当前位置:文档之家› 地震对工程建筑实施的影响

地震对工程建筑实施的影响

地震对工程建筑实施的影响
地震对工程建筑实施的影响

浅谈地震灾害对工程建筑的影响

地震对工程建筑实施的影响

摘要

地震是非常严重的自然灾害之一,它以瞬间的能量瞬息间使成千上万的生命遭到伤害,地震称为地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。地震产生的原因随其形式的不同而不同,本文将阐述地震成因的具体知识,能让我们更好的了解地震带给工程实施的影响。地震时会使房屋等建筑物受到严重的震动致使破坏,会使桥梁断裂、路面开裂下陷、铁路扭曲等,从而使城市瘫痪。地震常常还会伴随滑坡、泥石流、地基沉陷等地面破坏现象,其次生灾害也是非常严重的。对此我们应该对其地震带上的城市进行防范,地震灾害的破坏程度与地震震级和震源深度、地震发生的时间、地貌地质条件、建筑物的质量和地震的防御状况。其中后三个因素则是人类可以控制的,通过对采取有效手段完全可以降低地震灾害的程度。在未来的发展过程中,我们还不能有效地预测地震,无法避免地震灾害的发生,但采取一定措施的前提下是可以有效地减少地震造成的破坏的。

关键词:地震地震成因震级地震烈度应对措施

引言

地震灾害这两年对我国造成的灾害较大,本文研究地震对工程实施的影响可为改善这种现象采取一定的防治措施,我国是地质灾害较多的国家,每年因地质灾害造成的经济损失不计其数,也给人类的生命安全财产造成极大的伤害,因此本文研究地震地质灾害及防治具有一定的社会意义,也使人们更加重视面对地震灾害时采取应对措施。

理论基础

2.1 地震现象与成因

地震是由于地球内部应力,引起构造变动而产生的地震,地震是一种地质现象,地球上差不多每天都有地震,地震时,从震源地方的岩石破裂产生的地震波,在地球内部和地球表面传播。

地震一般可分为人工地震和自然地震两大类,下面所说的地震成因为天然地震的成因:①构造地震,因为地壳运动引起的地壳构造突然变化,地壳岩层错动破裂而发生的地壳震动,这就产生了人们平常所说的地震。由于地球不停地运动变化,从而内部产生了巨大的地应力,在其长期缓慢的作用下,造成地壳的岩层

发生弯曲变形,当地应力超过岩石本身所能承受的强度便使岩层断裂错动,内部巨大的能量被释放出来,然后以波的形成传到地面;②火山地震,由于火山活动时岩浆喷发冲击或热力作用而引起的地震,火山爆发有时会激发地震的发生,地震若发生在火山地区,也常会引起火山爆发;③陷落地震,由于地下水溶解了可溶性岩石,使岩石中出现空洞逐渐扩大或由于地下开采矿石形成巨大的空洞,造成岩石顶部和土层崩塌陷落;④诱发地震,在待定的地区因某种地壳外界因素诱发而引起的地震,例如:地下核爆炸、水库等。

2.2 衡量地震级别的大小和地面破坏的轻重程度的标准

2.2.1 地震震级

地震震级是根据地震时释放的能量的大小而定的。一次地震释放的能量越多,地震级别就越大。小于2.5级的地震,人们一般不易感觉到,称为小震或者是微震;2.5-5.0级的地震,震中附近的人会有不同程度的感觉,称为有感地震,全世界每年大约发生十几万次;大于5.0级的地震,会造成建筑物不同程度的损坏,称为破坏性地震。同一次地震对不同地区的破坏程度不同,地震强度也就不同。

2.2.2 地震烈度

地震烈度是根据地震时人的感觉、器物动态、建筑物毁坏及自然现象的表现等宏观现象判断的。同样大小的地震,造成的破坏不一定是相同的;同一次地震,在不同的地方造成的破坏也不一样。为了衡量地震的破坏程度,出现了地震烈度的概念。地震烈度的大小,受地震的大小、震源深浅、离震中远近、当地工程地震地质条件等因素的影响,因此,一次地震震级只有一个,但烈度却是根据各地遭受破坏的程度和人为感觉的不同而不同。

地震对工程实施影响

我国是地质灾害较多的国家,充分了解地震灾害多我国工程实施的影响,才能将破坏减少到最低。当地震发生时,人们感觉最多的就是楼房的晃动,在强地震时,房屋也许会在瞬间崩塌,许多人因为没有时间逃离而被掩埋在废墟中,给人们的生命安全带来了严重的威胁。例如2008年的5.12汶川大地震,有不少学校瞬间倒塌,其中北川县北川中学的两栋主教学楼塌陷,学生教师死伤惨重,让人惨重,可是这一切都是可以避免和减弱的,许多教学楼根本没有防震措施,甚至有的是所谓的“豆腐渣工程”,所以提高工程建筑的抗震级数是我国这两年建筑发展的方向。

地震有时只是短短的几分钟,可是它带给的后续灾害影响还是很多的,强烈地震会使桥梁断裂、路面塌陷、灾区的断水断电,给对灾区的营救和其生活、生产带来许多不便,当地震发生在山区地带时,地震发生的时候同时也会伴随其他的地质灾害,例如泥石流的发生导致公路被掩埋,致使救援人员无法快速的到达震中进行抢救,所以在地震带上的城市的建设上,不仅要考虑到其建筑的抗震性,

也要考虑到道路等生命线工程的规划部署。

我国我国位于世界两大地震带——环太平洋地震带与欧亚地震带之间,地震发生的频率较多,在不能避免地震发生的情况下,我们应该改变工程建筑的特性,以减少地震对工程实施的影响,保证建筑物能够经受地震作用的影响,特别是汶川地震和舟曲地震以后,建筑设计考虑抗震设计,严格遵守抗震规范,已经成为特别重要的环节,因为它关系着人民生命财产安全。地震造成人员伤亡的直接原因是地表的破坏和建筑物、构筑物的破坏与倒塌。据对世界上130余次伤亡较大地震灾害进行的分类统计表明,其中95%以上的伤亡是由于建筑物、构筑物破坏、倒塌造成的。因此,对各种建筑物、构筑物依法进行相应的抗震设防,使其在破坏性地震中不损坏、不倒塌,是避免人员伤亡的关键。

地震灾害的未来展望

近几年,我国发生了5.12汶川大地震、青海玉树地震,给我国带来了巨大的重创,不过我们也在困难中不断地摸索、探求,由于近几年地震的发生使我们对地震有深刻的认识和重视,科研人员对抗震材料的研究中获得了很大的收获,虽然这几年我们曾经痛苦过、悲伤过,可是我相信未来我们在面对灾害时不会手足无策,政府加强了学生、人民对地震的认识和地震发生时的逃生措施,建筑师在房屋的设计上更加看重抗震的措施。对位于地震带的居民点进行地质构造勘察,通过研究分析,对其中一些地质条件十分危险的居民点进行搬迁和改建。在汶川地震中,北川县城所在的曲江镇是受到破坏比较严重的地区之一,其中一个重要因素是这个城市所在地的地质构造。在未来的发展过程中,我们还不能有效地预测地震,无法避免地震灾害的发生,但采取一定措施的前提下是可以有效地减少地震造成的破坏的。我相信未来我们不会畏惧地震灾难的发生,我们会冷静的处理地震发生时的一切状况。

地震对建筑的影响

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中的震害特点 (一)砌体结构房屋的震害及分析 1)震害现象 (1)墙角的破坏:房屋的四角墙面上开裂以至于局部倒塌的现象。 (2)楼梯间的破坏:楼梯间两侧承重墙出现严重的斜裂缝。 (3)内外墙连接的破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒塌,

房屋丧失整体性。 (4)突出屋面的屋顶间等附属结构的破坏:地震时,平面突出部位出现局部破坏现象。相邻部位的刚度差异较大时尤为严重。突出屋面的屋顶间、烟囱、女儿墙等附属结构,由于地震“鞭鞘效应”的影响,一般较下部主体结构破坏严重,而且突出部分面积和房屋面积相差越大, 震害越严重,如图所示。 (5)墙体的破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重的则出现歪斜以致倒塌现象,图所示。方向平行的墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接近1,则墙体出现X形交叉裂缝;如果墙体的高宽比较小,则在墙体中间部位出现水平裂缝。

(6)其他部位常见破坏:由于楼盖缺乏足够的拉结或施工中楼板搁置长度过小,会造成楼板坠落;由于伸缩缝过窄,不能起到防震缝的作用,地震时缝两侧墙体放生碰撞而造成破坏。 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗马利亚地震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结构房屋震害是相当严重的。 在地震作用下,底部框架—抗震墙结构房屋的底层承受着上不砖房倾覆力矩的作用,其外侧柱会出现受拉的状况;底层为内框架时,外侧的砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏;底层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架的破坏;底层商店住宅,由于需要大空间,横墙较少,因底层的抗震能力弱形成特别的薄弱楼层,造成破坏特别严重。 (二)钢结构房屋的震害及分析 1)钢结构的震害主要有节点连接的破坏、构件的破坏以及结构的整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结构房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震(里氏8.1级)的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接的破坏 (1)框架梁柱节点区的破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多的一种破坏形式。1994年美国诺斯里奇(Northridge)地震和1995 年日本阪神地震均造成了很多梁柱刚性节点的破坏。2008年汶川地震也造成钢结 构网架节点破坏。 诺斯里奇地震时,H形截面的梁柱节点的典型破坏形式。由图中可见,大多数 节点破坏发生在梁端下翼缘处的柱中,这可能是由于混凝土楼板与钢梁共同作用,

高层建筑地震逃生方法

高层建筑地震逃生方法 高层建筑地震逃生方法中国国际救援队cisar队员、国家地震灾害紧急救援训练基地教官在救灾过程中分析,发现很多楼房的底层,尤其是一层和二层,受到的横向剪切力非常大,特别是在房屋窗户窗体特别多、门框比较多这种情况下,房屋会沿着窗子和窗子的对角线发生开裂。换言之,如果开发商建的房子质量不够合格,那么建筑物的一层就会被剪切破碎,二层可能会在一层倒塌过程中跌落到地下室,这种情况在灾害现场十分常见。 所以高层避险应以三层为一个界限,三层以上的住户不建议大家逃跑。三层以下,特别是一层和二层,建议大家快速地从楼里撤出。为什么三层以上的居民不建议逃跑?几年前上海发生过楼倒倒事件,当时发生倒塌的原因是地基的地面沉降,即便楼房整体倒塌,我们可以看到楼的内部空间还是有的。一旦楼内存在生存空间,我们就有可能在其中幸存下来。而三层以上的住户在从三层往下跑的过程中,大部分的时间花费在从楼道中往下撤离这一过程中,一旦发生余震,楼梯间是最最不稳定的地点。楼梯间只是一个逃跑的通道,并不是躲避的空间。如果往下撤离的时间过长,当余震来的时候,处在楼梯间的人很容易遇难。三层以上的住户在屋里就近躲避,三层以下的快速撤离,这是针对高层建筑物避震的一个建议。 下面给大家说一个高层逃生的真实案例,911时大部分人是怎

样逃生的?其实他们大多数都是通过电梯逃生的。(后文会讲到)在这里,先给大家说几个火灾中的高层逃生方法: 第一种方法是通过安全通道逃生。安全通道就是楼梯间的安全出口。在房屋设计的时候,安全通道的四周墙壁都是做过防火处理的,换言之,它是一个天然的隔烟通道。但是它的隔烟功能有一个前提,即每一层通往安全通道的门是防火门,并且平时都应该是关闭的。我们平时很少会把防火门关上,因为我们觉得它很碍事、很重,我们通常会拿一些绳子把它打开,或是拿一些木楔子让它保持敞开,这样的情况下,它就变成了一个烟可以到达的区域,换言之,如果我们在楼梯间里发现有烟进来了,那么它就已经不再是一个安全通道,而变成了一个死亡通道,那么我们在楼梯间往下走的过程就会觉得烟越来越大,很多人也是因为这个原因在楼梯间遇难。 第二种方法可以通过高层逃生滑道逃生。现在这种技术在国内普及率并不是很高,在发达国家的普及相对较高,但我相信在过几年之后,在我国这种高层逃生通道也会有的。逃生滑道跟滑梯一样,人可以从窗户里直接出来,从国际上普遍采用这种技术的国家来看,大概一分钟能跑出二十个人左右,所以这种方式非常受用。 第三种方法是通过高空直升机救援。如果是在大城市,高层逃生时一般建议顶层的人往楼顶上跑,因为楼房顶部可能会有直升机停机坪,这也就要求城市里救援系统中必须得有高空直升机救援,但并不是每个城市都能做到,所以这种方法有一定的局限性。

设计基本加速度和水平地震影响系数的关系

今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计基本地震加速度-----“、。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下: 可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半()与8度半()的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。

写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小 g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定律吗,此时的我不禁想起一句话:抗震恒永久,牛二永流传。(牛二:牛顿第二定律——在加速度和质量一定的情况下,物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。加速度的方向跟作用力的方向相同。牛顿第二运动定律可以用比例式来表示,即或;也可以用等式来表示,即F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s2为单位时,F=ma成立。) 最后总结一句话:地震影响系数来源于牛二。 知道了地震影响系数的由来,下面顺藤摸瓜,就要总结一下α(地震影响系数)的定义公式。 α(T)= K ×β(T), 公式里有三个系数

建筑结构抗震设计试卷及答案1

1、影响土层液化的主要因素是什么? 影响土层液化的主要因素有:地质年代,土层中土的粘性颗粒含量,上方覆盖的非液化土层的厚度,地下水位深度,土的密实度,地震震级和烈度。土层液化的三要素是:粉砂土,饱和水,振动强度。因此,土层中粘粒度愈细、愈深,地下水位愈高,地震烈度愈高,土层越容易液化。 2、什么是地震反应谱?什么是设计反应谱?它们有何关系? 单自由度弹性体系的地震最大加速度反应与其自振周期的关系曲线叫地震(加速度)反应谱,以S a (T )表示。设计反应谱:考虑了不同结构阻尼、各类场地等因素对地震反应谱的影响,而专门研究可供结构抗震设计的反应谱,常以a (T ),两者的关系为a (T )= S a (T )/g 3、什么是时程分析?时程分析怎么选用地震波? 选用地震加速度记录曲线,直接输入到设计的结构,然后对结构的运动平衡方程进行数值积分,求得结构在整个时程范围内的地震反应。应选择与计算结构场地相一致、地震烈度相一致的地震动记录或人工波,至少2条实际强震记录和一条人工模拟的加速度时程曲线 5、抗震设计为什么要尽量满足“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则?如何满足这些原则? “强柱弱梁”可有效的防止柱铰破坏机制的出现,保证结构在强震作用下不会整体倒塌;“强剪弱弯”可有效防止脆性破坏的发生,使结构具有良好的耗能能力;“强节点弱构件”,节点是梁与柱构成整体结构的基础,在任何情况下都应使节点的刚度和强度大于构件的刚度和强度。 6、什么是震级?什么是地震烈度?如何评定震级和烈度的大小? 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。 震级的大小一般用里氏震级表达 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。 7、简述底部剪力法的适用范围,计算中如何鞭稍效应。 适用范围:高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。 为考虑鞭稍效应,抗震规范规定:采用底部剪力法计算时,对突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3,此增大部分不应往下传递,但与该突出部分相连的构件应予以计入。 9、什么是动力系数、地震系数和水平地震影响系数?三者之间有何关系? 动力系数是单质点弹性体系的最大绝对加速度反应与地震地面运动最大加速度的比值 地震系数是地震地面运动最大加速度与重力加速度的比值 水平地震影响系数是单质点弹性体系的最大绝对加速度反应与重力加速度的比值 水平地震影响系数是地震系数与动力系数的乘积 10、多层砌体房屋中,为什么楼梯间不宜设置在房屋的尽端和转角处? 楼梯间横墙间距较小,水平方向刚度相对较大,承担的地震作用亦较大,而楼梯间墙体的横向支承少,受到地震作用时墙体最易破坏2)房屋端部和转角处,由于刚度较大以及在地震时的扭转作用,地震反应明显增大,受力复杂,应力比较集中;另外房屋端部和转角处所受房屋的整体约束作用相对较弱,楼梯间布置于此,约束更差,抗震能力降低,墙体的破坏更为严重 11、试述纵波和横波的传播特点及对地面运动的影响? 纵波在传播过程中,其介质质点的振动方向与波的传播方向一致,是压缩波,传播速度快,周期较短,振幅较小;将使建筑物产生上下颠簸;(横波在传播过程中,其介质质点的振动方向与波的传播方向垂直,是剪切波,传播速度比纵波要慢一些,周期较长,振幅较大;将使建筑物产生水平摇晃 14为什么要限制多层砌体房屋抗震横墙间距? (1)横墙间距过大,会使横墙抗震能力减弱,横墙间距应能满足抗震承载力的要求。)2)横墙间距过大,会使纵墙侧向支撑减少,房屋整体性降低(3)横墙间距过大,会使楼盖水平刚度不足而发生过大的平面内变形,从而不能有效地将水平地震作用均匀传递给各抗侧力构件,这将使纵墙先发生出平面的过大弯曲变形而导致破坏,即横墙间距应能保证楼盖传递水平地震作用所需的刚度要求。 16.地震作用和一般静荷载有何不同?计算地震作用的方法可分为哪几类? 不同:地震作用不确定性,不可预知,短时间的动力作用,具有选择性,累积性,重复性。方法:拟静力法,时程分析法,反应谱法,振型分解法。 17.什么是鞭端效应,设计时如何考虑这种效应? 答:地震作用下突出建筑物屋面的附属小建筑物,由于质量和刚度的突然变小,受高振型影响较大,震害较为严重,这种现象称为鞭端效应;设计时对突出屋面的小建筑物的地震作用效应乘以放大系数3,但此放大系数不往下传。 18.强柱弱梁、强剪弱弯的实质是什么?如何通过截面抗震验算来实现? 答:(1)使梁端先于柱端产生塑性铰,控制构件破坏的先后顺序,形成合理的破坏机制 (2)防止梁、柱端先发生脆性的剪切破坏,以保证塑性铰有足够的变形能力 在截面抗震验算中,为保证强柱弱梁,《建筑抗震设计规范》规定: 对一、二、三级框架的梁柱节点处,(除框架顶层和柱轴压比小于0.15及框支梁与框支柱的节点外),柱端组合的弯矩设计值应符合: ∑∑ =b c c M M η

地震对建筑物破坏的原理分析与监舍防震设计

地震对建筑物破坏的原理分析与监舍防震设计 论文通过地震破坏建筑物的原理和监舍特点分析,提出了监舍的防震设计目标和特点。 标签:地震监舍防震设计 0 引言 云南省是我国地震灾害的高发地区。1976年唐山大地震以来,我国共发生6级以上强破坏性地震56次,其中有15次發生在云南,占全国总数的五分之一以上。为保证在押犯人的生命安全,在监舍设计时必须对予以考虑。 1 建筑物破坏原理 地震对建筑物的破坏作用主要有三种因素:振动破坏、地基失效破坏、次生效应破坏。 1.1 振动破坏 地震波引起的地面振动通过基础传递到建筑物上,引起建筑物本身的振动。建筑物一般是按静力设计和建造的,耐受振动的强度有一定的限度,其破坏程度取决于地震力的大小;但地震波对建筑物的破坏作用很复杂,破坏程度常由许多因素综合决定,包括地震波频谱组成和延续时间,建筑物的材料性质,动力特性,以及地基条件和地形等环境因素。 1.2 地基失效破坏 当地基强度较小或加速度很大时,地表层或下垫层可能达到屈服极限;此时岩石或土层不再具有完全弹性,将产生永久变形,进而导致地基承载力下降甚至丧失,地基产生变位、移动。虽然地基破坏消耗了地震波的能量,减小了震动对建筑物的破坏;但地基失效同时又造成另一种灾害,如建筑物下沉、地基不均匀沉降和水平变位,进而导致建筑物结构破坏。 1.3 次生效应破坏 在特定的地质、环境条件下,地震可能引起崩塌、滑坡或泥石流等次生灾害。在陡峭的山区或丘陵地带,破碎的岩石和松散的表土可能由于地震所产生的振动与下卧的岩土层脱离,从而发生次生灾害;如果地震前发生大量、长时间降水,更易发生该类灾害。规模巨大的崩塌和滑坡灾害可能摧毁地面的建筑物,掩埋坡下的居民点,造成大规模的破坏和伤亡;如果滑坡或崩塌造成河道阻塞,还有可能引发水灾;而大型水体下及附近发生的大规模崩滑,也会对坝体及周边建筑造成毁灭性破坏。

高层建筑抗震设计常见的问题

高层建筑抗震设计常见的问题 在高层建筑的建设中,其中最主要的问题是对它的抗震问题的研究,其中又以中短柱问题为最主要的问题。现在首先介绍一下抗震设计中常见的一些问题。 缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。 结构的平面布置。外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。 一个结构单元内采用两种不同的结构受力体系。如一半采用砌体承重,而另一半或局部采用全框架承重或排架承重;底框砖房中一半为底框,而另一半为砖墙落地承重,这种情况常发现在平面纵轴与街道轴线相交的住宅,其底层为商店,设计成一半为底框砖房(有的为二层底框),而另一半为砖墙落地自承,造成平面刚度和竖向刚度二者都产生突变,对抗震十分不利。 底框砖房超高超层。如1996年,对在杭设计单位作的一次专题普查,发现有69幢底框砖房超高超层。新项目亦普遍存在此现象,1999年某地块住宅竣工交付使用验收中发现有三幢底框砖房超高超层,甚至有超三层的。

抗震设防标准掌握不当。有一些项目擅自提高了设防标准,按照《建筑抗震设防分类标准(gb50223-95)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,但设计中又按六度设防,减低了抗震设防标准,不利抗震。 结构的竖向布置。在高层建筑中,竖向体型有过大的外挑和内收,立面收进部分的尺寸比值b1/b不满足≥0.75的要求。 抗震构造柱布置不当。如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。 框架结构砌体填充墙抗震构造措施不到位。砌体外围护墙砌筑在框架柱外又没有设置抗震构造柱,框架间砌体填充墙高度长度超过规范规定要求又没有采取相应构造措施。 结构其他问题。有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。不少地方都采用钢筋混凝土内柱来承重以代替砖墙承重,实际上将砖混结构演变为内框架结构,这比底框砖房还不利,因内框砖房的层数、总高度控制比底框砖房更严,因此存在着严重抗震隐患。更为严重的是这种情况并未引起目前大多数结构工程师的重视。

地震对建筑的影响

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中得震害特点 (一)砌体结构房屋得震害及分析 1)震害现象 (1)墙角得破坏:房屋得四角墙面上开裂以至于局部倒塌得现象。 (2)楼梯间得破坏:楼梯间两侧承重墙出现严重得斜裂缝。 (3)内外墙连接得破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒塌,房屋丧失整

体性。 (4)突出屋面得屋顶间等附属结构得破坏:地震时,平面突出部位出现局部破坏现象。相邻部位得刚度差异较大时尤为严重。突出屋面得屋顶间、烟囱、女儿墙等附属结构,由于地震“鞭鞘效应” 得影响,一般较下部主体结构破坏严重,而且突出部分面积与房屋面积相差越大,震害越严重,如 图所示。 (5)墙体得破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重得则出现歪斜以致倒塌现象,图所示。 方向平行得墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接近1,则墙体出现X 形交叉裂缝;如果墙体得高宽比较小,则在墙体中间部位出现水平裂缝。 (6)其她部位常见破坏:由于楼盖缺乏足够得拉结或施工中楼板搁置长度过小,会造成楼板坠落;由于伸缩缝过窄,不能起到防震缝得作用,地震时缝两侧墙体放生碰撞而造成破坏。 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗马利亚地

震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结构房屋震害就是相当严重得。 在地震作用下,底部框架—抗震墙结构房屋得底层承受着上不砖房倾覆力矩得作用,其外侧柱会出现受拉得状况;底层为内框架时,外侧得砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏;底层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架得破坏;底层商店住宅,由于需要大空间,横墙较少,因底层得抗震能力弱形成特别得薄弱楼层,造成破坏特别严重。 (二)钢结构房屋得震害及分析 1) 钢结构得震害主要有节点连接得破坏、构件得破坏以及结构得整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结构房屋得 震害要较钢筋混凝土结构房屋得震害小得多。以1985年9月墨西哥城大地震(里氏8、1级)得震害为例,其中倒塌与严重破坏得钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接得破坏 (1)框架梁柱节点区得破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多得一种破坏形式。1994年美国诺斯里奇(Northridge)地震与1995 年日本阪神地震均造成了很多梁柱刚性节点得破坏。2008年汶川地震也造成钢结 构网架节点破坏。 诺斯里奇地震时,H形截面得梁柱节点得典型破坏形式。由图中可见,大多数节 点破坏发生在梁端下翼缘处得柱中,这可能就是由于混凝土楼板与钢梁共同作用,

地震对工程建筑实施的影响

浅谈地震灾害对工程建筑的影响

地震对工程建筑实施的影响 摘要 地震是非常严重的自然灾害之一,它以瞬间的能量瞬息间使成千上万的生命遭到伤害,地震称为地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。地震产生的原因随其形式的不同而不同,本文将阐述地震成因的具体知识,能让我们更好的了解地震带给工程实施的影响。地震时会使房屋等建筑物受到严重的震动致使破坏,会使桥梁断裂、路面开裂下陷、铁路扭曲等,从而使城市瘫痪。地震常常还会伴随滑坡、泥石流、地基沉陷等地面破坏现象,其次生灾害也是非常严重的。对此我们应该对其地震带上的城市进行防范,地震灾害的破坏程度与地震震级和震源深度、地震发生的时间、地貌地质条件、建筑物的质量和地震的防御状况。其中后三个因素则是人类可以控制的,通过对采取有效手段完全可以降低地震灾害的程度。在未来的发展过程中,我们还不能有效地预测地震,无法避免地震灾害的发生,但采取一定措施的前提下是可以有效地减少地震造成的破坏的。 关键词:地震地震成因震级地震烈度应对措施 引言 地震灾害这两年对我国造成的灾害较大,本文研究地震对工程实施的影响可为改善这种现象采取一定的防治措施,我国是地质灾害较多的国家,每年因地质灾害造成的经济损失不计其数,也给人类的生命安全财产造成极大的伤害,因此本文研究地震地质灾害及防治具有一定的社会意义,也使人们更加重视面对地震灾害时采取应对措施。 理论基础 2.1 地震现象与成因 地震是由于地球内部应力,引起构造变动而产生的地震,地震是一种地质现象,地球上差不多每天都有地震,地震时,从震源地方的岩石破裂产生的地震波,在地球内部和地球表面传播。 地震一般可分为人工地震和自然地震两大类,下面所说的地震成因为天然地震的成因:①构造地震,因为地壳运动引起的地壳构造突然变化,地壳岩层错动破裂而发生的地壳震动,这就产生了人们平常所说的地震。由于地球不停地运动变化,从而内部产生了巨大的地应力,在其长期缓慢的作用下,造成地壳的岩层

浅谈高层建筑抗震

浅谈高层建筑抗震 2008年的汶川地震和2010年的玉树地震对中国来说无不是沉重的打击,不但造成巨大的经济损失,更心痛的是有那么的生命离开了我们,这不得不让人们反思我们建筑的抗震设防能力。在地震中,几乎所有的建筑都倒塌了,相对于低层建筑而言,高层建筑破坏和倒塌的后果就更加严重。近年来国内国外高层、超高层建筑的高度不断攀升,就在2010年正式开放的哈利法塔的高度达到了惊人的828米,而且建筑的体型越来越复杂,不规则结构越来越多,这对于结构的抗震都是十分不利的。为保证高层结构的抗震安全,达到安全和经济的统一,有必要对高层结构的抗震设计、抗震结构和抗震技术进行探讨。 1.地震导致建筑破坏的原因 根据地震经验,地震期间导致高层建筑破坏的直接原因可分为以下三种情况: (1)地震引起的山崩、滑坡、地陷、地面裂缝或错位等地面变形,对其上部建筑的直接危害; (2)地震引起的砂土液化、软土震陷等地基失效,对上面建筑物所造成的破坏; (3)建筑物在地面运动激发下产生剧烈震动过程中,因结构强度不足、过大变形、连接破坏、构件失稳或整体倾覆而破坏; 2.建筑的抗震概念设计 所谓“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,依此进行建筑和结构总体布置并确定细部构造的过程。科技论文。 3.建筑抗震设计方法的发展过程 3.1、静力理论阶段 水平静力抗震理论始创于意大利,发展于日本,1900年日本学者大森房吉提出“震度法”的概念。该理论认为:结构物所收到的地震作用,可以简化为作用于结构的等效水平静力,其大小等于结构重力荷载乘以一个系数。 3.2、反应谱理论阶段 我国及国际上多数国家抗震设计规范本质上都采用了反应谱理论及结构能力设计原则。其主要特点如下: (1) 用规范规定的设计反应谱进行结构线弹性分析。 (2) 结构构件的承载力是根据设计反应谱所作的结构线弹性计算通过荷载和地震作用效应组合后内力进行设计。 (3) 在早期方案设计阶段,结构体系、结构体型的规则性及结构的整体性满足规范的规定,以使结构能可靠地发挥非弹性延性变形能力。 3.3、动力理论阶段

地震对建筑的影响

地震对建筑的影响 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第九组 组员:陈耀铭、黄伟鹏、江信贤 地震与民用建筑 一、民用建筑在地震中的震害特点 (一)砌体结构房屋的震害及分析 1)震害现象 (1)墙角的破坏:房屋的四角墙面上开裂以至于局部倒塌的现象。 (2)楼梯间的破坏:楼梯间两侧承重墙出现严重的斜裂缝。

(3)内外墙连接的破坏:内外墙连接处出现竖向裂缝,严重时纵横墙拉脱。造成纵墙外闪倒 房屋丧失整体性。 (4)突出屋面的屋顶间等附属结构的破坏:地震时,平面突出部位出现局部破坏现象。相邻的刚度差异较大时尤为严重。突出屋面的屋顶间、烟囱、女儿墙等附属结构,由于地震鞘效应”的影响,一般较下部主体结构破坏严重,而且突出部分面积和房屋面积相差越 震害越严重,如图所示。 (5)墙体的破坏:墙体出现水平裂缝、斜裂缝、X形裂缝,严重的则出现歪斜以致倒塌现象,所示。方向平行的墙体,在水平地震作用下,墙体首先出现斜裂缝,如果墙体高宽比接1,则墙体出现X形交叉裂缝;如果墙体的高宽比较小,则在墙体中间部位出现水平裂缝

(6)其他部位常见破坏:由于楼盖缺乏足够的拉结或施工中楼板搁置长度过小,会造成楼板落;由于伸缩缝过窄,不能起到防震缝的作用,地震时缝两侧墙体放生碰撞而造成破坏 2)分析:历次大地震,如1963年前南斯拉夫地震,1972年美国费尔南多斯地震,1976年罗亚地震,1975年营口海城地震,1976年唐山地震以及2008年汶川地震中,都证明底部框架砌体结房屋震害是相当严重的。 在地震作用下,底部框架—抗震墙结构房屋的底层承受着上不砖房倾覆力矩的作用,其外侧柱现受拉的状况;底层为内框架时,外侧的砖壁柱则会因砖柱受拉承载力低而开裂,甚至严重破坏; 层为半框架时会出现底层横墙开裂,而后由于内力重分布,加重了层半框架的破坏;底层商店住宅由于需要大空间,横墙较少,因底层的抗震能力弱形成特别的薄弱楼层,造成破坏特别严重。 (二)钢结构房屋的震害及分析 1)钢结构的震害主要有节点连接的破坏、构件的破坏以及结构的整体倒塌三种形式。 2)分析:历次地震表明,在同等场地、地震烈度(seismic intensity)条件下,钢结房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震(里氏级的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。 1、节点连接的破坏 (1)框架梁柱节点区的破坏 由于节点集中力、构造复杂、施工难度较大,极易造成应力集中,因此节点破 坏时发生最多的一种破坏形式。1994年美国诺斯里奇(Northridge)地震和 1995年日本阪神地震均造成了很多梁柱刚性节点的破坏。2008年汶川地震也造成 钢结构网架节点破坏。 诺斯里奇地震时,H形截面的梁柱节点的典型破坏形式。由图中可见,大多数 节点破坏发生在梁端下翼缘处的柱中,这可能是由于混凝土楼板与钢梁共同作用,

建筑结构设计中减少地震力影响的措施分析

管理观察 CONSTRUCTloN 建筑结构设计中减少地震力影响的措施分析 吕必祥田州 恩施职业技术学院445000 摘要:地震是一种自然现象,如果强烈地震发生在人类聚居区,就可能造成严重的地震灾害,2008年汶川地震再次给我们敲响了警钟,提醒我们在建筑结构设计减少地震力影响力方面应该进一步加强。 关键词:建筑结构设计;地震力影响 一,隔震 使用隔震技术不仅达到了减轻地震对上部结构造成损坏的目的,而且建筑装修及室内设备也得到有效保护。隔震建筑的结构体系一般由下部结构、隔震装置、上部结构组成。根据隔震层设置的位置不同,可分为以下几种: l地基隔震 地基隔震即隔震层设在基础以下的地基中。历史上曾采用糯米垫层或砂垫层隔震,也能取得一定效果。还有的用一层软粘土一层砂土,其间加入一层土工布。使地震波在地基中被多次反射吸收达到衰减的效果。但由于土的性状较难由人工控制,它常随自然条件而变更,因此效果不稳定。杭州市抗震办曾组织研制了一种改性沥青阻尼隔震垫。达到了良好的效果。 2.基础隔震 基础隔震是在基础与上部结构之间设置隔震装置,减小地震动往上部结构传递,降低上部结构的地震反应。该种隔震方法适用于体形规则的低层或多层建筑结构,用于高层建筑结构的效果较差(隔震结构延长了结构的自振周期)。基础隔震包括粘弹性隔震、滚轴(珠)滑移隔震、摩擦摆隔震、摩擦滑移隔震等多种形式,隔震装置有夹层橡胶垫隔震装置、基底滑移隔震装置、混合隔震装置等等,其减震效果可达8%--60%。 3.层间隔震 层间隔震是结构隔震与抗震相结合的一种方法,它是在原结构上安装由质量和隔震支座组成的耗能减震装置,地震时,耗能减震机构吸收并消耗地震能量,减小结构的地震反应。该方法适用于旧房加层、抗震加固。减震效果一般在10%---40%之间。虽然层间隔震的效果不如基础隔震,但它可利用结构的加层或原结构的隔热层,做适当的改建而达到减震的目的,简单易行。隔震装置采用橡胶支座。在上海.几栋高层建筑用此方法控制结构的第二振型反应,收到很好的效果。 4.悬挂隔震 悬挂隔震是将结构的全部或大部分质量悬挂起来,使地面运动传递不到主体质量,产生不了惯性力,从而起到隔震作用。它最具有代表性的是巨型刚框架悬挂体系。其结构分为主框架和子结构:主框架同一般框架结构;子结构采用索或吊杆悬挂.分布有主要质量。此体系可以有效地隔离主框架和子结构,减少地震作用的传递,控制结构的地震反应。因此,目前已经广泛被很多国家采用该方法在桥梁、火电厂锅炉架中应用广泛。著名的香港汇丰银行新大楼(43层)即采用此种方法隔震。 二,消能减震技术 消能减震技术主要通过提高结构的附加阻尼来减少结构的地震反应。其应用十分广泛:不仅可用于新建结构的减震设计,也可用于现结构的抗震加固;适用于钢筋混凝土结构,更适合钢结构、高耸结构;一般应用于上部结构,也町应用于基础隔震建筑中的隔震层。 消能减振技术是用特别设置的机构和元件将地震动的能量加以吸收耗散,以保护主体结构的安全。这比传统的依靠结构本身及其节点的延性耗散地震能量相比显然是前进了一步。但是消能元件往往与主体结构是不能分离的,而且常常是主体结构的一个组成部分,也不能完全避免主体结构出现弹塑性变形,因此它还不能完全脱离延性结构的概念。从另一方面考虑,减振消能也可以看作是增加结构阻尼的方法。 消能减震技术的实际应用效果与所选用的消能装置关系较大.消能装置的种类繁多,主要有摩擦阻尼器、塑性消能器、粘滞阻尼器、磁流变阻尼器、形状记忆合金阻尼器等。从阻尼器的T作原理方面可分为滞回型和粘滞型两类,亦可称为位移相关型和速度相关型。 三、机敏减震支撑体系 无粘结钢支撑体系是一种机敏的减震支撑体系。在内核钢支撑和外包钢管之间不粘结,或者在内核钢支撑和外包钢筋混凝土或钢管混凝土之问涂无粘结漆形成滑移界面。在支撑中段设置外包层,在支撑两端适当部位露出内核钢支撑,再用高强度螺栓与框架结构连接,以保证压力和拉力都只由内核钢支撑承受。滑移界面的材料和几何尺寸需要精心设计和施工,以允许内核钢和外包层之间相对滑动,同时约束内核钢支撑的横向变形,防止内核钢支撑在压力作用下发生整体屈曲和局部屈曲。 四、跷动振动控制减震设计 跷动减震设计有两种方法:一种是整个上部结构与下部基础在竖向不紧固;另一种是结构中地震力较大的柱、竖向连续墙、支撑等部分构件与下部基础不紧固。前一种方法适用于高宽较大的建筑物在强烈地震作用下会产生很大竖向拔力的情形。 五、地震震向与建筑物走向 汶川地震导致的房屋倒塌无数,同时也有不少的房屋屹立不倒。经过专家的现场勘察。房屋倒塌和震向密切相关。所谓的震向,即地震发生以后,导致房屋震动的方向。此次汶川大地震,震向为东北.西南走向,房子如果和它同向。随它一起摇晃,则受损严重,而房屋走向和震向垂直的话,损伤明显小得多。以板式结构为例,板式方向与断裂带走向垂直的话,其抗震能力至少可以提高3度。“我们虽然不能精确预报地震发生的时间和地震的强度.但是,知道了断裂带的走向以后,一旦发生地震,地震波的传递方向所导致房屋晃动的方向,还是有规律的。”同济大学规划设计专家吴志强如是说。“今后,在重建规划中,一定要考虑这个因素。房屋走向和震向交叉,其抗震能力可提高3度。” 总之,通过几十年的发展,现代隔震减震技术已经从早期的系统研究进入到了逐步应用的阶段。经过现实中实际地震的验证,这些方法已经显示出优越的抗震性能,同时也带来了巨大的社会效益。但是仍然要看到这些技术在实际应用中的不足,还需要我们设计和科研人员进行大量的实验和论证。 参考文献: 【11建筑抗震设计规范(GB50011-2001)2008. 【2】武田寿一。纪晓惠,等译.建筑物隔震防振与控振【M】.中国建筑工业出版社,1997. 蕉壹壅塑目圜 万方数据

浅析地震对建筑物的破坏及建筑减震防震措施

浅析地震对建筑物的破坏及建筑减震防震措施 姓名:王涛 班级:土木 通过对土木工程概论这门课程的学习,我对土木工程这个专业有了大概的了解。我对建筑防震减震方面的问题有着浓厚的兴趣,通过陈老师的介绍以及我查阅的相关资料,浅析一下本人对地震对建筑物的破坏以及建筑物减震防震方面的认识。 破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾难。目前,每年全世界由地震灾害造成的平均死亡人数达8000一10000人/次,平均经济损失每次达几十亿美元。据联合国统计,本世纪以来,全世界因地震死亡人数达260万,占全球自然灾害所造成的死亡总和的58%。从某种意义上说,地震是群灾之首。 大地震如果发生在渺无人烟的地方是不会造成伤害的,如果发生在城市或农村的活,就会造成房倒屋塌,甚至建筑物与重要工程也会遭至"破坏并危及人员的生命安全,给人们造成严重灾害。 我国由于地处板块交界处地震灾害频度高,强度大,成灾率高,这是造成地震灾害特别严重的原因。同时,我国民众防灾意识不高,同一震级的地震,造成伤亡的人数可多达数倍。另外,我国大部分城市的基础设施,抗震性能较差。建国头20年中,多数建筑物和工程未考虑抗震设防,加之城市生命线管线纵横交错,埋设不合理,有的材料强度不够,有的年久失修,使我国多数城镇防震抗震的能力脆弱,潜在着很大的隐患。广大农村多属土、石结构建筑,抗震能力更差。据估计,地震若发生在我国工业城市及人口稠密的地区,8级左右或7级左右以及5、6级左右的地震所造成的经济损失分别为百亿元、数十亿元和数亿元人民币。譬如1976年唐山大地震,在几十秒钟的时间内,将一座百万人口的工业城市变成了废墟,伤亡侧万人,直接经济损失100亿元以上,救灾花了6亿多元,重建用了50亿元,而

浅谈高层建筑抗震的现状及发展前景

浅谈高层建筑抗震的现状及发展前景 (中国矿业大学建筑工程学院土木11-5班马绪文) 摘要:对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施并简述其发展前景。 关键词:高层建筑;抗震;结构设计 现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。 1 高层建筑抗震设计特点 第一,控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。 第二,地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的曾加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。 第三,要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。 2 建筑抗震的理论分析 2.1 建筑结构抗震规范简介 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。 2.2 抗震设计的理论 拟静力理论:拟静力理论是20世纪10~40年代发展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于

浅谈地震对砖混结构的破坏和影响

浅谈地震对砖混结构的破坏和影响 摘要 砖混砌体房屋是我国当前建筑中使用最广范的一种建筑形式。总结多层砖混砌体房屋的震害经验,房屋结构体系不合理或存在缺陷是多层砌体房屋产生震害的主要原因之一。因此多层砌体房屋合理的抗震结构体系,对于提高房屋的抗震能力是非常必要的,也是房屋抗震设计中应考虑的关键问题。 关键词:结构体系结构设计砖混结构

目录 中文摘要……………………………………………………………………………I 一、优先采用横墙承重或纵横共同承重 (4) 二、纵横墙的布置应均匀对称 (4) 三、纵横墙竖向的结构 (5) 四、抗震地区的抗震考虑 (5) 五、防震缝的设置 (6) 六、楼梯间不宜设在房屋的尽端和转角处 (6) 七、关于墙体问题 (7) 八、钢筋混凝土预制挑檐应加强锚固 (7) 九、总结 (8) 参考文献 (8)

一、优先采用横墙承重或纵横共同承重 多层砖混房屋的主要承重构件是纵、横墙体,在地震中主要由于承重纵、横墙在地震力作用下产生裂缝,严重者会出现倾斜、错动、倒塌等现象,进而使房屋造到破坏;所以合理布置纵、横墙对提高房屋抗震性能起到很大的作用。多层砖混房屋应优先采用横墙承重或纵横墙共同承重的结构体系,纵、横墙的布置宜均匀对称,沿平面内宜对齐,沿竖向应上下连续,同时一轴线上的窗间墙宽度宜均匀。房屋的空间整体刚度和整体稳定性决定着房屋抗震能力的高低,多层砖混房屋一般采用纵墙或横墙承重,由于非承重方向的约束墙体少,间距大,因而房屋该方向刚度较弱,空间刚度和整体性均较差,拉震能力低;在高烈度地区,墙体由于平面外的失稳而先行破坏,进而引起整个房屋倒塌。而在两个方向适当布置纵横、墙混合承重的房屋,由于其限制了纵、横墙的侧向变形,增强了空间刚度和整体性,对承受纵、横两个方向的水平地震作用及抗弯、抗剪都非常有利。墙体布置时,应尽量采用纵墙贯通的平面布置,当纵墙不能贯通布置时,可在纵横墙交接处采取加强措施,也可在纵、横墙交接处增设钢筋混凝土构造柱,并适当加强构造配筋;防止纵、横墙交接处被拉开。纵墙承重的砌体结构,由于楼板的侧边一般不嵌入横墙内,横向地震作用有很少部分通过板的侧边直接传至横墙,而大部分通过纵墙经由纵横墙交接面传至横墙。因而,地震时外纵墙因板与墙体的拉结不良而成片向外倒塌,楼板也随之坠落。横墙由于为非承重墙,受剪承载能力降低,其破坏程度也比较重。而横墙开洞较少,又有纵墙作为侧向支承,所以横墙承重的多层砌体结构具有较好的传递地震作用的能力。 二、纵横墙的布置应均匀对称,沿平面内宜对齐,同一轴线上的窗间墙宽度宜均匀,同时应尽量减少复杂装立面所造成的附加震害 多层砌体房屋的平、立面布置应规则对称,最好为矩形,这样可避免水平地雳作用下的扭转影响。然而对于避免水平地震作用下的扭转仅房屋平面布置规则还是不够的,还应做到纵横墙的布置均匀对称。砖墙沿平面内对齐、贯通,能减少砖墙、楼板等受力构件的中间环节,使震害部位减少,使震害程度减轻;同时,由于地震作用传力路线简单,中间不间断,构件受力明确,其简化的地震作用分析能较好地符合地震作用的实际。房屋的纵向地震作用分至各纵轴后,

地震对市政建设的影响

摘要:地震是一种危害极大的自然现象,即使能够做出有效的地震短临预报,市政工程建设本身的破坏仍无法避免。地震灾害的实例表明,破坏性地震造成的人员伤亡和经济损失,主要是由于建筑物、工程设施的破坏倒塌、以及伴随的次生灾害造成的。本文的目的是探讨如何使市政建设建筑物能够有效抵御强烈地震的袭击,以及其他国家和地区在这方面成熟的经验。 地震在我国的分布 中国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,受太平洋板块、印度板块和菲律宾海板块的挤压,地震断裂带十分发育。在中国发生的地震又多又强,其绝大多数又是发生在大陆的浅源地震,震源深度大都在20公里以内。因此,中国是世界上多地震的国家,也是蒙受地震灾害最为深重的国家之一。影响中国的是环太平洋地震带和欧亚地震带,台湾地区是环太平洋地震带影响地区的主要代表,而四川、西藏、云南等中国西部地区受欧亚地震带影响较多,这些地区成为地震频发区。 2004年6月,国家重大科学工程项目“中国地震活动断层探测技术系统大城市活动断层探测与地震危险性评价”开始实施,中国地震局地质研究所研究员徐锡伟是该项目首席专家。项目选择在北京、上海、天津、福州、沈阳等内地的21个大城市进行了探测研究。该项目于2008年4月顺利完成,已基本查明了21个城市及其邻区的主要断层的分布、最新活动性和发震危险性,特别是排除了上海、天津、广州、沈阳、银川、青岛等城市的其中80条断层的活动性。 地震对城市建筑物的破坏 地震波分为体波和面波两种,体波包括横波和纵波.一般纵波先到达地表对建筑物造成影响,给人上下抖动的感觉,横波比纵波稍晚,给人前后摇摆不定的感觉。而最后到达的是面波,沿着地表蛇行前进,往往对建筑物施加较大的剪切力,大多数建筑物倒塌是由于面波的作用。地震对建筑物的破坏作用是通过地基和基础传递给上部结构的。地震时地基和基础起着传播地震波河支承上部的双重作用。在地震的作用下,引起地基承载力降低或使地基产生不均匀沉降,从而导致建筑的破坏。地震的震害现象主要有砂土地基的振动液化、滑坡、地裂及震陷等。另外,由于地震产生的惯性力使建筑物受到水平方向的作用力,也会引起建筑物主体结构的破坏。 地震对建筑物的影响不仅与地震烈度有关,还与建筑物场地效应、地基土动力特性有关。对同一类土,因地形不同,可以出现不同的场地效应,房屋的震害因而不同。在同样的场地条件下,粘土地基和砂土地基、饱和土和非饱和土地基上房屋的震害差别也很大。地震对建筑物的破坏还与基础形式、上部结构的体型、结构形式及刚度有关。 全球处于地震带上的城市防震措施 日本是一个地震频发的国家,每年发生有感地震约1000多次,全球10%的地震均发生在日本及其周边地区。其中6级以上的地震每年至少发生1次,据不完全统计,世界范围内发生的里氏6级以上的地震,大约有20%发生在日本。然而,地震并没有给日本带来巨大人员伤亡等损失,绝大部分建筑保持完好。是什么原因造成如此大的反差呢?这与日本房屋建筑防震措施是密不可分的。 早在1923年关东大地震之后,日本就制定法律,要求建造房屋时必须计算防震程度,1995年颁布了建筑防震标准——《建筑基准法》。《基准法》规定,高层建筑必须能够抵御里氏7级以上的强烈地震。一个建筑工程为获得开工许可,除了设计、施工图纸等文件外,还必须提交建筑抗震报告书。抗震报告书的主要内容包括,根据地震的不同强度,计算不同的建筑结构在地震中的受力大小,进而确定建筑的梁柱位置、承重以及施工中钢筋、混凝土的规格

相关主题
文本预览
相关文档 最新文档