当前位置:文档之家› 球墨铸铁浇冒口系统设计的关键 (一)

球墨铸铁浇冒口系统设计的关键 (一)

球墨铸铁浇冒口系统设计的关键 (一)
球墨铸铁浇冒口系统设计的关键 (一)

球磨铸铁浇冒口设计的关键

第一部分

浇流道系统设计

1.0浇流道系统设计

1.1要求

快速浇铸:使充型过程中温度损失最小

使冶金学性能衰减最小

使氧化物最少

清洁浇铸:避免浇铸过程中产生炉渣(浮渣)

设计的经济性:使铸件产量最大化

1.2关键组成:

所示的所有组成部分要求炉渣缺陷最小化

1.3规划

考虑设计基本设计:优化对铸件的空间利用;冒口设计方法的选择;设置分型面以最小化对模芯的需求;铸件设置在上模中;平稳填充;简单对称的设计系统;同一铸件使用相同的浇冒口;可能的话,在多个铸件上使用一个冒口;在分型面上给浇冒口系统留下足够的空间;

具体设计如下:

1.4阻流阀的作用

定义:阻流阀是浇道系统中一块横截面积,它决定充型时间

有两个正确的位置设置阻流阀,因此有两个基本的浇道系统:

在简单的浇注系统中,1)阻流阀位于流道和浇口的连接处。

2)阻流阀位于直浇道与横浇道的连接处。

1.5 选择浇流系统类型

在浇口-横浇道系统中,铸件分别被一个或多个阻流阀或浇口阻挡。在直浇道-横浇道系统中,很可能几个铸件共用一个阻流阀。

使用直浇道-横浇道系统在一个模具里生产大量小型件,这是不切实际的对每个铸件分别设置阻流阀(阻流阀尺寸非常小),极大的依赖于模具技术及浇注温度

大部分情况下是使用浇口-横浇道系统

浇口-横浇道系统与直浇道-横浇道系统特点的结合形成混合系统。这通常用在要求运输铁水到复杂的铸件型腔的流道系统中。

1.6摩擦

并非直浇道顶部所有铁水的潜能都可以转换为铸造型腔中的机械能

随着铁水与型腔内壁的撞击和铁水之间的撞击,一些潜能损失在摩擦上

由于摩擦造成的损失,延长了模型填充时间,必须考虑何时计算阻流阀截面积和浇铸时间。选择fr,摩擦损失因子,作为能量损失的估计值

对于薄壁平板:fr—0.2

对于厚重立方体:fr---0.8

1.7浇铸时间

尽可能快的符合人们的能力及生产例程

推荐的浇注时间:

非常近似的指导,铸件质量+冒口质量

1.8阻流阀的横截面积

对总的浇铸质量选择最快的实际浇铸时间(t,sec.)

选择合适的fr值

确定总的浇铸体积/阻气阀(V)

V是所有铸件及冒口,特定阻流阀的下游之和

体积=质量/密度

液态铸铁,密度=0.25磅/立方英尺或0.007KG/cm3

Determine effective ferrostatic head in sprue (H.)

确定铸件在上模中的高度(b.)

根据Torricelli,铁水在阻流阀的流速

当铸件完全处在下模,

当铸件完全位于上模,

当铸件位于上模和下模中,

可以从下面的图谱中,选择合适的Ac

图谱数据基于平均上模高度(依铸造不同而变化)。大部分情况下,这种方法引人的误差微乎其微。

模具填充过程应该计时,如果时间填充时间非常不同于选择的填充时间,那么阻流阀应该根据以上方程充型设计。

1.9 阻流阀结构

浇口-流道系统:总的阻流阀横截面积是各个浇口横截面积之和

总的阻流阀=Ac=A1+A2+ +An

根据铸件质量选择Ac。多个阻流阀(A1,A2),各个阻流阀横截面积的选择是根据:(总铸件+冒口质量)/阻流阀数目

单个浇口尺寸:使阻流阀尺寸=4a宽*厚4a2=A1=A2 因此,a,4a。

精密铸造铸件工艺与浇冒口系统设计

第六章铸件工艺设计 第一节概述 为了生产优质而价廉的包模铸件,做好工艺设计是十分重要的。在做工艺设计之前,首先要考虑选用包模铸造工艺生产时,在质量、工艺和经济方面的几个问题。 1.铸件质量的可靠性 对于铸件质量上的要求,一般是包括两个方面,一是保证技术要求的尺寸精度、几何精度和表面光洁度,二是保证机械性能和其它工作性能等内在质量方面的要求。 包模铸造具有少切削、无切削的突出优点。近年来,由于冶金技术、制模、制壳材料和工艺以及检测技术等方面的发展,包模铸件的外部和内在质量不断提高,所以它的应用范围愈来愈广。不少锻件、焊接件、冲压件和切削加工件,都可以用熔模铸造方法生产。 这对于节约机械加工工时和费用,节约金属材料,提高劳动生产率和降低成本都具有很大意义。 但是,熔模铸造生产的铸件,由于冶金质量、热型浇注引起的晶粒粗大、表面脱碳以及内部缩松等方面的原因,铸件的机械性能(尤其是塑性),还存在一些缺陷。对于某些受力大和气密性要求高的铸件,采用包模铸造时,应充分考虑零件在产品上的作用和性能要求,以确保其使用可靠。有些结构件改用包模铸造生产时,必须考虑原用合金的铸造性能是否能满足零件的质量要求,否则就需要更改材质。 2.生产工艺上的可能性和简易性 熔模铸造虽然可以铸造形状十分复杂的、加工量甚少甚至不加工的零件,但零件的材质、结构形状、尺寸大小和重量等,必须符合熔模铸造本身的工艺要求。如铸件最小壁厚、最大重量、最大平面面积、最小孔槽以及精度和光洁度要求等,都要考虑到工艺上的可能性和简易性。 3.经济上的合理性 采用包模铸造在经济上是否合理,要从多方面考虑。按每公斤的价格来说,包模铸件与同类型锻件相近甚至还高些,但是由于大幅度减少了加工量,因而零件最终成本还是低的。 但也有些零件,可以利用机械化程度较高的方法生产,例如用自动机床高速加工、精密锻造、冷挤压、压力铸造等等,这时,用包模铸造法生产在经济上的优越性就不一定显著,甚至成本还可能高一些,所以在这种情况下,就不一定选用这种方法了。 总之,选择包模铸造法生产时,耍从其工艺特点出发,以零件质量为中心,并兼顾生产技术和经济上的要求。 在确定用包模铸造方法生产之后,工艺设计的任务就是要确定合理的工艺方案,采取必要的工艺措施以满足零件质量的要求。 工艺设计是理论和实践相结合的产物,是技术理论和生产经验的总结性技术资料。还要力求使设计符合实践性、科学性。 做好工艺设计要搞好两个方面的调查研究。首先必须对生产任务、产品零件图、材质和技术要求等方面进行深入分析:其次,要对生产条件如原材料、设备、工艺装备加工和制造能力、工人的操作技术水平等方面进行深入的了解。只有做好这两个方面的调查研究,才能使设计符合生产实际情况。

铸铁件冒口设计手册

铸铁件冒口设计手册 诸葛胜 福士科铸造材料(中国)有限公司

铸铁冒口设计手册 一、概述 冒口是一个个储存金属液的空腔。其主要作用是在铸件成形过程中提供由于体积变化所需要补偿的金属液,以防止在铸件中出现的收缩类型缺陷(如图1和图2所示),而这些需要补偿的体积变化可能有: 图1 各种缩孔图2 缩孔生产图a)和冒口的补缩图b) 1—一次缩孔 2—二次缩孔 3—缩松 1—缩孔 2—型腔胀大 3—铸件(虚线以内) 4—显微缩松 5—缩陷(缩凹,外缩孔) (1)铸型的胀大 (2)金属的液态收缩 (3)金属的凝固收缩 补偿这些体积变化所需要的金属液量随着铸型和金属种类的不同而异。此外,冒口还有排气及浮渣和非金属夹杂物的作用。铸件制成后,冒口部分(残留在铸件上的凸块)将从铸件上除去。由此,在保证铸件质量要求的前提下,冒口应尽可能的小些,以节省金属液,提高铸件成品率。 由此冒口的补缩效率越高,冒口将越小,铸件成品率越高、越经济。FOSECO公司的发热保温冒口具有高达35%的补缩效率;因而,具有极高的成品率和极其优越的经济性。在金属炉料价格飞涨的情况下,其优越性显得尤其突出。另外,高品质发热保温冒口,及其稳定可靠的产品质量是获得高品质铸件的重要手段和可靠的质量保证。

二、铸铁的特点 铸钢和铸铁都是铁碳合金,它们在凝固收缩过程中有共同之处)如凝固前期均析出初生奥氏体树枝晶,都存在着液态、凝固态和固态下的收缩),但也有不同的特点。其根本不同之处是铸铁在凝固后期有“奥氏体+石墨”的共晶转变,析出石墨而发生体积膨胀,从而可部分地或全部抵消凝固前期所发生的体积收缩,即,具备有“自补缩的能力”。因此在铸型刚性足够大时,铸铁件可以不设冒口或采用较小的冒口进行补缩。 灰铸铁在共晶转变过程中析出石墨,并在与枝晶间的液体直接接触的尖端优先长大,其石墨长大时所产生的体积膨胀直接作用在晶间液体上,进行“自补缩”。对于一般低牌号的灰铁铸件,因碳硅含量高,石墨化比较完全,其体积膨胀量足以补偿凝固时的体收缩,故不需要设置冒口,只放排气口。但对高牌号的灰铸铁件,因碳、硅含量较低,石墨化不完全,其产生的体积膨胀量不足以补偿铸件的液态和凝固体收缩,此时必须要设置冒口。 球墨铸铁在共晶转变时石墨的析出同样会产生体积膨胀,但是它产生缩松的倾向性却比灰铸铁大得多。因为球墨铸铁共晶团的石墨核心是在奥氏体包围下长大的,石墨球长大时所产生的体积膨胀要通过奥氏体的膨胀来发生作用,这个膨胀只有一小部分被传递到枝晶间的液体上,而大部分却是作用在相邻的共晶团或初生奥氏体骨架上,正因为如此,导致了球墨铸铁产生缩前膨胀的倾向比灰铸铁大得多。另外,球墨铸铁呈“糊状凝固”,在整个凝固期间它的外壳的坚实程度远远比不上灰铸铁,如果铸型刚性不够,会使石墨化产生的体积膨胀的大部了分消耗于外壳膨胀,结果枝晶间或共晶团之间的内部液体的液态收缩和凝固收缩得不到补偿;同时由于球墨铸铁凝固时析出的石墨共晶团细而多,即使使用冒田进行补缩,当冒口效率不高,保持液态时间不够长或压力不够大时,效果常不理想。因此设计球墨铸铁件冒口比灰铸铁件更具有重要的意义。 三、模数计算: (一)模数的概念 在铸件材质、铸型性质和浇注条件确定之后,铸件的凝固时间主要决定于铸件的结构形状和尺寸。而千差万别的铸件形体,对凝固时间的影响主要表现在铸件的体积和表面积的关系上。铸件体积愈大,则金属液愈多,它所包含的热量也愈多,凝固时

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

球墨铸铁浇冒口系统设计的关键 (一)

球磨铸铁浇冒口设计的关键 第一部分 浇流道系统设计 1.0浇流道系统设计 1.1要求 快速浇铸:使充型过程中温度损失最小 使冶金学性能衰减最小 使氧化物最少 清洁浇铸:避免浇铸过程中产生炉渣(浮渣) 设计的经济性:使铸件产量最大化 1.2关键组成: 所示的所有组成部分要求炉渣缺陷最小化 1.3规划 考虑设计基本设计:优化对铸件的空间利用;冒口设计方法的选择;设置分型面以最小化对模芯的需求;铸件设置在上模中;平稳填充;简单对称的设计系统;同一铸件使用相同的浇冒口;可能的话,在多个铸件上使用一个冒口;在分型面上给浇冒口系统留下足够的空间; 具体设计如下: 1.4阻流阀的作用 定义:阻流阀是浇道系统中一块横截面积,它决定充型时间 有两个正确的位置设置阻流阀,因此有两个基本的浇道系统: 在简单的浇注系统中,1)阻流阀位于流道和浇口的连接处。 2)阻流阀位于直浇道与横浇道的连接处。 1.5 选择浇流系统类型 在浇口-横浇道系统中,铸件分别被一个或多个阻流阀或浇口阻挡。在直浇道-横浇道系统中,很可能几个铸件共用一个阻流阀。

使用直浇道-横浇道系统在一个模具里生产大量小型件,这是不切实际的对每个铸件分别设置阻流阀(阻流阀尺寸非常小),极大的依赖于模具技术及浇注温度 大部分情况下是使用浇口-横浇道系统 浇口-横浇道系统与直浇道-横浇道系统特点的结合形成混合系统。这通常用在要求运输铁水到复杂的铸件型腔的流道系统中。 1.6摩擦 并非直浇道顶部所有铁水的潜能都可以转换为铸造型腔中的机械能 随着铁水与型腔内壁的撞击和铁水之间的撞击,一些潜能损失在摩擦上 由于摩擦造成的损失,延长了模型填充时间,必须考虑何时计算阻流阀截面积和浇铸时间。选择fr,摩擦损失因子,作为能量损失的估计值 对于薄壁平板:fr—0.2 对于厚重立方体:fr---0.8 1.7浇铸时间 尽可能快的符合人们的能力及生产例程 推荐的浇注时间: 非常近似的指导,铸件质量+冒口质量

填料箱盖设计说明书

《机械制造工程学》课程设计说明书 填料箱盖零件的机械加工工艺规程及机床夹具总体方案设计 专业工业工程班级T1113-6 组号 6 姓名周鹏学号20110130627 姓名刘信学号20110130629 姓名丁锐学号20110130602 姓名朱玺亚学号20110130631 指导教师成绩 教研室机械制造 2013~2014学年第2学期 2014年 02 月 24日~ 2014年 03 月 07日

一. 填料箱盖零件的工艺分析 1.填料箱盖零件 填料零件所用的材料是HT200,质量3.00 kg,产量为10000 台/年。零件图见附图一。 2.填料箱盖的功用分析 填料箱盖的主要作用是保证填料箱体连接后的密封性,对 箱盖内表面的加工精度要求高,对外表面需要配合的表面 加工粗糙度要求也高。 3.填料箱盖的结构技术参数和工艺分析 填料箱盖主要有端面,外圆,内孔,曹等组成。其中孔既 是装配基准又是设计基准,加工精度和表面粗糙度一般要 求较高,内外圆之间的同轴度及端面与孔的垂直度也有一 定的技术要求.其结构主要由回转面组成,由零件图可知,该零件的结构比较简单,但零件的加工精度要求高,零件 选用的材料是HT200,该材料铸造性能和减震性能好,题 目所给填料箱盖有两处加工表面,其间有一定位置要求。 具体分述如下: (1)以ф65H5(0 013 .0 -)轴为中心的加工表面。 包括:尺寸为ф65H5(0013.0-)的轴,表面粗糙度为1.6, 尺寸为ф80的与ф65H5(0013.0-)相接的肩面, 尺寸为ф100f8(036.0090.0--)与ф65H5(0013.0-)同轴度为0.025的面. 尺寸为ф60h5(046.00+)与ф65H5(0013.0-)同轴度为0.025的孔。 (2)以ф60h5(046.00+)孔为中心的加工表面。

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

有色合金浇冒口系统的基本原则

有色合金浇冒口设计基本原则 Jeff Meredith 浇冒口系统的基本作用是将干净的、无渣滓的金属液平稳地引入铸型并且在的凝固过程中始终保持对铸件的补缩。在有色合金铸造中,气孔、夹渣、缩松等铸造缺陷常常是由于不合理的浇冒口系统所引起的。一但出现这些问题,铸造工作者就应该认真分析浇冒口系统结构的合理性并找出产生缺陷的原因。这里要讨论的中心问题就是浇冒口系统设计的基本原则。 本文论述了浇冒口系统设计的一些基本原则,尽管对于不同的合金以及形状、尺寸、复杂程度不同的铸件没有一种绝对通用的规则,但是这些基本原则能够为生产优质铸件的浇冒口系统设计提供一个理论基础。 浇注系统设计 对于有色合金浇注系统而言,首要问题是使金属液以尽可能低的速度无紊流地进入型腔并维持一个最佳的充型速度,这种最佳的速度对于同一种合金不是一个固定值,因为它受铸件重量、壁厚、形状等因素的影响,当然也随合金种类的不同而变化,可以从铝铜合金的75mm/sec到铝合金的500mm/sec;过大的液流速度可能增加紊流、夹渣及粘砂的趋向,使铸件的机械性能下降,甚至出现废品。 作为一种解决方法,常常设计超过推荐值的较大的浇注系统来解决高的充型速度与低的液流速度之间的矛盾(特别是对于窄结晶温度范围的合金和易产生杂质的合金)。有色合金应该采用无压式浇注系统,内浇道开设在铸型的上箱,以保证横浇道在浇注过程中一直处于充满状态。此外,直浇道和内浇道之间应保持一定的距离以使杂质能上浮到横浇道顶端而被捕集(图1),另外,还应尽可能使金属液从铸件底部或接近底部的位置引入,以保证在型腔内产生最小的紊流。

浇口杯 除对特别小的铸件外,我们推荐在各种有色合金铸件中使用浇口杯,合理的浇口杯可以使浇注工能够快速地注满直浇道并且在整个浇注过程中保持一个相对稳定的压头。浇口杯常常设计成与直浇道相对偏移的、有一个底坎的结构(图2)。浇口杯应为长方形,这样在浇注过程中可以产生向上的环流有助于杂质的清除,浇口杯出口应高于直浇道入口。一种手工操作的浇口塞有时会在浇注中采用(对于窄结晶温度范围的合金如铝铜合金),它使浇注工能够完全地注满浇口杯,进而更快地充满浇注系统和铸型,并且在塞子拨出之前使熔渣有足够的时间浮上表面。

铸造工艺设计步骤

铸造工艺设计: 就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程.设计依据: 在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据.设计内容: 铸造工艺设计内容的繁简程度,主要决定于批量的大小,生产要求和生产条件.一般包括下列内容: 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程.设计程序: 1零件的技术条件和结构工艺性分析;2选择铸造及造型方法;3确定浇注位置和分型面;4选用工艺参数;5设计浇冒口,冷铁和铸肋;6砂芯设计;7在完成铸造工艺图的基础上,画出铸件图;8通常在完成砂箱设计后画出;9综合整个设计内容.铸造工艺方案的内容: 造型,造芯方法和铸型种类的选择,浇注位置及分型面的确定等.铸件的浇注位置是指浇注时铸件在型内所处的状态和位置.分型面是指两半铸型相互接触的表面.确定砂芯形状及分盒面选择的基本原则,总的原则是: 使造芯到下芯的整个过程方便,铸件内腔尺寸精确,不至造成气孔等缺陷,使芯盒结构简单.1保证铸件内腔尺寸精度;2保证操作方便;3保证铸件壁厚均匀;4应尽量减少砂芯数目;5填砂面应宽敞,烘干支撑面是平面;6砂芯形状适应造型,制型方法.铸造工艺参数通常是指铸型工艺设计时需要确定的某些数据.1铸件尺寸公差: 是指铸件各部分尺寸允许的极限偏差,它取决于铸造工艺方法等多种因素.2主见重量公差定义为以占铸件公称质量的百分率为单位的铸件质量变动的允许值.3机械加工余量: 铸件为保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度,称为机械加工余量,简称加工余量.代号用MA,由精到粗分为ABCDEFGH和J9个等级。

砂型铸造工艺设计说明书

设计说明书 题目:砂型铸造压工艺及模具设计 年级、专业: 姓名: 学号: 指导教师: 完成时间:

目录 第一章、简介 (5) 1.1.我国铸造技术发展现状 (5) 1.2.我国铸造未来发展趋势 (5) 第二章、铸造工艺方案的确定 (6) 2.1.产品的生产条件、结构及技术要求 (6) 2.2.零件铸造工艺性 (6) 2.3.造型,造芯方法的选择 (7) 2.4.浇注位置的确定 (8) 2.5.分型面的确定 (9) 2.6.砂箱中铸件数量及排列方式确定 (9) 第三章、铸造工艺参数及砂芯设计 (11) 3.1.工艺设计参数确定 (11) 3.1.1.铸件尺寸公差 (11) 3.1.2.机械加工余量 (11) 3.1.3.铸造收缩率 (12) 3.1.4.起模斜度 (12) 3.1.5.最小铸出孔和槽 (12) 3.1.6.铸件在砂型内的冷却时间 (13) 3.1.7.铸件重量公差 (13) 3.1.8.工艺补正量 (13) 3.1.9.分型负数 (13) 3.2.砂芯设计 (13) 3.2.1.芯头的设计 (15) 3.2.2.砂芯的定位结构 (16) 3.2.3.芯骨设计 (17) 3.2.4.砂芯的排气 (17) 第四章、浇注系统及冒口、出气孔等设计 (18) 4.1.浇注系统的设计 (18) 4.1.1.选择浇注系统类型 (18) 4.1.2.确定内浇道在铸件上的位置、数目、金属引入方向 (18) 4.1.3.决定直浇道的位置和高度 (19) 4.1.4计算浇注时间并核算金属上升速度 (20) 4.1.5.计算阻流截面积 (20) 4.1.6.计算直浇道截面积 (20) 4.1.7.浇口窝的设计 (21) 4.2.冒口的设计 (22) 4.3.出气孔的设计 (22) 第五章、铸造工艺装备设计 (23) 5.1.模样的设计 (23) 5.1.1.模样材料的选用 (23) 5.1.2.金属模样尺寸的确定 (23)

冒口系统智能化设计》软件的开发与应用_图文(精)

《铸件浇冒口系统智能化设计》软件的开发与应用 邵建东 (无锡环宇精密铸造有限公司 在熔模精密铸件的过程中,浇冒口系统设计得科学合理是确保铸件质量的一项核心技术。浇冒口系统尺寸设计合理与否,将直接影响铸件内在质量的优劣。尺寸偏小,影响顺序凝固及钢液补给能力,铸件会产生缩孔和疏松,特别是承压零件会产生泄露而报废;尺寸过大,会使企业导致铸造成本增加,能源大量浪费,使企业经济效益下降而失去竞争力。因此科学合理的设计浇冒口系统,优化铸件内浇口及冒口尺寸,是制约我们每个铸造企业发展的一个重要因素,这个因素也客观反映了一个企业乃至一个国家对铸造工艺技术水平的高低。特别是在当今铸造材料价格大幅度上涨的情况下,这个问题将尤为重要。 那么如何来提高浇冒口的设计水平,确保企业在激烈竞争的市场经济中占领先地位,使企业立于不败之地呢?针对这个问题,本公司科技人员潜心研究,反复探讨,实践、论证,向传统的铸造浇冒口设计方法挑战,攻克了一个又一个的技术难关,使铸造理论知识与多年来的实践经验,科学地、有机地结合在一起,直至2004年3月份成功开发了《铸件浇冒口系统智能化设计》软件,经过近几年来的应用实践,取得了十分显著的效果,越来越感觉到科学技术的能量和威力。该软件的特点和作用如下: 一.特点: 1.改变传统方法,创新铸件浇冒口设计: 在铸件浇冒口系统设计过程中,最常用的方法是热节圆比例法,这种方法也是最传统最简单的方法(俗称经验估计法。这种方法的出发点是以铸件上热节圆截面或直径作为确定内浇口截面尺寸大小的主要依据,如:设计铸件热节圆直径为D节,内浇口直径为d 则:

d=K×D节(式中K为比例系数,取值为0.4—0.9. 这种方法对于<1kg以下的小铸件以及铸件几何形状相对比较简单的零件相对成功率较高,但对单件十几公斤,几十公斤或是上百公斤的大铸件,以及形状复杂有交叉壁厚的铸件而言,用这种传统的方法设计浇冒口,则成功率很低。另外,这种热节圆比例法只能用于铸件内浇口尺寸的确定,对冒口的截面尺寸只能用经验估计方法来完成,然而经验丰富的科技人员成功率相对高一些,反之则低一些。因此这种方法设计铸件浇冒口系统有较大的局限性和不可靠性,只能通过反复改进来摸索,最后趋于合理,满足铸件质量 要求,这样导致新品开发成本高、周期长、竞争力弱。而《铸件浇冒口系统智能化设计》将根本上改变了这种传统内浇口确定的方法,比较科学、正确、系统地将铸件内浇口尺寸及冒口尺寸完整地显示出来,从而大大提高了铸件浇冒口系统的设计精度,其正确率一般铸件可达100%,大大缩短铸件开发周期,提高企业市场竞争力和客户对企业的信任度。 2. 使用方便,可操作性强: 本《铸件浇冒口系统智能化设计》软件,只需在软件对话格中输入5个数据,它就会弹出内浇口截面尺寸和冒口截面尺寸,能自动控制调节铸件、内浇口、冒口的顺序凝固件。 铸件内浇口、冒口智能化设计 注:表中a 为铸件法兰热节处的厚度(输入数据 ;b 为铸件法兰热节处的宽度(输入数据;c 为铸件法兰交叉壁厚(输入数据;内浇口长(输入数据; 内浇口宽(自动弹出; 冒口长(输入数据; 冒口宽(自动弹出。 铸件 (cm 内浇口截面 尺寸(cm 冒口截面尺寸(cm 序号零件名称

球墨铸铁轴承盖铸造工艺设计

毕业设计(论文) 题目:球墨铸铁轴承盖铸造工艺设计 学生:王XX 指导老师:XXX 系别:材料科学与工程系 专业:材料科学与工程 班级: 学号: 2010年6月

本科毕业设计(论文)作者承诺保证书 本人郑重承诺:本篇毕业设计(论文)的内容真实、可靠。如果存在弄虚作假、抄袭的情况,本人愿承担全部责任。 学生签名: 年月日 福建工程学院本科毕业设计(论文)指导教师承诺保证书 本人郑重承诺:我已按有关规定对本篇毕业设计(论文)的选题与内容进行了指导和审核,该同学的毕业设计(论文)中未发现弄虚作假、抄袭的现象,本人愿承担指导教师的相关责任。 指导教师签名: 年月日

目录 摘要 .................................................................................................................................................. I Abstract ............................................................................................................................................ II 第一章绪论. (1) 1.1铸造的定义 (1) 1.2铸造行业的现状 (1) 1.3铸造的发展趋势 (1) 第二章轴承盖的工艺结构分析 (3) 2.1铸件壁的合理结构 (3) 2.1.1铸件的最小壁厚 (3) 2.1.2铸件的临界壁厚 (3) 2.1.3铸件壁的联接 (3) 2.2铸件加强肋 (3) 2.3铸件的结构圆角 (4) 2.4避免水平方向出现较大平面 (4) 2.5利于补缩和实现顺序凝固 (4) 第三章轴承盖整个铸造设计流程 (5) 3.1造型材料的选择 (5) 3.1.1造型材料的定义 (5) 3.1.2造型材料的分类及其特点 (5) 3.1.3造型材料的选择 (6) 3.2铸件浇注位置的选择 (7) 3.3分型面的选择 (8) 3.4 砂芯设计 (10) 3.4.1砂芯分块 (10) 3.4.2芯头设计 (10) 3.5铸造工艺设计 (12) 3.5.1铸件机械加工余量 (12) 3.5.2机械加工余量 (13) 3.5.3铸造斜度 (14) 3.5.4铸件收缩率 (14) 3.5.5最小铸出孔和槽 (15) 3.5.6分型负数 (16) 3.6浇注系统设计 (17) 3.6.1浇口杯选择 (17) 3.6.2浇注系统类型 (17) 3.6.3浇注系统的尺寸计算 (18) 3.6.4冒口的选择 (20) 3.7合箱 (20) 第四章结论 (22) 4.1结论 (22) 4.2 研究方向和展望 (22) 致谢 (23) 参考文献 (24)

几种类型的冒口设计

几种类型的冒口设计 1.1.冒口类型的选择 1.2.普通冒口设计方法 以下摘自《西班牙汽车铸铁件浇冒口系统的设计及其特点》 1.2.1.缩管法

1.2.2.缩管法冒口设计程序 1.2.2.1.考虑铸件材质和重量 1.2.2.2.找出关键几何热节,按下表计算热节处模数W(有文献标为“Ms”,称为有效模数,不散热面不能计入。)Mr = km x Ms Ms 是铸件的关键模数, Mr 是补缩冒口的模数,km 是常数,灰铸铁与球铁不一样。? 亚共晶灰铸铁为0.6-1.0;? 球墨铸铁为0.8-1.1;? 可锻铸铁为1.2-1.4;? 钢为1.2-1.4;? 铜合金为1.2-1.4;? 铝合金为0.8-1.1。 1.2.2.3.通过W值计算出冒口补缩距离Ld=0.32W2(mm),又有补缩距离最大为10Mn(冒口颈模数) 1.2.2.4.冒口的计算 z Dp的计算和Hp的预定,Dp=85(Cw/Hp)1/2(mm)。一般Hp/ Dp=2~2.5 Cw—需冒口补缩的铸件重量之和(Kg),假想缩管重量Q=0.04 Cw(Kg)。 z冒口顶端直径1.1Dp≥直浇道下端直径 z冒口颈高宽比 0.75W:1.25W=1:1.67 z冒口颈长度 18mm,并愈短愈好。 以下摘自《DUCTILE IRON-The essentials of gating-中文版》,适用于球铁。 1.3.控制压力冒口 当铸型强度不够且铸件的模数远大于0.16 英寸(4mm)时,运用控制压力冒口。 大部分的湿型砂和覆膜砂选用该种方法。 1.3.1.控制压力冒口设计步骤: 1.3.1.1.标准冒口形状见下图67 1.3.1. 2.确定铸件特征(关键)模数Ms(上文为“W”)

端盖零件铸造工艺课程设计说明书

端盖零件铸造工艺课程 设计说明书 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

课程设计说明书(论文)课程名称:成型工艺及模具课程设计II 设计题目:端盖零件铸造工艺设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间:

1、设计任务 、设计零件的铸造工艺图 、设计绘制模板装配图 、设计并绘制所需芯盒装配图 、编写铸造工艺设计说明书 2、生产条件和技术要求 、生产性质:大批量生产 、材料:HT200 、零件加工方法: 零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。 造型方法:机器造型 造芯方法:手工制芯 、主要技术要求: 满足HT200的机械性能要求,去毛刺及锐边,未注明圆角为R3-R5,未注明的筋和壁厚为8,铸造拔模斜度不大于2度,铸造表面不允取有缺陷。

3、零件图及立体图结构分析 、零件图如下: 图1.零件主视图图2.零件左视图 三维立体图如下: 图3.三维图(1) 图4.三维图(2) 4、工艺设计过程 、铸造工艺设计方法及分析 铸件壁厚 为了避免浇不到、冷隔等缺陷,铸件不应太薄。铸件的最小允许壁厚与铸造的流动性密切相关。在普通砂型铸造的条件下,铸件最小允许壁厚见表1。 表1. 铸件最小允许壁厚引【1,表1-3】

查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。 造型、制芯方法 造型方法:该零件需批量生产,为中小型铸件,应创造条件采用技术先进的机器造型,暂选取水平分型顶杆范围可调节的造型机,型号为Z145A。 制芯方法:由生产条件决定,采用手工制芯。 砂箱中铸件数目的确定 当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。

铸造工艺设计说明书

目录 一、工艺分析 (1) 1、审阅零件图 (1) 2、零件的技术要求 (1) 3、零件的技术要求 (1) 4、确定毛坯的具体生产方法 (1) 5、审查铸件的结构工艺性 (1) 二、工艺方案的确定 (1) 1、铸造方法的选择 (1) 2、造型、造芯方法的选择 (2) 3、浇注位置的确定 (2) 4、确定毛坯的具体生产方法 (2) 5、砂箱中铸件数目的确定 (2) 三、砂芯设计 (2) 1、水平砂芯设计 (3) 2、凹槽处采用自带型芯 (3) 四、工艺参数的确定 (3) 1. 加工余量 (3) 2.起模斜度 (4) 3. 铸造圆角 (4) 4. 铸造收缩率 (4) 5. 最小铸出孔 (4) 6、机械加工余量的选取 (4) 五、浇注系统设计 (4) 六、冒口及冷铁设计 (5) 七、铸造工艺图和铸件图 (6) 八、小结 (7) 九、参考文献 (8)

一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 套筒座 工艺方法:铸造 零件材料:HT250 零件重量:3.1955kg 毛坯重量:4.3303kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:未铸造圆角半径:R=2~3 mm;时效处理。 3、选材的合理性 套筒座选用的材料是HT250,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,选择材料HT250可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属中型零件小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造,采用砂型铸造具有生产周期短,灵活性大、成本低的优点。 5、审查铸件的结构工艺性 铸件轮廓尺寸为162x134x133mm,查表得砂型铸造的最小壁厚为6mm,套筒座的壁厚符合其要求。在套筒座中最小壁厚为6mm,最大铸造壁厚为15mm。 二、工艺方案的确定 1、铸造方法的选择 由于套筒座的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,由于铸件的高度为133mm,浇注位置上没有较大的壁厚、材料为HT250不需要冷铁。所以砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。

端盖零件铸造工艺课程设计说明书

课程设计说明书(论文)课程名称:成型工艺及模具课程设计II 设计题目:端盖零件铸造工艺设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间:

1、设计任务 1.1、设计零件的铸造工艺图 1.2、设计绘制模板装配图 1.3、设计并绘制所需芯盒装配图 1.4、编写铸造工艺设计说明书 2、生产条件和技术要求 2.1、生产性质:大批量生产 2.2、材料:HT200 2.3、零件加工方法: 零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。 造型方法:机器造型 造芯方法:手工制芯 2.4、主要技术要求: 满足HT200的机械性能要求,去毛刺及锐边,未注明圆角为R3-R5,未注明的筋和壁厚为8,铸造拔模斜度不大于2度,铸造表面不允取有缺陷。 3、零件图及立体图结构分析 3.1、零件图如下: 图1.零件主视图图2.零件左视图 3.2三维立体图如下: 图3.三维图(1) 图4.三维图(2) 4、工艺设计过程 4.1、铸造工艺设计方法及分析 4.1.1铸件壁厚 为了避免浇不到、冷隔等缺陷,铸件不应太薄。铸件的最小允许壁厚与铸造的流动性密切相关。在普通砂型铸造的条件下,铸件最小允许壁厚见表1。 表1. 铸件最小允许壁厚引【1,表1-3】

查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。 4.1.2造型、制芯方法 造型方法:该零件需批量生产,为中小型铸件,应创造条件采用技术先进的机器造型,暂选取水平分型顶杆范围可调节的造型机,型号为Z145A。 制芯方法:由生产条件决定,采用手工制芯。 4.1.3砂箱中铸件数目的确定 当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。 本铸件在一砂箱中高约52mm,长约130mm,宽约100mm,重约2.75Kg。这里选用一箱四件,根据本铸件分型面的确定,可以先确定下箱的尺寸。根据铸件重量在<5kg时,查得模型的最小吃砂量a=20mm, h=30mm, c=40mm,d或e=30mm, f=30mm, g=200mm,其中各字母所代表的含义如图5所示。先确定下箱的尺寸,再根据表格可以选择标准的砂箱。选用Z145A顶杆式起模的震实式造型机,砂箱最大内尺寸为500mm X 400mm X 300mm。根据本铸件的大概尺寸,在设计中采用一箱四件,因为浇注系统位于上箱,所以上砂箱的高度我们还要考虑到浇注系统才可以确定。铸件在砂箱中的放置方式初步设计为图6所示方式。 图5. 最小吃砂量示意图图6. 铸件排布的初步设计 4.2、铸造工艺参数的确定 4.2.1铸件尺寸公差和重量公差 在实际生产中,铸件的实际尺寸和重量与设计图纸所规定的尺寸和重量相比,总会有一些偏差,这种偏差愈小,铸件的精度也愈高。但铸造过程中影响铸件精度的因素很多,如铸造收缩率等工艺参数的选择,分型面、浇冒口系统和砂芯的设计,造型和制芯的工艺操作以及工艺装备本身的精度等。如果其中某个因素处理不当,就会降低铸件的精度。也不应该不顾铸件的要求和具体生产条件,盲目提高对铸件的精度要求,否则会导致铸件成本的提高和使工艺复杂化,造成不必要的浪费。二级精度灰铸铁铸件的尺寸偏差如表2所示,重量偏差如表3所示。

冒口系统设计

冒口系统设计 一﹑冒口设计 1. 冒口设计的基本原则 1)冒口的凝固时间应大于或等于铸件(被补缩部分)的凝固时间。 2)冒口应有足够大的体积,以保证有足够的金属液补充铸件的液态收缩和凝固收缩,补缩浇注后型腔扩大的体积。 3)在铸件整个凝固的过程中,冒口与被补缩部位之间的补缩通道应该畅通,即使扩张角始终向着冒口。对于结晶温度间隔较宽、易于产生分散性缩松的合金铸件,还需要注意将冒口与浇注系统、冷铁、工艺补贴等配合使用,使铸件在较大的温度梯度下,自远离冒口的末端区逐渐向着冒口方向实现明显的顺序凝固 2. 冒口设计的基本内容 1)冒口的种类和形状 (1)冒口的种类 ?????????????????????????????????????????????????????????????????????????顶冒口依位置分侧冒口贴边冒口普通冒口明冒口依顶部覆盖分暗冒口大气压力冒口依加压方式分压缩空气冒口通用冒口(传统)发气压力冒口保温冒口发热冒口特种冒口依加热方式分加氧冒口电弧加热冒口,煤气加热冒口易割冒口直接实用冒口(浇注系统当铸铁件的实用冒口(均衡凝固) ???????????????????????????????????? 冒口)控制压力冒口冒口无补缩 图1 冒口分类 (2)冒口的形状 常用的冒口有球形、圆柱形、长方体形、腰圆柱形等。对于具体铸件,冒口形状的选择主要应考虑以下几方面:

a)球形 b)球顶圆柱形 c)圆柱形 d)腰圆柱形(明) e)腰圆柱形(暗) 图2 常用的冒口形状 ①冒口的补缩效果: 冒口的形状不同,补缩效果也不同,常用冒口模数(M)的大小来评定冒口的补缩效果(M=冒口体积/冒口散热面积),在冒口体积相同的情况下,球形冒口的散热面积最小,模数最大,凝固时间最长,补缩效果最好,其它形状冒口的补缩效果,依次为圆柱形,长方体形等。 ②铸件被补缩部位的结构情祝: 冒口形状的选泽还要考虑铸件被补缩部位的结构形状和造型工艺是否方便。球形冒口的补缩效果虽好,但是造型起模困难,在铝、镁合金铸造生产中较少采用,而应用最广泛的是圆柱形明冒口,这种冒口的补缩效果较好,造型起模方便。有时由于铸件结构形状的需要,亦采用长方柱体和扇形冒口,只是将其四棱的尖角改为较大的圆角,以防止边角效应影响补缩效果。经改进后的这些冒口就称为椭圆柱体冒口和腰形,冒口。在铸钢件生产中则经常使用球顶圆柱形暗冒口。 2.冒口的补缩原理 1)冒口与铸件间的补缩通道 在铸件凝固过程中,要使冒口中的金属液能够不断地补偿铸件的体收缩,冒口与铸件被补缩部位之间应始终保持着畅通的补缩通道。否则,冒口再大也起不到补缩作用。 2)冒口的有效补缩距离 冒口作用区长度和末端区长度之和称为冒口有效补缩距离。正确确定冒口的有效补缩距离是很重要的工艺间题。 冒口的有效补缩距离与合金种类、铸件结构、几何形状以及铸件凝固方向上的温度梯度有关,也和凝固时析出气体的反压力及冒口的补缩压力有关。详见《铸造工艺学》p255~257 3)工艺补贴的应用 在实际生产中往往有些铸件需补缩的高度超过冒口的有效补缩距离。由于铸件结构或铸造工艺上不便,难以在中部设置暗冒口,此时单靠增加冒口直径和高度,补缩效果很不明显,况且增大冒口会使大量液流经过内浇道,使铸件在内浇道附近和冒口根部因过热而产生疏松。在这种情况下,一般采用在铸件壁板的一侧增加工艺补贻的方法,来增加冒口的有效补缩距离,提高冒口的补缩效率(如下图)

铸钢件冒口的设计规范.

铸钢件冒口的设计规范 钢水从液态冷却到常温的过程中,体积发生收缩。在液态和凝固状态下,钢水的体积收缩可导致铸件产生缩孔、缩松。冒口的作用就是补缩铸件,消除缩孔、缩松缺陷。另外,冒口还具有出气和集渣的作用。 1、冒口设计的原则和位置 1.1冒口设计的原则 1.1.1、冒口的凝固时间要大于或等于铸件(或铸件被补缩部分)的凝固时间。 1.1.2、冒口所提供的补缩液量应大于铸件(或铸件被补缩部分)的液态收缩、凝固收缩和型腔扩大量之和。 1.1.3、冒口和铸件需要补缩部分在整个补缩的过程中应存在通道。 1.1.4、冒口体内要有足够的补缩压力,使补缩金属液能够定向流动到补缩对象区域,以克服流动阻力,保证铸件在凝固的过程中一直处于正压状态,既补缩过程终止时,冒口中还有一定的残余金属液高度。 1.1.5、在放置冒口时,尽量不要增大铸件的接触热节。 1.2、冒口位置的设置 1.2.1、冒口一般应设置在铸件的最厚、最高部位。 1.2.2、冒口不可设置在阻碍收缩以及铸造应力集中的地方。 1.2.3、要尽量把冒口设置在铸件的加工面或容易清除的部位。 1.2.4、对于厚大件一般采用大冒口集中补缩,对于薄壁件一般采用小冒口分散补缩。 1.2.5、应根据铸件的技术要求、结构和使用情况,合理的设置冒口。

1.2.6、对于清理冒口困难的钢种,如高锰钢、耐热钢铸件的冒口,要少放或不放,非放不可的,也尽量采用易割冒口或缩脖型冒口。 2、设置冒口的步骤与方法 冒口的大小、位置及数量对于铸钢件的质量至关重要。对于大型铸钢件来说,必须把握技术标准及使用情况,充分了解设计意图,分清主次部位,集中解决关键部位的补缩。以模数法为例,冒口设计的步骤如下:2.1、对于大、中型铸钢件,分型面确定之后,首先要根据铸件的结构划分补缩范围,并计算铸件的模数(或铸件被补缩部分的模数)M铸。 2.2、根据铸件(或铸件被补缩部分)的模数M铸,确定冒口模数M冒。 2.3、计算铸件的体收缩ε。 2.4、确定冒口的具体形状和尺寸。 2.5、根据冒口的补缩距离,校核冒口的数量。 2.6、根据铸件结构,为了提高补缩距离,减少冒口的数量,或者使冒口的补缩通道畅通,综合设置内外冷铁及冒口增肉。 2.7、校核冒口的补缩能力,要求ε(V冒+V件)≤V冒η。 3、设计冒口尺寸的方法 3.1、模数法 在铸件的材料、铸型的性质和浇注条件确定之后,铸件的凝固时间决定于铸件的模数。 模数M=V/A(厘米),V—体积(厘米3);A—散热面积(厘米2)。 随着办公条件的改善,计算机的普及,模数可以用计算机进行计算。方法是:用SolidWorks软件画出铸件(或铸件被补缩部分)的立体图,计

端盖铸造工艺设计说明

科技大学 课程设计 课程设计名称:端盖铸造工艺设计学生姓名: 学院: 专业及班级: 学号: 指导教师: 2015 年7 月7 日

铸造工艺课程设计任务书 一、任务与要求 1.完成产品零件图、铸件铸造工艺图各一,铸造工艺图需要三维建模(完成3D图)。 2.完成芯盒装配图一。 3.完成铸型装配图一。 4. 编写设计说明书一份(15~20页),并将任务书及任务图放置首页。 二、设计容为2周 1. 绘制产品零件图、铸造工艺图及工艺图的3D图(2天)。 2. 铸造工艺方案设计:确定浇注位置及分型面,确定加工余量、起模斜度、铸造圆角、收缩率,确定型芯、芯头间隙尺寸。(1天)。 3. 绘制芯盒装配图(1天)。 4. 绘制铸型装配图、即合箱图(包括流道计算共2天)。 5. 编制设计说明书(4天)。 三、主要参考资料 1. 亮峰主编,材料成形技术基础[M],高等教育,2011. 2. 丁根宝主编,铸造工艺学上册[M] ,机械工业,1985. 3. 铸造手册编委会,铸造手册:第五卷[M] ,机械工业,1996. 4. 其文主编, 材料成形工艺基础(第三版)[M],华中科技大学,2003.

摘要 本设计是端盖的铸造工艺设计。端盖的材料为QT400-15,结构简单,无复杂的型腔。根据端盖的零件图进行铸造工艺性分析,选择分型面,确定浇注位置、造型、造芯方法、铸造工艺参数并进行浇注系统、冒口和型芯的设计。在确定铸造工艺的基础上,设计模样、芯盒和砂箱,并利用CAD、Pro/E等设计软件绘制端盖零件图、芯盒装配图。 关键词:铸造;端盖;型芯

ABSTRACT This design is about the casting process of end cap. The material of end cap is QT400-15. The end cap without complex cavity owns simple structures. Select the right parting line, pouring position, modeling method ,core making method, parameters of casting by analyzing the part drawing, then design gating system, riser, core. After the design of casting process, accomplish the part drawing of end cap and assembly drawing of core box with the aid of design software such as CAD and Pro/E. Keywords:Cast; End cap; Core

相关主题
文本预览
相关文档 最新文档