - y 方向上的温度梯度[]m K / 上式称为傅立叶定律,表明导热通量与温度梯度成正比。负号表明,导热方向与温度梯度的方向相反。 金属的导热系数比非金属大得多,大致在50~415[]K m W ?/范围。纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。本实验中,小球材料的选取对实验结果有重要影响。 热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。具有宏观尺度上的运动是热对流的实质。流动状态(层流和湍

换热器传热系数测定汇总

化 工 实 验 报 告 姓名: 学号: 报告成绩: 课程名称 化工原理实验 实验名称 换热器传热系数的测定实验 班级名称 组 长 同组者 指导教师 实验日期 教师对报告的校正意见 一、 实验目的 1、了解传气—汽对流热的基本理论,掌握套管换热器的操作方法。 2、掌握对流传热系数 α i 测定方法,加深对其概念和影响因素的理解。 3、应用线性回归分析方法,确定关联式 4 .0Pr Re i m A Nu = 中常数 A 、m 的值。 4、了解强化换热的基本方式,确定传热强化比 0/Nu Nu 。 二、 实验内容与要求 1、测定不同空气流速下普通套管换热器的对流传热系数 α i 。 2、不同空气流速下强化套管换热器的对流传热系数 α i 。 3、分别求普通管、强化管换热器准数关联式4 .0Pr Re i m A Nu =中常数 A 、m 的值。 4、根据准数关联式4 .0Pr Re i m A Nu =,计算同一流量下的传热强化比 0/Nu Nu 。 5、分别求取普通套管换热器、强化套管换热器的总传热系数 0K 。 三、 实验原理 1 、对流传热系数i α的测定: i m i i S t Q ?= α (5-1) 式中:i α—管内流体对流传热系数,w/(m 2·℃); Q i —管内传热速率,w ; 3600 t C V Q m p m i ????= ρ (5-2) 式中:V —空气流过测量段上平均体积,m 3/h ; m P —测量段上空气的平均密度,kg/m ; i S —管内传热面积, m ; 1 页

Re Pr 4 .0-Nu m Cp —测量段上空气的平均比热,J/(kg.g ); m t ?—管内流体空气与管内壁面的平均温度差,℃。 ()() 2 121m ln t t T t T t T t T S S w w -----= ? (5-3) 当 2>1t ? / 2t ? >0.5 时,可简化为 2 2 1t t T t W m +- =? (5-4) 式中:1t ,2t —冷流体(空气)的入口、出口温度,℃; Tw — 壁面平均温度,℃。 2、对流传热系数准数关联式的实验确定: 流体在管内作强制对流时,处于被加热状态,准数关联式的形式为: n i m i A Nu Pr Re = (5-5) 其中,传热准数:i i i i d Nu λ α= (5-6) 雷诺准数: i i i i i u d μ ρ= Re (5-7) 其中:u-测量段上空气的平均流速:3600?= F V u (5-8) 普朗特准数: i i pi i c λ μ= Pr (5-9) 对于管内被加热的空气,普朗特准数i Pr 变化不大,可认为是常数,关联式简化为: 4.0Pr Re i m i A Nu i = (5-10) 通过实验确定不同流量下的i Re 与i Nu 。 3、关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 的确定: 以 4 .0Pr Nu 纵坐标,Re 为横坐标,在对数坐标上绘 关系,作图、回归得到准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 同理得到强化管准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 4、强化比的确定 2 页

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

总传热系数的测定实验报告

实验二:总传热系数的测定 一、实验目的 1、了解换热器的结构与用途; 2、学习换热器的操作方法; 3、掌握传热系数k计算方法; 4、测定所给换热器的逆流传热系数k。 二、实验原理 在工业生产过程中冷热流体通过固体壁面(传热元件)进行热量传递,称为间壁式换热。间壁式换热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三部分组成。本实验热流体采用饱和蒸汽走壳程,冷流体为空气走管程。 当传热达到稳定时,总传热速率与冷流体的传热速率相等时, 而即为, 综上可得,其中。 T --- 热流体; t --- 冷流体; V --- 冷流体进口处流量计读数; ---冷流体平均温度下的对应的定压比热容; ρ --- 冷流体进出口平均温度下对应的密度. 三、实验设备及流程 1、实验设备

传热单元实验装置(换热器、风机、蒸汽发生器) ,整套实验装置的核心是一个套管式换热器,它的外管是一根不锈钢管,内管是一根紫铜管。根据紫铜管形状的不同,我们的实验装置配有两组换热器,一种是普通传热管换热器,另一种是强化传热管换热器,本实验以普通传热管换热器为例,介绍总传热系数的测定。 2、实验流程 来自蒸汽发生器的水蒸气从换热器的右侧进入换热器的不锈钢管。而来自风机的冷空气从换热器的左侧进入换热器的紫铜管,冷热流体通过紫铜管的壁面进行传热。冷空气温度升高而水蒸汽温度降低,不凝气体和冷凝水通过疏水阀排出系统,而冷空气通过风机的右侧排出装置。 四、实验步骤 需测量水蒸气进口温度,出口温度,冷空气进口温度,出口温度,冷空气的体积流量以及紫铜管的长度及管径。前四项通过仪表读数可获得,冷空气进口温度可以由另外一块仪表盘读数计算可获得。紫铜

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系 数测定 一、实验目的 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途 径。 二、基本原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热 量交 换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()() ()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) T t 图4-1间壁式传热过程示意图

式中:Q - 传热量,J / s ; m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ?℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ?℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃; α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 1 - 热流体侧的对流传热面积,m 2; ()m W T T -- 热流体与固体壁面的对数平均温差,℃; α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 2 - 冷流体侧的对流传热面积,m 2; ()m W t t - - 固体壁面与冷流体的对数平均温差,℃; K - 以传热面积A 为基准的总给热系数,W / (m 2 ?℃); m t ?- 冷热流体的对数平均温差,℃; 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4 -2) 式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃; T W 2 - 热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4 -3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃; t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

总传热系数的测定.doc(实验)

总传热系数测定实验 一、实验目的 1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2. 测定饱和水蒸气在圆形管外壁上的冷凝给热系数; 二、基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下公式: V ρC P (t 2-t 1)=K A m t ? 其中: V :空气体积流量,m 3/s A :内管的外壁的传热面积,m 2 ρ:空气密度,kg/m 3 C P :空气平均比热,J/(kg ℃) t 1、t 2:空气进、出口温度,℃ T 1、T 2:蒸汽进、出口温度,℃ m t ?:对数平均温差,℃ 1 2211221ln ) ()(t T t T t T t T t m -----= ? 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 以及水蒸气温度T 1、T 2,即可计算实测的水蒸气(平均)冷凝给热系数。 三、实验装置与流程 实验装置如下图

水蒸气~空气换热流程图 来自蒸汽发生器的水蒸气进入玻璃套管换热器,与来自风机的风进行热交换,冷凝水经疏水器排入地沟。冷空气经孔板(转子)流量计进入套管换热器内管(紫铜管),热交换后排出装置外。 2.设备与仪表规格 (1)紫铜管规格:直径φ21×2.8mm,长度L=1000mm (2)外套玻璃管规格:直径φ100×5mm,长度L=1000mm (3)压力表规格:0~0.1MPa 四、实验步骤与注意事项 1.打开总电源空气开关,打开仪表及巡检仪电源开关,给仪表上电。 2.打开仪表台上的风机电源开关,让风机工作,同时打开冷流体入口阀门,让套管换热器里冲有一定量的空气。 3.打开冷凝水出口阀,注意只开一定的开度,开的太大会让换热桶里的蒸汽跑掉,关的太小会使换热玻璃管里的蒸汽压力集聚而产生玻璃管炸裂。 4.在做实验前,应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀。 5.刚开始通入蒸汽时,要仔细调节蒸汽进口阀门的开度,让蒸汽徐徐通入换热器中,

玻璃的传热系数计算

4.3 热工设计 4.3.1 本系统用于外墙外保温时的保温层设计厚度,应根据《河南省公共建筑节能设计标准》(DBJ41/075-2006)、《河南省居住建筑节能设计标准(寒冷地区)》(DBJ41/062-2005)、《河南省居住建筑节能设计标准(夏热冬冷地区)》(DBJ41/071-2006)规定的外墙传热系数限值,通过热工计算确定。 4.3.2 ZCK无机复合保温板用于外墙外保温时,其导热系数(λ)、蓄热系数(S)设计计算值和修正系数按下表取值。 表4.3.2 ZCK无机复合保温板λ、S、修正系数 4.3.3 热工计算示例,以采用60mm保温板为例。 示例一:200mm混凝土剪力墙外贴60mm保温板,计算如下: Ra=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.1149+1.1429+0.005+0.04=1.4343 Ka=1/R=1/1.4333=0.70W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为混凝土剪力墙层热阻,0.2/1.74=0.1149 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W; R外为外表面换热阻,0.04m2.K/W; 示例二:200mm加气混凝土砌块外贴60mm保温板,计算如下: Rb=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.80+1.1429+0.005+0.04=2.1194 Kb=1/R=1/2.1194=0.47W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为加气混凝土砌块层热阻,0.2/(0.20*1.25)=0.80 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W;

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

多态气固相流传热系数测定

验一多态气固相流传热系数测定 实验目的 实验原理 自然界和工程上,热量传热的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。本实验将一直经为20mm温度为T0的小钢球,置于温度为恒定Tf的周围环境中,由于Tf不等于T0,小球必要受到加热或冷却而温度变为T,在传热过程中,小球的温度显然随时间而变化,这是一个非定态导热过程。在实验中所用钢球体积非常小,而导热系数又比较大,课可以认为钢球不存在温度梯度,整个球体内温度是均匀一致的,于是根据热平衡原理,球体热量随时间变化应等于通过对流换热向周围环境的散热速率。 通过实验可测得钢球在不同环境和流动状态下的冷却曲线,有温度记录仪记下T-t的关系,可计算得出a 和Nu的值。 对于气体在20

对流传热系数的测定实验报告

浙江大学化学实验报告 课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验内容和原理 (3) 1.间壁式传热基本原理 (3) 2.空气流量的测定 (5) 3.空气在传热管内对流传热系数的测定 (5) 3.1牛顿冷却定律法 (5) 3.2近似法 (6) 3.3简易Wilson图解法 (6) 4.拟合实验准数方程式 (7) 5.传热准数经验式 (7) 四、操作方法与实验步骤 (8) 五、实验数据处理 (9) 1.原始数据: (9) 2.数据处理 (9) 六、实验结果 (12) 七、实验思考 (13)

一、实验目的和要求 1)掌握空气在传热管内对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径; 2)把测得的数据整理成形式的准数方程,并与教材中公认经验式进行比较; 3)了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验流程与装置 本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。 空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。 注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者必学统一。 图1 横管对流传热系数测定实验装置流程图 图中符号说明如下表:

传热实验实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念与原理去分析与强化传热过程,并实验之。 二、实验原理 根据传热方程Q=KA△tm,只要测得传热速率Q,冷热流体进出口温度与传热面积A,即可算出传热系数K。在该实验中,利用加热空气与自来水通过列管式换热器来测定K,只要测出空气的进出口温度、自来水进出口温度以及水与空气的流量即可。 在工作过程中,如不考虑热量损失,则加热空气释放出的热量Q1与自来水得到的热量Q2应相等,但实际上因热损失的存在,此两热量不等,实验中以Q2为准。 三、实验流程与设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数与管长进行计算。 实验流程图:

四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计与温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体与水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量与进出口温度,记录设备的有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第4步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机与自来水阀门。 五、实验数据记录与整理 1、设备参数与有关常数 换热流型错流 ; 换热面积 0、4㎡

六、实验结果及讨论 1、求出换热器在不同操作条件下的传热系数。 计算数据如上表,以第一次记录数据序号1为例计算说明: 度 水的算数平均温度:水流量:空气流量:水气4.2029 .219.182/0222.03600 1000 1080/0044.03600 16 213=+=+==??=== -t t T s kg W s m V s J t t C W Q K kg J C p p /867.278)9.189.21(41830222.0)() /(418312=-??=-??=?=传热速率比热容:查表得,此温度下水的 K =-----=-----= ?2479.369.182.299 .21110ln 9.182.29)9.21110(ln )()() (对数平均温度水进 气出水出气进水进气出水出气进逆T T T T T T T T t m 9333 .269 .189.212.291100329.09 .181109 .189.2112211112=--=--==--=--= t t T T R t T t t P K =?=??ψ=?∴=ψ??2479.362479.360.10 .1逆查图得校正系数m t m t t t ) /(1717.192 1101 .192333.19) /(2333.192479 .364.0867 .27822K m W K K K m W t S Q K m ?=+= ?=?=??= 的平均值:传热系数 2、对比不同操作条件下的传热系数,分析数值,您可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K 值总就是接近热阻大的

相关主题
文本预览
相关文档 最新文档