当前位置:文档之家› 三角形中线和角平分线在解题中的应用(整理八种方法)

三角形中线和角平分线在解题中的应用(整理八种方法)

三角形中线和角平分线在解题中的应用(整理八种方法)
三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考

文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

常规解法及题根:

(15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。

(Ⅰ)求C

B ∠∠sin sin ; (Ⅱ) 若AD =1,D

C =

22求BD 和AC 的长.

(15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .

(I )求sin sin B C

∠∠ ; (II )若60BAC ∠=o ,求B ∠.

重点结论:角平分线性质:

(1)平分角

(2)到角两边距离相等

(3)线段成比率

中点性质与结论:

(1)平分线段;

(2)向量结论;

(3)两个小三角形面积相等。

题目解法搜集:

解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解;

在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g

g ,则7 因为AD 平分∠BAC ,则AB BD AC DC =

,所以BD=37,DC=7;

在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222

2AB AD BD AB AD +-g 即2

22373323x x +-??=?,解得x=

933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

解法评价:好想,但计算较多,且最终无法取舍两根,需要依靠图片的准确性舍弃一个解。

解法2(余弦定理灵活使用):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解;

在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g

g ,则7 因为AD 平分∠BAC ,则AB BD AC DC =

,所以BD=374,DC=74;

(三边求角)

在△ABC 中,cosB=222AB +BC -AC

2AB BC g 2223+7-1237??27 在△ABD 中

,222AD =AB +BD -2AB BD cosB g g =2223737AD =3+-234427??? ??=2716;

所以AD=33

解法评价:突出余弦定理两大运用,两边及夹角,利用余弦定理求第三边和三边求角,训练同一个角在不同三角形中求解。

解法3(坐标法):在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:把△ABC 放到坐标系,A 放到坐标原点,AC 在X 轴上,则

C (1,0),B (32,332),其中

14DF CD EG CB ==; 所以DE=DF=33,所以AD=2DE=33

解法评价:在听课好几次听到老师讲坐标法,当然这题坐标作用不大,不多想到把图形摆正之后,解题思路和角平分线到角两边距离就可以使用。

解法4(面积法) 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:ABC ACD ABD S S S ???=+,由正弦定理的面积公式可得:111sin sin sin 222AB AC A AD AC DAC AD AB BAD =∠+∠g g g 得11131sin 603ADsin 301sin 30222AD ???

???=??+??,秒解AD=33

解法5 (向量法)在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:由AB BD AC DC =得BD :DC=3:1,所以1344AD AB AC =+u u u r u u u r u u u r ,则

22213916816AD AB AB AC AC =++u u u r u u u r u u u r u u u u r u u u r g ,

227=16AD u u u r 则AD=33

解法评价:此法属于通法,中线和角平分线有类似结论,可以解决一类题型,而且计算中直接使用公式,无需求解复杂方程,实属考试必备方法。

方法六(构造法):在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:过B 做AC 的平行线交AD 的延长线于点E ,则△ABD 为等腰三角形,

在等腰△ABD 中,AB=EB=3,∠E=∠BAD=30°,解得

AE=33,ACD EBD ??:,13AD CD AC DE BD AB ===

所以AD 1=

AE4,得AD=334。

解法评价:此法特别巧妙,偏向于喜欢几何证明的学生,特别是喜欢三角形相似,角平分线定理证明的基本思路就和此做法比较相似,此法对于角平分线的题目另辟新径。

解法7(正三角形法)在△ABC 中,D 在BC 上,AD 平分∠BAC ,

若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:构造正三角形ABE ,过A 作BE 平行线交BC 延长线于H。

为了使用AC:CE=1:2,AC CB E ??:H;

所以AH=BG=BE 21,所以AD=21AG=334。

解法8(构造等腰三角形)在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:过C 做AD 平行线交BA 延长线于点E 。

在等腰△ACE 中(角平分线加平行线必出等腰),

AE=AC=1,∠EAC=120°,所以CE=3。

AD AB 3=CE BE 4=,AD=334。

解法9(极坐标法)在△ABC 中,D 在BC 上,AD

平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则

AD=_______;

解:以点A 为极点,AB 为极轴,则C 点极坐标为

(3,3π

),点B (1,0),BC 的直角坐标为B (1,0)

C (

33322,),33BC k =,BC 直角坐标系方程为y=33(x-1),所以极坐标方程为33cos sin 1ρθρθ-=,当6πθ=时,D 点极坐标为(ρ,

6π),所以AD=ρ=

133cos sin 33cos sin 66ππθθ=--=33

4。

解法评价:此法对极坐标要求较高,不过避开角平分线几何性质,只不过计算量不小。

解法10(参数方程):在△ABC中,D在BC上,AD平分∠BAC,若AB=3,AC=1,∠BAC=60°,则AD=_______;

解:设AD的参数方程为

3

2

1

2

x

y t

=

??

?

??

BC直角坐标系方程为y=33x-1),因为D点在BC上,

把B点极坐标带入BC方程解得t=33

,则AD=t。

角平分线、等腰三角形性质及判定的应用--学生版

角平分线、等腰三角形性质及判定的应用 学校:___________姓名:___________班级:___________考号:___________ 一.选择题(共10小题) 1.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,若DC=4,则DE=()A.3B.5C.4D.6 第1题第2题第3题第4题 2.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为()A.6B.5C.4D.3 3.如图,OC平分∠AOB,CM⊥OB于点M,CM=3,则点C到射线OA的距离为() A.5B.4C.3D.2 4.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A.2B.3C.4D.无法确定 5.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8 第5题第6题第7题第8题第9题 6.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是() A.4B.5C.10D.20 7.如图,在△ABC中,∠C=90°,BD平分∠ABC,AB=12,CD=4,则△ABD的面积为() A.20B.24C.42D.48 8.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC=,则OF长度是()A.2B.C.3D.2 9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=6,那么PD=() A.3B.6C.8D.10 10.如图,已知点P到△ABC三边的距离相等,DE∥AC,AB=8.1cm,BC=6cm,△BDE的周长为()cm.A.12B.14.1C.16.2D.7.05 第10题第11题第12题 二.填空题(共8小题) 11.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=30°,则∠B=. 12.如图,在△ABC中,AB=AC,∠C=70°,点D在AC上,BD=BC,则∠ABD的度数是° 13.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.

三角形中位线中的常见辅助线

三角形中位线中的常见 辅助线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证: 2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证: 2AB DE =.

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

三角形的高中线与角平分线练习题综述

43 2 1E D C B A 1 C D B 三角形的高、中线与角平分线1 1 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R , PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ). (A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正 确 2、 如图,点E 在BC 的延长线上,则下列条件中, 不能判定AB ∥CD 的是( ) A. ∠3=∠4 B.∠B=∠DCE C.∠1=∠2. D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B. (1)试说明 CD 是ΔABC 的高; (2)如果AC=8,BC=6,AB=10,求CD 的长。 4 如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数 5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2 所以 ____∥____ ( ) 因为 ∠1=∠3 所以 ____∥____ ( ) 6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm

A.17 B.22 C.17或22 D.13 8.适合条件∠A=1 2∠B=1 3 ∠C的△ABC是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为() A.30° B.75° C.105° D.30°或75° 10.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.8 11.三角形的一个外角是锐角,则此三角形的形状是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值范围是________. 13.如图,BD平分∠ABC,DA⊥AB,∠1=60°, ∠BDC=80°,求∠C的度数. 初一三角形的高、中线与角平分线2 1 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6. (1)CO是△BCD的高吗?为什么? (2)∠5的度数是多少? (3)求四边形ABCD各内角的度数. 2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

(完整版)三角形的中位线专题训练.docx

专题 三角形的中位线 第 1 页 共 3 页 三角形的中位线 例题精讲 例 1 如图 1, D 、E 、 F 分别是△ ABC 三边的中点. G 是 AE 的中点, BE 与 DF 、 DG 分别交于 P 、 Q 两点 . 求 PQ:BE 的值 . 例 2 如图 2,在△ ABC 中, AC>AB , M 为 BC 的中点. AD 是∠ BAC 的平分线,若 CF ⊥ AD 交 AD 的延长 1 AC AB . 线于 F.求证: MF 2 例 3 如图 3,在△ ABC 中, AD 是△ BAC 的角平分线, M 是 BC 的中点, ME ⊥ AD 交 AC 的延长线于 E .且 CE 1 CD .求证:∠ ACB=2∠B. 2 D C E F A B 图 1 图 2 图 3 图 4 图 5 巩固基础练 1. 已知△ ABC 周长为 16, D 、 E 分别是 AB 、 AC 的中点,则△ ADE 的周长等于 ( ) A .1 B. 2 C. 4 D. 8 2. 在△ ABC 中,D 、E 分别是 AB 、AC 的中点, P 是 BC 上任意一点, 那么△ PDE 面积是△ ABC'面积的 ( ) 1 1 1 1 A . B. C. D. 2 3 4 8 3. 如图 4,在四边形 ABCD 中, E 、F 分别为 AC 、 BD 的中点,则 EF 与 AB+CD 的关系是 ( ) A . 2EF AB CD B. 2EF AB CD C. 2EF AB CD D. 不确定 4. 如图 5,AB ∥CD , E 、 F 分别是 BC 、 AD 的中点,且 AB=a,CD=b ,则 EF 的长为 . 图 6 图 7 图 8 图 9 图 10 5. 如图 6,四边形 ABCD 中,AD=BC ,F 、E 、G 分别是 AB 、CD 、AC 的中点, 若∠ DAC= 200,∠ ACB= 600, 则∠ FEG= . 6. ( 呼和浩特市中考题 ) 如图 7,△ ABC 的周长为 1,连接△ ABC 三边的中点构成第二个三角,再连接第二 个三角形三边中点构成第三个三角形,依此类推,第 2003 个三角形的周长为 . 7. 已知三角形三条中位线的比为3:5:6 ,三角形的周长是 112cm ,求三条中位线长 . 8. 如图 8,△ ABC 中, AD 是高, BE 是中线,∠ EBC= 300,求证: AD=BE . 9. 如图 9,在△ ABC 中, AB=AC ,延长 AB 到 D ,使 BD=AB , E 为 AB 中点,连接 CE 、 CD . 求证: CD=2EC . 10.如图 10, AD 是△ ABC 的外角平分线, CD ⊥AD 于 D , E 是 BC 的中点 . 求证: (1)DE ∥AB; (2) DE 1 AB AC . 2

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

三角形中位线定理的教学浅析

三角形中位线定理的教学浅析 数学教育主要是数学思维的教育,数学教育过程是思维活动的过程,发展学生的思维能力是 数学教学的一个重要方面。学生的思维能力具体体现为直觉的形象思维、分析的逻辑思维、 灵活的创造思维等。在教学中如何培养这些思维能力呢?由认识论我心理学的基本原理可知:“感知、理解、巩固、运用”符合学生认知知识心理过程的学习程序。所以数学教学应围绕认 知迁移的四个环节展开,采取不同的教学策略,针对性地培养相应的思维能力。我以三角形 中位线的教学为例谈点体会。 一、感知阶段:引导学生猜想分析,注重培养思维的广阔性 培养思维的广阔性,主要是培养学生从多角度,多方面去分析、思考问题;认识、解决问题 的思维方式。使之思路开阔,联想广泛,通用不同的方法去处理和解决问题。在教学中要充 分利用命题提出这一环节,设置问题情境调动学生思维,引导学生分析、抽象、探索定理的 多种证法,开阔思维广度。例如:三角形中位线定理的证明,可按课本的探索式方法设置问 题情景,让学生猜想发现三角形中位线性质:“三角形中位线平行,并且等于第三边的一半。”教师可以提出如何填加辅助线完成此定理的证明问题,启发学生从多方面探索定理的证明方法,加以总结。 二、理解阶段,引导学生理解记忆,注意培养思维的流畅性 思维的流畅性表现为思维流畅通顺,减少阻碍,能准确迅速地感知和提取信息。要想思维流 畅顺利运用所学知识,分清定理的条件和结论,熟记定理的基本图形是前提。要结合图形帮 助学生理解本质属性,强化定理的表达式,以便运用时思路畅通,例:三角形中位线定理证 完后,可结合图形强化帮助同学记忆定理的条件结论。 三、巩固阶段:引导学生变式训练,是提高培养思维的灵活性 培养上思维的灵活性,主要培养学生对具体问题具体分析,善于根据情况的变化,调整和改 变思维过程,提高学生的应变能力,所以在定理运用教学时,有针对性地把练习、习题、复 习题中有共同特点的题目融会贯通,变分散为集中,设计一图多问题,一题多变题,对比分 析题和逆向运用题,让学生进行变中位线定理的运用可举以下题让学生训练。 四、运用阶段:引导学生归纳小结,注重培养思维的敏捷性 思维的敏捷性,是思维活动中的反映速度和熟练程度。培养思维的敏捷性,主要培养学生思 考问题时,能作出快速敏锐的反应。敏捷应以准确严谨为前提,只有准确掌握系统的基础知 识和熟练的基本技能,才能达到融会贯通之目的,做到真正的敏捷。故在运用这一环节上要 引导学生归纳小结,把本节知识纳入已有的认知结构中去,不断充实扩展已有的知识体系; 同时总结一般解题规律,从具体的解题过程中抽象出某种数学模式,形成较为明确的解题思路,使学有“法”可依,有“路”可走特别是注意归纳解题的技巧,使学生思维技能得到发展。 例:三角形中位线一节可引导学生作如下归纳: (1)证两线平行的常见方法; (2)平行线的三条基本判定方法; (3)三角形一边的平行的判定方法 (4)特殊四边形的对边平行 (5)三角形中位线定理

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

三角形的中线与角平分线

一.选择题(共10小题) 1.(2016秋?阿荣旗期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形 C.直角三角形D.周长相等的三角形 【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等. 【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形. 故选:B. 【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线. 2.(2016秋?大安市校级期中)如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线() A.△ABE B.△ADF C.△ABC D.△ABC,△ADF 【分析】根据三角形的角平分线的定义得出. 【解答】解:∵∠2=∠3, ∴AE是△ADF的角平分线; ∵∠1=∠2=∠3=∠4, ∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE, ∴AE是△ABC的角平分线. 故选D. 【点评】三角形的角平分线是指三角形一个内角的平分线与对边交点连接的线段. 3.(2016春?蓝田县期中)如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()

A.1 B.2 C.3 D.4 【分析】根据三角形中线的定义可得BE=EC=6,再根据BD=BE﹣DE即可求解.【解答】解:∵AE是△ABC的中线,EC=6, ∴BE=EC=6, ∵DE=2, ∴BD=BE﹣DE=6﹣2=4. 故选D. 【点评】本题考查了三角形的中线的定义,是基础题,准确识图并熟记中线的定义是解题的关键. 4.(2017?泰州)三角形的重心是() A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点 【分析】根据三角形的重心是三条中线的交点解答. 【解答】解:三角形的重心是三条中线的交点, 故选:A. 【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键. 5.(2017?诸暨市模拟)已知△ABC在正方形网格中的位置如图所示,则点P叫做△ABC的()

找中点构造三角形中位线解题(教师)

找中点构造三角形中位线解题 三角形的中位线定理,是一个非常有价值的定理。它是一个在三角形中遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。现介绍几种在不同条件下寻找中点的方法,供同学们学习时参考。 一、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 二、应用时注意的几个细节: ①定理的使用前提:三角形。 ②定理使用时,满足的具体条件:两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的,利用此定理可证明线段平行,从而可证明两角相等; 大小上:等于第三边的一半。利用此定理可证明两条线段之间的倍分关系; 三、应用举例 1、如果已知三角形两边中点,就直接连接构成三角形的中位线 例1、如图,在四边形ABCD 中,AB=CD ,E 、F 、G 分别是AD 、BC 、BD 的中点,H 是EF 的中点,试说明线段GH 与线段EF 的位置关系; 简析:在△ABC 中,E 、G 分别是AD 、BD 的中点,可连接EG ,则 有AB EG 2 1 =;在△BCD 中,G 、F 分别是BD 、BC 的中点,可 连接GF ,则有CD FG 2 1 =, 而AB=CD ,所以EG FG =,即△ EFG 是等腰三角形,又H 是底边EF 的中点,由等腰三角形的三线合一定理可知GH ⊥EF. 2、如果已知三角形一边中点,则可以取另一边的中点连接起来构成三角形的中位线 例2、如图1所示,在三角形ABC 中,∠B=2∠C ,AD 是三角形的高,点M 是边BC 的中点,求证:DM= 2 1 AB 。 分析:看到结论的表达形式,我们就想到,三角形的中位线 定理,有这样的特点,因此,我们就可以构造AB 上的中位线,再证明这条中位线与DM 是相等的。 H G F E D C B A

专题--三角形的中位线(含提示答案)

三角形的中位线 例题精讲 例1如图1,D、E、F分别是△ABC三边的中点.G是AE的中点,BE 与DF、DG分别交于P、Q两点.求PQ:BE的值. 例2如图2,在△ABC中,AC>AB,M为BC的中点.AD是∠BAC的平分线,若CF⊥AD交AD的延长线于F.求证:. 例3如图3,在△ABC中,AD是△BAC的角平分线,M是BC的中点,ME⊥AD交AC的延长线于E.且.求证:∠ACB=2∠B. 图1 图2 图3 图4 图5 巩固基础练 1. 已知△ABC周长为16,D、E分别是AB、AC的中点,则△ADE的周长 等于 ( ) A .1 B. 2 C. 4 D. 8 2. 在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么

△PDE面积是△ABC'面积的 ( ) A . B. C. D. 3. 如图4,在四边形ABCD中,E、F分别为AC、BD的中点,则EF 与AB+CD的关系是 ( ) A . B. C. D. 不确定 4. 如图5,AB∥CD,E、F分别是BC、AD的中点,且AB=a,CD=b,则EF 的长为 . 图6 图7 图8 图9 图10 5. 如图6,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中

点,若∠DAC=200,∠ACB=600,则∠FEG= . 6.如图7,△ABC的周长为1,连接△ABC三边的中点构成第二个三角, 再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为 . 7. 已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条 中位线长. 8. 如图8,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE. (过E点向BC作垂线) 9. 如图9,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点, 连接CE、CD. 求证:CD=2EC.(延长AC到F,使AC=CF,则CD=BF) 10.如图10,AD是△ABC的外角平分线,CD⊥AD于D,E是BC的中点. 求证:(1)DE∥AB; (2).(延长DC交BA的延长线于G) 提高过渡练 1. 如图11,M、P分别为△ABC的AB、AC上的点, 且AM=BM,AP=2CP,BP与CM相交于N,已知PN=1,则PB的长为 ( ) A. 2 B. 3 C .4 D. 5 2. 如图12,△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中 点,AB=10,则MD的长为 ( ) A. 10 B. 8 C .6 D. 5 3. 如图13,△ABC是等边三角形,D、E、F分别是AB、BC、AC的中 点,P为不同于B、E、C的BC上的任意一点,△DPH为等边三角形.连接FH,则EP与FH的大小关系是 ( ) A. E P>FH B. EP=FH C. EP

三角形中线与角平分线专题(二)

.. 三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

.. 应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交 与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形 状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点, BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A , =∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于 点P ,若∠BPC=40°,则∠CAP=_______.

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

《三角形的中位线》教材分析

《三角形的中位线》教材分析 《三角形的中位线》一节课是义务教育课程标准实验教科书北师大版八年级(下)第六章《平行四边形》的第三节,平行四边形的第4课时的教学内容。倍分关系是现实世界中等量关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对相等关系的学习有着重要的实际意义。 一、地位和作用 本节教材是八年级数学下册三角形的中位线定理内容。是在学生已认识了平行四边形中一些等量关系的基础上来学习的,也是为进一步学习解等量关系及应用等量关系解决实际问题的重要依据,因此本节课等量关系的内容在这一章占有重要位置。 三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形等知识内容的应用和深化,对进一步学习非常有用,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了化归思想,它是一种重要的思想方法,无论在今后的学习还是在科学研究中都有着重要的作用,它对拓展学生的思维有着积极的意义。 二、教材处理 本节课的教学指导思想是从学生实际认知水平及知识结构出发,让学生自主获取知识。课本中三角形中位线定理是单刀直入地以探索式推理这种方法提出的,定理以这种方式出现,学生接受起来会感觉突然、生硬。在实际教学中,我采取先让学生经过实验、观察、猜想、归纳、得出结论,然后经推理论证,最后总结形成定理的方式,这样提出的知识具有亲和力,更容易为学生接受和认可。在定理证明中,讲解了多种证法,强化思维过程的教学,开发学生的智力。在教学中增加了变式训练,以培养学生的发散思维。 三、重点和难点: 【重点】三角形中位线定理及其应用 三角形中位线定理是解决有关线与线的平行及线段倍分问题的重要理论依据之一,在教材中占有重要地位,依据教学大纲的要求、教材内容以及学生的认知基础,从而确定了本节课的重点。 【难点】三角形中位线定理的证明及应用 从学生知识掌握的现状分析来看,如何适当添加辅助线、如何利用化归思想来解决问题,是学生学习的困难所在,是本节教学难点。

三角形中位线中的常见辅助线

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

平行四边形和三角形的中位线专题培优

平行四边形和三角形的中位线(二) 1、如图,过□ABCD内一点P作边的平行线EF、GH,若S四边形PHCF =5,S四边形PGAE=3,则S△PBD=_________. 2、如图,□ABCD中,M、N分别是AD、AB上的点,且BM=ND, 其交点为P,求证:∠CPB=∠CPD. 3、已知等腰△EAD和等腰△CAB,EA=ED,CA=CB,∠AED=∠ACB=α,以线段AC、AE为边作平行四边形ACFE,连接BF、DF. (1)如图1,当α=90°,且A、D、C不在一条直线上时,求∠DFB的度数; (2)如图2,当0°<α<90°,且A、D、C不在一条直线上时,求∠DFB的度数.

4、如图1,在△O AB 中,∠OAB=900,∠AOB=300,OB =8.以OB 为边,在△OAB 外作等边△OBC,D 是OB 的中点,连接A D并延长交O C于E. (1)求证:四边形AB CE 是平行四边形; (2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG,求OG 的长。 5、如图,△ABC 中,∠A CB =90°,C D⊥AB 于D ,A E平分∠BAC ,交C D于K,交BC 于E ,F 为BE 上一点且B F=CE ,求证:F K∥AB. 6、四边形ABCD 中,A D∥BC,(1)如图1,若E、F 分别是A B、CD 的中点,求证:EF= 2 1 (AD+BC ) (2)如图,2,若G 、H 分别是A B、C D的中点,求证:GH< 2 1 (A B+CD) (3)如图3,连接AC 、B D,若M 、N分别是AC 、BD 的中点,求证:MN <2 1 (BC —AD)

等腰三角形+角平分线

第一部分:知识点回顾 角平分线的性质及判定: 1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离; 3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。 4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号: 例:如图 角的平分线的性质定理的几何语言: ∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E, ∴PD=PE 角的平分线的判定定理的几何语言: ∵PD⊥OA于D,PE⊥OB于E,PD=PE ∴点P在∠AOB的平分线上 等腰三角形的性质及判定: 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 2.等腰三角形的性质和判定 性质1 等腰三角形的两个底角相等(简写成“等边对等角”) 性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”) 判定 (1)有两条边相等的三角形,叫做等腰三角形 (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”) 3.等边三角形 三条边都相等的三角形叫做等边三角形. 4.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 5.等边三角形有关判定 (1 )三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形. 6.由对等边三角形推出的一个关于直角三角形的一个性质 在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题

三角形中位线反思

5.6三角形的中位线 在《三角形中位线》的教学中,我深切的感受到新课程在教材上紧紧围绕着这三个目标设计的。这节课的教学目标有以下三点:1、了解三角形的中位线的概念。2、了解三角形的中位线的性质;3、探索三角形的中位线的性质的一些简单应用。本节的教学重点和难点有以下两点:1、本节教学的重点是三角形的中位线定理。2、三角形的中位线定理的证明有较高的难度,使本节教学的难点。 三角形的中位线定理,是三角形的一个重要性质。这个定理有一个特点:在同一题设下,有两个结论,一个结论是表明位置关系的,另一个是表明数量关系的,在运用这个定理时,可以根据需要进行选择,有时是平行关系,有时是倍分关系,有时是两者都要。本节课的教学目标设定是: 1.经历概念的发生过程,提高分析能力,理解三角形的中位线概念,知道三角形的中线和中位线的区别。 2.经历三角形中位线性质的探索过程,进一步提高和发展逻辑思维能力和推理论证的表达能力;体会转化的思想方法,进一步感受图形的运动对构造图形的作用。 3.掌握三角形中位线的性质定理,能运用三角形中位线定理定理进行计算和论证,解决简单的现实生活的问题,增强应用能力和创新意识。 概念是这样引入的:通过前面的学习,我们知道可以画一条直线,把三角形分成一个梯形和一个小三角形。如果要使所得的梯形和小三角形恰好拼成一个平行四边形,那么应该怎样分割?请说明理由。运用化归思想让学生感受到中点连线的特殊性,为概念的研究作了铺垫。接着让学生辨别中位线和中线的区别,在新旧概念的对比中强化概念,纳入知识结构。然后通过学生的探讨、猜测得出结论,并进行证明,在完成课本的练习后,通过多媒体的应用,让学生猜想和证明了“顺次联结四边形各边的中点,所得的四边形是平行四边形.”并加以拓展,对中位线的性质进一步熟悉,把整堂课的学习推向了高潮。 在探究“顺次连结特殊四边形四条边的中点,所得的四边形是什么四边形?”的问题上,备课时,我反复琢磨如何突破教学难点,传统教学中往往抓住上面问题推理过程的思路,让学生进一步深入思考,提出“顺次连结平行四边形(矩形、菱形、正方形、等腰梯形)四条边的中点,所得的四边形是什么四边形?”。

相关主题
文本预览
相关文档 最新文档