当前位置:文档之家› 福建沿海水稻Cd, Pb, Hg 等重金属含量变化规律

福建沿海水稻Cd, Pb, Hg 等重金属含量变化规律

福建沿海水稻Cd, Pb, Hg 等重金属含量变化规律
福建沿海水稻Cd, Pb, Hg 等重金属含量变化规律

生态环境 2008, 17(1): 206-209 https://www.doczj.com/doc/2113032546.html, Ecology and Environment E-mail: editor@https://www.doczj.com/doc/2113032546.html,

基金项目:国土资源部农业地质与生态地球化学调查项目(200314200024)

作者简介:谢文彪(1975-),男,副教授,主要从事重金属污染物的环境化学行为。E-mail: xiewb@https://www.doczj.com/doc/2113032546.html, *通讯联系人:陈迪云,教授,E-mail: chendiyun@https://www.doczj.com/doc/2113032546.html, 收稿日期:2007-08-25

福建沿海水稻Cd 、Pb 、Hg 等重金属含量变化规律

谢文彪1,杨军华2,陈穗玲1,陈迪云1*

1. 广州大学环境科学与工程学院,广东 广州 510006;

2. 福建省地质调查研究院,福建 福州 350011

摘要:文章研究了福建沿海重金属高含量的水稻样品的区域分布规律,分析了不同品种的水稻对重金属吸收的差异。以该区10个流域两侧的水稻种植区为研究对象,系统采集了福建沿海水稻样品185件,采用干灰石墨炉原子吸收光谱法和原子荧光光谱法,分析了籽粒中的Cd 、Hg 、Pb 、As 、Cu 、Zn 等重金属元素的含量,结果表明其平均值分别为0.005、0.08、0.33、0.17、2.94和14.62 mg·kg -1,显著高于台湾地区稻米的平均含量。对比大米国家食品限制值,有16.8%的样品的Pb 超标;有11.4%的样品Cd 超标。Hg 、As 的超标率相对较低,均只为0.5%。Cd 、Pb 含量高的样品主要集中分布在漳州、福州、福清等工业发达的城市周边地区。不同的水稻品种对重金属的吸收率完全不同,昌优964对Cd 、Cu 、Zn 和Pb 表现出高的吸收率,而糯米、803A1527等则表现出对Cd 、As 、Pb 等低的吸收率。这些结果的获得为水稻安全标准评价和品种的优选提供了理论基础 关键词:水稻;重金属;分布;福建沿海

中图分类号:X503.231 文献标识码:A 文章编号:1672-2175(2008)01-0206-04

我国土壤污染现象普遍,而且土壤重金属环境污染有扩大的趋势。进入土壤的重金属可通过可以通过根系进入植物体, 再通过食物链的传递和富集, 最终危害人体健康[1, 2,3]。稻米是我国的主要消费的粮食食物, 其栽培品种众多、范围广,而水稻具有对Cd 等重金属强吸收的特征,这种固有的特性提出了水稻的食品安全与居民健康风险问题。福建沿海地区是本省主要的稻谷种植区,而初步的调查发现该区域土壤重金属含量高,部分地区土壤中的一些有害重金属超过了土壤质量标准[4.5]。因此查明该地区水稻中水稻的重金属含量特征与区域分布规律,探讨不同品种的水稻对重金属吸收与积累的差异,对确保农产品安全生产和食物安全有着重要意义。尽管柯庆明等对福建省水稻稻米重金属污染进行了调查与分析,但他的研究主要是集中在北部地区,而对沿海水稻重金属的状况没有开展研究[6]。对水稻中重金属含量的区域差异性和品种差异性的系统研究也较少报道。本文选择福建沿海从北到南10个流域两侧的水稻种植区为研究对象,研究不同区域和不同品种的水稻中重金属含量特征与变化规律。为水稻安全标准评价和品种的优选提供理论基础。

1 采样与分析方法

1.1 采样点的布置

由于福建省水稻种植区主要是沿流域分布的,因此以不同流域为基本研究评价单元,沿流域进行布点采样,能够是很好地反映福建沿海水稻中重金

属含量特征。为此从南到北选择了闽江、九龙江、晋江和木兰溪等10条主要流域进行布点采样。行政区域涉及宁德、福州、莆田、泉州、厦门、漳州等区市。在福建省地质调查研究院开展的1∶25万多目标地球化学调查表层土壤重金属测量成果的基础上,在同一汇水流域内,将水稻样品点分别布置在土壤重金属含量不同的位置。以晚稻为主要研究对象,对漳州九龙江、诏安东溪2个流域同时采集了早、晚稻样品。东园农科种植了许多不同品种的水稻,在同一实验田中,布置了12不同品种的水

稻样品的采样点以研究水稻品种吸收重金属的差

图1 研究区域与样品分布

Fig. 1 Diagram of study area and sampling sites distribution

谢文彪等:福建沿海水稻Cd 、Pb 、Hg 等重金属含量变化规律 207

异。

1.2 样品的采集与加工

稻谷样品的采集采用“S”形或梅花形采样法,避开田边2 m ,每个采样单元内采取100个样点的稻穗样品组成一个混合样,共采集185件样品。样品用保鲜塑料袋包装好并贴上标签,及时托运回实验室风干脱粒,用四分法缩分至100 g 左右后,用玛瑙球磨机小心去壳制成糙米,再粉碎磨细,过0.5 mm 筛后成待测样品。 1.3 测定方法

采用干灰化法将样品制备成待测液,测定Hg 、Cd 、Pb 、As 、Cu 、Zn 等重金属的含量。其中Hg 采用冷蒸气-原子荧光光谱法,Cd 采用石墨炉原子吸收光谱法,Pb 、As 采用氢化物-原子荧光光谱法,Cu 、Zn 采用火焰原子吸收光谱法。

2 结果和讨论

2.1 福建沿海流域稻米重金属的含量水平

185件样品的重金属分析与统计结果见表1。结果表明福建沿海地区水稻中的重金属含量变化大,如Hg 、Cd 、Pb 、As 、Cu 、Zn 的含量范围分别为0.0001~0.062 mg·kg -1、 0.009~0.60 mg·kg -1、0.01~4.46 mg·kg -1、0.07~1.70 mg·kg -1、0.01~8.51 mg·kg -1和0.01~29.9 mg·kg -1;其平均值分别为0.0052、0.08、0.33、0.17、2.94、14.62 mg·kg -1。与海峡对岸台湾地区产稻米重金属含量相比,Hg 、Cd 、Pb 、As 和Cu 的含量均显著高于台湾稻米的平均含量 (0.001, 0.01, 0.01, 0.08, 和2.22 mg·kg -1) [7],与大米重金属国家食品卫生标准限制值相比,本区稻米Cd 、Pb 平均含量偏高,有21件稻米样品中的Cd 含量超标(>0.02 mg·kg -1),占所研究样品总数的11.35%,高于全国市场稻米Cd 安全性抽检的结果(超标率为10.3%)[8]。稻米中Pb 含量的最大值达到4.46 mg·kg -1,为标准限制值的11.2倍,有样品31件样品的Pb 含量超标,占总样品数的16.76%。Hg 、As 、Cu 、Zn 平均含量低,仅有2件样品的Hg 或As 含量超标,Hg 、As 的超标率均为0.54%,低

于3.4%和2.8%的全国平均水平。所有样品中Cu 、

Zn 含量都低于大米的国家食品卫生标准。

总之,福建沿海地区出产的水稻主要表现为Cd 、Pb 含量偏高,而As 、Cu 、Zn 、Hg 含量较低,未表现出明显的富集效应,这与柯庆明等[6]的研究结果相似。不同是柯庆明研究中发现闽北地区稻米中的Hg 含量高,但本次研究却没有发现水稻中Hg 含量超标的情况。

2.2 福建沿海流域稻米重金属含量的区域分布

对比10个流域的样品的分析结果发现Cd 含量高的样品主要分布在福州闽江流域、云霄漳江流域和泉州香江流域等中部城市快速发展的区域。其中以福州闽江流域的样品中的Cd 含量最高,21件镉含量超标的样品中就有12分布在福州福州闽江流域,而且主要是分布在该流域的闽侯县、永泰县和闽江出海口等处的工业区附近。云霄漳江和泉州香江2个流域各有3个样品超标。而最北部和最南部的诏安、福鼎等区域的样品中Cd 含量则较低。Pb 含量较高的样品也主要是分布在福州、福清、漳州、莆田等区域,而福安,福鼎,莆田,泉州,云霄,诏安等区域的水稻样品的铅含量较低。在31件铅含量超标的水稻样品中,有10件分布在漳州、8件分布在福州、5件分布福清、5件分布在莆田。其它流域Pb 超标的样品较少。

总之,水稻重金属含量超标的样品主要都是分布在福州、漳州、莆田和泉州等地区经济发达地区。工业发展迅速,河流可能会受到污染,而且这些城市多位于流域中下游地区。污染水质在灌溉中可以污染水稻土。研究表明在一定范围内,水稻籽实中某些重金属的含量与土壤中重金属的含量呈正相关[9 ]。福建沿海地区水稻中Pb 、Cd 等重金属元素的超标样品的分布特征上看,可能与水稻土的重金属污染有关。当然,不同的土壤类型,其有机质、孔隙度、pH 值、酶活性等理化性质不同,直接影响重金属在土壤中的迁移与固定,从而影响水稻对重金属的吸收与富集。土壤中有效态重金属含量和土壤的氧化还原状况也是影响水稻吸收重金属的主要因素。要真正查明研究区水稻重金属超标的原因与规律,还有许多研究工作要进行。

2.3 不同品种水稻稻米中重金属元素含量差异

福建省内推广种植的水稻品种有数百种之多,了解水稻品种对环境重金属吸收的影响有着非常重要的意义。东园农科的实验田中种植着各种品种的水稻,为本次研究不同水稻品种对土壤重金属的吸收行为提供了有利条件。采集了同一个实验田中的12种不同品种的水稻样品,另外收集了莆田木兰流域的同一地点附近的粘米和糯米样品各一件,

元素 最大值 最小值 平均值 标准 离差

N

国标限制值* 超标样数(件) 超标比例(%) Hg 0.062 0.0001 0.0052 0.002 185 0.02 1

0.54 Cd 0.60 0.009 0.08 0.02 185 0.2 21 11.35 Pb 4.46 0.01 0.33 0.08 185 0.4 31 16.76 As 1.70 0.07 0.17 0.02 185 0.7 1 0.54 Cu 8.51 0.01 2.94 0.85 185 10 0 0

208 生态环境 第17卷第1期(2008年1月)

分别测定了稻米中的重金属元素组成(表3)。

表3数据显示,不同品种水稻的稻米中重金属含量有明显的差别,差别最大的是Pb 含量,在相同的土壤背景和种植条件下,有e 优27、Ⅱ优139、丰两优一号以及昌优964等3个品种水稻的糙米中Pb 含量异常地高(0.46~2.62 mg·kg -1),丰优205品种的Pb 含量也接近食品安全标准的限定值,显示上述几个水稻品种有可能是Pb 富集品种;昌优964、Ⅱ优139对Cd 、Cu 、Zn 等其他重金属也表现出相对高的吸收率,可能是对重金属高吸收的水稻品种;对特定重金属表现出高吸收的水稻品种还有丰两优香一号(Cd ,0.13)和丰优205(As ,0.38)等。各品种水稻中Hg 的含量都比较低,说明水稻对Hg 的吸收能力低,土壤中Hg 的污染对水稻品质的影响较小;特优316、亚优131、803A1527、冈优-527和两优2163等样品中所有的重金属含量都比较低,可能是重金属低吸收的水稻品种。

在相同条件下,不同的水稻品种由于外部形态

及内部结构的不同,吸收重金属的生理生化机制各异,故其重金属元素的累积量差异较大。蒋彬等[10]的研究发现,水稻籽实吸收重金属存在基因型的差异,他们将来自于全国不同地区的239份样品种植在同一地区,发现各品种铅、砷、镉含量存在极显著得基因型差异,并筛选出了一系列低铅或低镉或低砷的品种。吴启堂等[11]也得到类似的结果,认为高产品种重金属含量高,低产品种重金属含量低,由此给高产品种的育种提出了很大的挑战。不同品种水稻对重金属富集吸收程度的差异性,会导致具有相同或相近土壤背景的种植区稻米重金属含量间的差异。这对筛选培育低吸收率水稻品种,对解决重金属污染区内大宗农作物食品安全问题具有重要意义。

2.4 不同季节水稻稻米中重金属元素含量差异

对漳州九龙江、诏安东溪2个流域同一稻田采集了早、晚稻样品的分析结果列入表4。结果显示出多数样品中Cd 、As 、Pb 、Cu 、Zn 等重金属元素的含量晚稻高于早稻,而Hg 的变化规律不明显。王凯荣等[11]的研究也表明杂交晚稻比常规稻对Pb 、Cd 的富集能力强。晚稻比早稻的重金属含量高所引起的健康风险应当引起足够的重视,因为当地居民通常以吃晚稻米为主。但由于研究的样本较少,这一规律还有待于进一步的证实。而且我们的研究样品中,没有将早、晚稻的品种做到严格一一对应,因此这一变化规律是由于季节不同的水稻引起的,还是由于品种不同造成,需要进一步研究。

3 结论

福建沿海地区稻米样品中Hg 、Cd 、Pb 、As 、Cu 和 Zn 含量的总体平均值分别为0.005、0.08、0.33、0.17、2.94和14.62 mg·kg -1,显著高于海峡对岸台湾地区产稻米重金属含量。

与我国大米的限制值相比,重金属超标最严重的是Pb ,有16.8%的样品超过了限制值。其次是Cd ,有11.4%的样品超过了限制值。而Hg 、As 的超标率相对较低,均为0.5%。与我国绿色食品大米安全卫生标准限制值(Pb≤0.2,Cd≤0.1,Hg≤0.01,As≤ 0.4 mg·kg -1)相比,Pb 、Cd 、Hg 、As 的超标率分别为53.0%、25.9%、2.7%。福建沿海的稻米质量与卫生状况应引起有关部门的重视。

福建沿海不同水稻种植区的稻米的重金属含量相差较大,Cd 和Pb 含量高(超标)的样品主要分布在福州、漳州、莆田和泉州等地区经济发达地区。稻田土壤的重金属污染可能是导致水稻子粒中重金属含量升高的重要原因。

栽种季节 采样点编号 Hg Cd

As

Cu

Zn

Pb

早稻 DGZ001R-①S

0.011

0.05 0.20 2.44 13.80 0.29

晚稻 DGZ-ZZJL-22-①S 0.0057 0.18 0.12 4.59 21.30 0.23 早稻 DGZ001R-③S

0.007

0.03 0.25 0.01 12.50 0.31

晚稻 DGZ-ZZJL-22-③S 0.0047 0.12 0.11

2.83 14.50 0.34

早稻 DGZ002R-S

0.0055 0.03 0.10 3.19 12.00 0.16

晚稻

DGZ-ZZJL-23-①S 0.0033 0.03 0.19 2.33 16.90 0.22 早稻 DGZ003R-S

0.0045 0.10 0.26 3.55 15.30 0.39

晚稻 DGZ-ZZJL-29-S 0.0046 0.04 0.10 4.40 19.60 1.13 早稻 DGZ004R-②S

0.0039 0.07 0.10 1.66 14.40 0.20

晚稻 DGZ-ZZJL-03-②S 0.0045 0.22 0.07 3.92 16.80 0.13 早稻 DGZ008R-①S 0.0049 0.03 0.47 2.95 12.20 0.20

水稻品种 样品编号

Hg

Cd

Pb

As

Cu

Zn

丰两优一号 DGZ-ZZJL-28-①S 0.0047 0.02 1.26 0.18 2.91 12.80

e 优27 DGZ-ZZJL-28-②S 0.0050 0.03 0.46 0.12 3.72 15.00 特优316 DGZ-ZZJL-28-③S 0.0047 0.05 0.29 0.11 4.61 13.30 亚优131 DGZ-ZZJL-28-④S 0.0054 0.06 0.16 0.11 6.19 14.40 丰两优香一号 DGZ-ZZJL-28-⑤S 0.0052 0.13 0.21 0.16 3.12 15.20

两优2163 DGZ-ZZJL-28-⑥S 0.0068

0.07 0.20 0.10 3.25 11.10 803A1527 DGZ-ZZJL-28-⑦S 0.0067 0.02 0.11 0.21 3.49 13.40 冈优-527 DGZ-ZZJL-28-⑧S 0.0078 0.03 0.28 0.26 3.21 9.70 昌优964 DGZ-ZZJL-28-⑨S 0.0066 0.08 2.62 0.10 6.26 29.90 Ⅱ优139 DGZ-ZZJL-28-⑩S 0.0065 0.06 0.51 0.30 5.49 21.20 汕优63(ck) DGZ-ZZJL-28-⑾S 0.0083 0.06 0.34 0.09 5.15 19.40

谢文彪等:福建沿海水稻Cd、Pb、Hg等重金属含量变化规律209

不同品种的水稻对重金属的吸收率有明显差异,糯米、特优316、亚优131、803A1527、冈优-527和两优2163等样品中所有的重金属含量都比较低,可能是重金属低吸收的水稻品种。因此广泛收集耐、抗重金属污染的水稻种质或基因材料,弄清遗传特征与遗传规律。在此基础上,有目的的选择与水稻进行杂交的品种(或基因),培育出耐、抗、低吸收或少富集的水稻品种,对解决重金属污染区内水稻食品安全问题具有重要意义。

参考文献:

[1]DUDKA S, MILLER W P. Accumulation of potentially toxielements in

plants and their transfer to human foodchain[J]. J. Environ. Sci. Health B, 1999, 34(4): 681-708.

[2]M cLAUGHLIN M J, PARKER D R, CLARKE J M Metals and

Micronutrients-food Safety Issues[J]. Field Crops Research, 1999, 60: 143-163.

[3]HOSSAIN M F. KHONDAKER M. Environmental contamination and

seasonal variation on heavy metals in rice fields [J]. Research Journal

of Chemistry and Environment, 2006, 10(1): 8-12.

[4]郑海峰. 福建省耕地重金属污染状况调查[J]. 福建农业科技, 2003,

(6): 14-16.

[5]赖德芳. 漳州市耕地重金属污染评价[J]. 土壤肥料, 2005, (6):

15-19.

[6]柯庆明, 梁康迳, 郑履端等. 福建省水稻稻米重金属污染的对应分

析[J]. 应用生态学报, 2005, 16(10): 1918-1923.

[7]Lin Hawtarn, Wong Suesun, Li Gwochen. Heavy Metal Content of

Rice and Shellfish in Taiwan[J]. Yaowu Shipin Fenxi, 2004, 12(2): 167-174.

[8]程旺大, 姚海根, 吴伟等. 土壤-水稻体系中的重金属污染及其

控制[J]. 中国农业科技导报, 2005, 7(4): 51-54.

[9]韩爱民, 蔡继红, 屠锦河, 等. 水稻重金属含量与土壤质量的关系

[J]. 环境监测管理与技术, 2002, 14(3): 27-28, 32.

[10]蒋彬, 张慧萍. 水稻精米中铅镉砷含量基因型差异的研究[J]. 云南

师范大学学报, 2002, 22(3): 37-40.

[11]吴启堂, 陈卢, 王广寿. 水稻不同品种对吸收Cd 积累的差异和机

理研究[J]. 生态学报, 1999, 19(1): 104-107.

[12]王凯荣, 郭焱, 何电源等. 重金属污染对稻米品质影响的研究[J].

农业环境保护, 1993, 12(6): 254-257.

Varialtioal characteristics of Cd、Pb、Hg content of rice

in coastal region of Fujian province

Xie Wenbiao1, Yang Junhua2, Chen Suilin1, Chen Diyun1

1. College of Environmental Science & Engineering, Guangzhou University, Guangzhou 510006, China;

2. Fujian Academe of Geological Survey, Fuzhou 350011, China

Abstract: The region distrabution of rice sample with high heavy metal content in Coastal Region of Fujian Province was study, and the difference for rice breed absorbing heavy metal was analyzed in this paper. Along 10 rice planting areas in Fuji an Littoral area, 185 Paddy samples were collected. By analysed the heavy metal content of this samples, it was showed thant the average values of Cd, Hg, Pb, As, Cu and Zn were 0.005, 0.08, 0.33, 0.17, 2.94 and 4.62 mg·kg -1 respectively and markedly higher than the average values of rice Tawan area. There were 16.8% and 11.4% samples respectively with Pb and Cd content exceeding the national limited value of brown rice, but only 0.5% samples with Hg and As content exceeding the national limited value of brown rice. The rice samples with high Pb, Cd-contianing were distrbuted around developed city as Zhangzhou, Fuzhou, Fuqing city and so on. Different Breed of paddy have different absorptivity to heavy metal, as Changyou 964 has good absorptivity to Cd and Pb, but sticky rice and 803A1527 has low absorptivity to Cd, As and Pb. These finds would provide academic base for the evalution of rice safty and the selecting of low heavy metal sorbing breed.

Key words: rice; heavy metal; distribution; coastal region of Fujian province

水稻重金属镉污染研究综述

水稻重金属镉污染研究综述 镉(Cadmium,Cd)是一种毒性极强的重金属元素,也是人体和植物非必需元素。Cd 由于其在环境中具有很强的迁移转化特性及对人体的高度危害性而被列为《国家重金属污染综合防治“十二五”规划》重点关注的5大重金属污染元素之一(孙聪,2014)。镉通过食物链进入人体后,会对人体肾、肺、肝、睾丸、脑、骨骼及血液系统等产生损伤,造成急性或慢性中毒,甚至癌变。镉过量会抑制植物的生长。水稻是中国第一大粮食作物,全国约有65%人口以稻米为主食,稻米的安全品质与人类健康密切相关,目前水稻生产正受到镉污染土壤的严重威胁(孟桂元,2015)。与其它重金属元素相比,镉(Cd)对水稻显示出更大的毒性,镉的活性较强,容易被水稻吸收和富集,可以在不影响水稻正常生长的情况下积累较高含量的镉,重金属Cd通过灌溉在土壤中累积,且主要累积在0-20cm表层土壤(姜国辉,2012),经过根、茎、叶的吸收,最终迁移到稻米中,直接影响人类的健康。据不完全统计,我国受镉污染的农田面积已超过20万hm2,每年生产镉含量超标的农产品达14.6亿kg(杨双,2015),由于重金属污染导致的粮食每年减产1000多万t,受污染粮食多达1200多万t,经济损失达200多亿元。如在湖南安化县境内的某铀矿区,每年因污灌带入农田的镉达2-3kg/hm2,使近40km2的农田受到不同程度污染。严重危害了广大人民群众的身体健康(贺慧,2014)。目前土壤镉污染问题已成为国内外学者研究的热点之一(李启权,2014)。国内、外关于土壤Cd污染对水稻的生态风险进行了大量的研究,主要集中在不同水稻对Cd的富集机理、Cd在土壤-水稻系统迁移转化的根际过程及分子机理与遗传规律、Cd诱导胁迫的生理生化特征及Cd污染土壤的生态修复等。 1、不同水稻对Cd的富集机理 大量研究表明,由于遗传特性的不同,水稻对镉的吸收存在着很大差异,这种差异不仅表现在水稻的不同类型之间,也表现在不同品种之间。李坤权等研究表明,水稻糙米中的镉浓度与水稻类型有关,即籼型>新株型>粳型(李坤权,2003)。李正文等采用田间试验的方法,研究了江苏省目前栽种的57个水稻品种,揭示了杂交稻Cd吸收极显著高于常规稻(李正文,2003)。徐燕玲等认为,在低污染水平土壤上,水稻对Cd的累积品种间存在一定的稳定性,而水稻类型间Cd含量没有显著差异,因此按照水稻类型来筛选是不可行的,应针对品种来筛选并对筛选出来的稳定的品种进行重点研究(徐燕玲,2009)。孙聪研究发现,不同水稻品种对土壤中Cd毒性胁迫有显著性差异,虽然Cd属于非必需元素,但不同水稻品种对低剂量Cd表现出不同的刺激效应。经过Burr-III模型的计算得到基于保护95%水稻品种的土壤中Cd50%抑制浓度值(HC550%)为4.93mg·kg-1(孙聪,2014)。 孟桂元以湘中地区主要栽培的26个水稻品种为材料,研究了镉胁迫(0.5mmol/L)对不同水稻品种种子萌发及根芽生长的影响。结果表明,镉胁迫对水稻种子的发芽率、发芽指数影响不显著,对种子活力指数及根芽生长具有显著影响;镉胁迫对根的抑制作用明显大于对芽的抑制。不同品种对镉胁迫的耐性存在较大差异(孟桂元,2015)。刘侯俊研究东北地区水稻生长、籽粒产量和Cd在水稻植株不同部位的分配规律。结果表明,土壤中添加Cd后,多数水稻籽粒产量和植株总生物量下降,只有少数品种籽粒产量和生物量有所上升。Cd在水稻植株中的含量遵循根系>茎叶>颖壳>籽粒的规律(刘侯俊,2011)。张锡洲比较水稻亲本材料的镉耐性差异,筛选镉低积累水稻种质资源,为水稻镉安全品种(Cd-safecultivars,CSCs)

水质重金属检测

分析仪器名词:可跟踪链接拓展知识 ?定性分析?定量分析?常量分析?微量分析?痕量分析 ?分析仪器?电化学[式]分析仪器?光学[式]分析仪器?热学[式]分析仪器?质谱仪器 ?波谱仪器?能谱和射线分析仪器?物性分析仪器?pH值?电导 ?电导率?电池常数?当量电导?标准电极电位?电极电位 ?极谱图?电化学分析法?电容量分析法?电导分析法?电量分析法?电位法?伏安法?极谱法?滴定?电泳法 ?电重量分析法?电导[式]分析器?电量[式]分析器?电位[式]分析器?溶解氧分析器重金属: 重金属有许多种不同的定义,常见的一种定义是密度大于5 g/cm3 的金属,大多数金属 都是重金属。主要是指对生物有明显毒性的重金属元素,如汞、镉、铅、铬、锌、铜、钴、 镍、锡、钡等。有时也会将一些有明显毒性的轻金属元素及非金属元素列入:如砷、铍、锂 与铝。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、 镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 重金属污染主要是指:由于采矿、冶炼、制造产品、排放废水废气、处置固 体废物、利用污水进行灌溉和使用重金属制品的过程中,重金属或者其化合物给 自然环境或者人体带来的损害。 对什么是重金属,目前尚没有严格的统一定义,从环境污染方面所说的重金属,实际上 主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、 镍、钴、锡等。 我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加 和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多 种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的 百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污 染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是 由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在 人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六 价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水 体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在 0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污 染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。 (四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程

土壤重金属检测汞不稳定样技术练兵报告1105版

土壤汞不稳定样品检测研究报告 刘康赵耀郑海芳李仕钦陈光亮李□ (泸州农业质量检测中心646000) 一、背景 泸州农业质量检测中心在9-10月泸县、龙马潭区土壤重金属检测技术练兵中发现部分样品汞含量检测稳定性不好,表现在一是平行测定偏差大,二是多次重复测定重现性不好。这些样品,既有我中心制备的样品,如2010-□□□(测定结果分别为□□□、□□□、□□□、□□□),2010-□□□(测定结果分别为□□□、□□□、□□□、□□□);又有省土测中心制备的样品,如2010-□□□(测定结果分别为□□□、□□□、□□□、□□□),2010-□□□(测定结果分别为□□□、□□□、□□□、□□□)。从技术角度,一般应怀疑是器具污染,但同一批次检测的多个国家标准质控样平行良好,结果准确,很难想像只污染这些本地样品,却丝毫不影响国家标准质控样。因此我中心怀疑是样品均匀性问题。 同时我中心与省土测中心个别样品(由省中心制样)所测汞数据偏差太大,因此也可能是样品均匀性问题。 因此开展此项研究,以探讨土壤汞平行样不一致是否为样品不均匀性问题,讨论解决或改进途径。 二、研究过程 1.检测样品和质量控制样:国家标准物质土壤GBW07401、GBW07407、GBW07405,部分平行样数据不稳定样品。 2.研究阶段一: (1)检测方法:各称取0.5克,空白3个,(1+1)王水10mL,浸泡

过夜。水浴锅沸水浴2h。然后加1.25ml重铬酸钾溶液(10g/L),定容到25ml。静置一天后测定。万分之一硼氢化钾作还原体系。标样采取插标方式处理。 (2)样品设置:带2-3个国家标样,做4平行,样品做4平行。 (3)检测结果: 表一:泸县整体认证部分质控样土壤汞检测数据分析 (4)结果分析 所带3个国家标准质控样的检测结果平均值全部正确,且10个平行测定值均在允许范围内,变异系数很小,可见检测结果准确,试验精度高,偶然性小。而所选择的5个以前测定值不稳定的样品中,除2010-627结果一致性较好外,其余各样品平行测定值相当混乱,往往有2-3个值一致,但却出现另外的异常值。考虑到国家土壤标样的检测结果的准确和一致,那么偶然误差集中出现在本地样品上显然是一种小概率事件,不予接受。只能认为是本地样品的不均匀性导致检测数据不稳定。 (5)调出上述样品的其他重金属参数检测数据

土壤—水稻系统重金属污染的研究现状和展望

土壤—水稻系统重金属污染的研究现状和展望 Ξ余守武1,2,刘宜柏1 (1.江西农业大学农学院,江西南昌330045;2.江西省农业科学院水稻研究所,江西南昌330200) 摘 要:对土壤—水稻系统的重金属污染的研究现状进行了综述。主要介绍了土壤 中重金属污染的形态、分布状况、重金属对水稻的生理生态效应、水稻吸收累积重金属的 影响因素及水稻对重金属抗性的分子生物学基础,并对未来的研究方向进行了展望。 关键词:土壤—水稻系统;重金属;污染 中图分类号:S153.61 文献标识码:A 文章编号:1001-8581(2004)01-0041-08 重金属污染是一种严重的环境污染因素[1]。重金属一旦进入环境,尤其是进入土壤—水稻系统中就很难排除。过量的重金属在水稻的根、茎、叶以及籽粒中大量积累,不仅影响水稻产量和品质及整个农田生态系统,并可通过食物链危及动物和人类的健康。因此,了解重金属对水稻污染的生理生物学机制及水稻对重金属的抗性机理显得非常重要,对保护生态环境和生产绿色食品都具有重要的意义。 1 土壤中重金属污染形态及分布状况 1.1 土壤中重金属污染形态 有关研究表明,石灰性污水灌溉土壤0~20cm 土层中,Pb 、Cd 主要以碳酸盐结合态,硫化物残渣态存在,其次是有机结合态,交换态、吸附态较少,总的看来Pb 的吸附态>交换态,而Cd 则相反[2]。影响Pb 、Cd 形态分布的主要因素有土壤pH 值、有机质含量、腐殖酸组成和碳酸钙含量等[3]。而Hg 的有效态主要与土壤中的硫、氯化物及有机肥料含量有关[4]。在As 污染的土壤中,主要以水溶性砷和钙砷为主,铝砷和铁砷最低[5]。Cr 主要在20~40cm 的表层和耕作层累积,下层土壤则无明显累积,且Cr 在土壤中不易移动,也较难被植物吸收[6~7]。 1.2 重金属在土壤中的分布状况 水稻土中的无机及有机胶体对重金属阳离子的吸附、代换、络合具有一定的作用,使大部分土壤中的重金属污染物被固定在耕作层(0~20cm )中,而40cm 以下逐渐减少。此外,土壤对重金属羟基络合物的吸附比自由金属离子的吸附要多,且土壤的吸持强度与金属本身的特性有关[8]。As 在土壤中的迁移性与Cu 、Pb 、Cd 等有所不同,在酸性(pH 5.3~6.8)红壤中,由于大量铁、铝组分存在,砷酸根可与之生成难溶盐类而富集于30~40cm 耕作层中[5]。灌溉污水中的Hg 呈溶解态和络合态,进入土壤后95%被土壤矿物质胶体和有机质迅速吸附或固定,所以,Hg 主要在土壤表层累积,随土层深度而逐渐减少[9]。 2 重金属污染水稻的效应 2.1 单因素重金属污染水稻的效应 江西农业学报 2004,16(1):41~48Acta Agriculturae Jiangxi Ξ收稿日期:2003-10-15 作者简介:余守武(1974-),男,江西上饶人,硕士,主要从事水稻生物技术研究。

水样中各种重金属的测定

水样中各种重金属的测定方法 1铜、锌、铅、镉的测定火焰原子吸收法(水和废水监测分析方法第四版增补版pp.325-326) 本法适用于测定地下水、地表水、和废水中的铅锌铜镉。 仪器:原子吸收分光光度计 试剂:硝酸,优级纯;高氯酸,优级纯;去离子水; 金属标准储备液:准确称取经稀酸清洗并干燥后的0.5000g光谱重金属,用50ml(1+1)硝酸溶解,必要时加热直至溶解完全。用水稀释至500.0ml,此溶液每毫升含1.00mg金属。 混合标准容液:用0.2%硝酸稀释金属标准储备液配制而成,使配成的混合标准溶液每毫升含镉、铜、铅和锌分别为10.0、50.0、100.0、和10.0μg。 步骤 (1)样品预处理 取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。蒸至10ml左右,加入5ml硝酸和高氯酸2ml,再次蒸至1ml左右。取下冷却,加水溶解残渣,用水定容至100ml。 取0.2%硝酸100ml,按上述相同的程序操作,以此为空白值。(2)样品测定 据表1所列参数选择分析线和调节火焰。仪器用0.2%硝酸调零。吸入空白样和试样,测量其吸光度。扣除空白样吸光度后,从校准曲线上查出试样中的金属浓度。如可能,也从仪器中直接读出试样中的

金属浓度。 表1 元素分析线波长(nm)火焰类型本法测定范围(mg/L)镉228.8 乙炔-空气,氧化型0.05~1 铜324.7 乙炔-空气,氧化型0.05~5 铅283.3 乙炔-空气,氧化型0.2~10 锌213.8 乙炔-空气,氧化型0.05~1 (3)标准曲线 吸取混合标准溶液0, 0.50,1.00, 3.00,5.00和10.00ml,分别放入六个100ml容量瓶中,用0.2%硝酸稀释定容。此混合标准系列各重金属的浓度见表2。接着按样品测定的步骤测量吸光度,用经空白校正的各标准的吸光度对相应的浓度作图,绘制标准曲线。 表2 混合标准使用溶液体积 (ml) 0 0.50 1.00 3.00 5.00 10.00 标准系列各重金属浓度(mg/L)镉0 0.05 0.10 0.30 0.50 1.00 铜0 0.25 0.50 1.50 2.50 5.00 铅0 0.50 1.00 3.00 5.00 10.00 锌0 0.05 0.10 0.30 0.50 1.00 注:定容体积100ml 计算 被测金属(mg/L)= v m 式中:m—从校准曲线上查出或仪器直接读出的被测金属量(μg);

重金属汞

重金属汞 重金属汞污染是当今世界的研究热点。自20世纪50年代日本熊本县水俣湾附近的鱼村出现第一例严重的甲基汞中毒事件以来,不同研究领域的科学家们对汞及其化合物的生物地球化学行为给予了高度重.汞在土壤中以多种形态存在。不同存在形态汞的迁移转化规律和生物有效性各不相同,对环境和人体健康造成的影响也存在显著差异。本文将对汞污染的来源、害、在土壤中的赋存形态、迁移转化规律及其影响因素加以综述,从而为土壤汞污染防治提供参考。 汞是在常温下唯一呈液态的金属,又名称水银, 银白色,比重13.546,熔点一38.87℃,沸点357℃。汞能与许多金属形成合金,称为汞齐。汞由于有特异的物理化学性能,因此广泛用于化学、电气、仪表及军事工业等。此外,还用作原子核反应堆的冷却剂和防原子辐射材料,也用于提取有色正汞是在常温下唯一呈液态的金属,又名称水银,银白色,比重13.546,熔点-38.87℃,沸点357℃。汞能与许多金属形成合金,称为汞齐。汞由于

有特异的物理化学性能,因此广泛用于化学、电气、仪表及军事工业等。此外,还用作原子核反应堆的冷却剂和防原子辐射材料,也用于提取有色金属,用混汞法提取金和从炼铅的烟尘中提取铊以及用于提取铝.在医药方面也有一定的用途。 汞是在常温下唯一呈液态的金属,又名称水银, 银白色,比重13.546,熔点一38.87℃,沸点357℃。汞能与许多金属形成合金,称为汞齐。汞由于有特异的物理化学性能,因此广泛用于化学、电气、仪表及军事工业等。此外,还用作原子核反应堆的冷却剂和防原子辐射材料,也用于提取有色 “49家知名化妆品中均含有重金属等有毒物质”,此消息一出,众爱美者愕然,大品牌的产品也靠不住吗?这些重金属从何而来? 美容专家Dr.E称,大品牌往往拥有良好的品牌历史与科研团队,质检也十分严格,所以重金属超标一般不会是刻意添加的。他表示,这些被检测出的重金属可能来是化妆品原料受到污染所致。“水、植物等可能都会含有微量物质,而化妆品的原料一般来自植物以及石油和煤炭等化工产品,在这些原料中含有极微量重金属残留可能并不奇怪”。Dr.E 称“国内外对化妆品的安全标准非常严格,因此,化妆品中可能含有的重金属一般都非常微量,在安全范围内,希望消费者科学、客观地看待。” Dr.E表示,“消费者更需要关注的是全球的环境问题。人类每天吃的、喝的、呼吸到污染的危险性可能远超过化妆品中可能存在的痕量重金属残留。” 在多种重金属中,铅与汞确实有令皮肤迅速变白的作用,一些不法商家为追求利润有可能在产品中添加这些成分。“如果消费者使用某些美白产品效果非常快速而明显,那就很危险了,产品中很可能含有铅或汞”北京大学第三医院副主任医师、医学博士姜薇表示,铅和汞虽然有令皮肤迅速变白的作用,但使用它们美白无异于饮鸩止渴。“一旦停用,皮肤会变‘花’,呈现红、黑、白的颜色,我们称之为‘皮肤异色症’。而长期使用含有铅汞的化妆品则可能对血液及脏器造成危害,损伤身体。”

水质中重金属危害及其检测方法

水质中重金属危害及其检测方法 水质中重金属危害及其检测方法 【摘要】本文概述了水中重金属的危害和测定重金属的常规方法 【关键词】水质;重金属;检测方法 水是人类的生命之源,在没有人为污染的情况,水中的重金属的含量取决于水与土壤、岩石的相互作用,其值一般很低,不会对人体健康造成危害。但随着工业的发展,工矿业废水、生活污水等未经适当处理即向外排放,污染了土壤,废弃物堆放场受流水作用以及富含重金属的大气沉降物输入,都使水中重金属含量急剧升高,导致水受到重金属污染。重金属通过直接饮水、食用被污水灌溉过的蔬菜、粮食等途径,很容易进入人体内,威胁人体健康。 一、重金属的危害 重金属是指密度4.0以上约60种元素或者是密度在5.0以上的45种元素,其中砷、硒是非金属,但是由于它的毒性及其某些性质与重金属非常相似,所以将砷、硒也列入重金属污染物范围内,在环境污染方面所说的重金属更注重它的毒性对生态的危害,主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括同样具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着现代工农业的发展,重金属污染问题日趋严重。重金属污染,不同与其它类型污染,具有隐蔽性、长期性和不可逆转性等特点。重金属既可以直接进入大气、水体和土壤,造成各类环境要素的直接污染;也可以在大气、水体和土壤中相互迁移,造成各类环境要素的间接污染。由于重金属不能被微生物降解,在环境中只能发生各种形态之间的相互转化,所以,重金属污染的消除往往更为困难,对生物引起的影响和危害也是人们更为关注的问题。 二、重金属的测定 我国《生活饮用水卫生标准》和《污水综合排放标准》分别对生活饮用水中重金属元素的含量和污水中重金属元素的最高容许排放

重金属可能导致各种各样的病症

重金属污染可引起的疾病 定义: 含有汞、镉、铬、铅及砷等生物毒性显著的重金属元素及其化合物对环境的污染。 重金属污染指由重金属或其化合物造成的环境污染。主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化。2011年4月初,我国首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》获得国务院正式批复,防治规划力求控制5种重金属。 重金属污染指由重金属或其化合物造成的环境污染。如日本的水俣病是由汞污染污染所引起。其危害程度取决于重金属在环境、食品和生物体中存在的浓度和化学形态。重金属污染主要表现在水污染中,还有一部分是在大气和固体废物中。 主要特点 重金属污染与其他有机化合物的污染不同。不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。目前我国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤引起严重的环境污染。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝类体表吸附,产生食物链浓缩,从而造成公害。水体中金属有利或有害不仅取决于金属的种类、理化性质,而且还取决于金属的浓度及存在的价态和形态,即使有益的金属元素浓度超过某一数值也会有剧烈的毒性,使动植物中毒,甚至死亡。金属有机化合物(如有机汞、有机铅、有机砷、有机锡等)比相应的金属无机化合物毒性要强得多;可溶态的金属又比颗粒态金属的毒性要大;六价铬比三价铬毒性要大等等。 重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害,例如,日本发生的水俣病(汞污染)和骨痛病(镉污染,等公害病,都是由重金属污染引起的。

水稻重金属研究

水稻中重金属的研究 摘要:主要从土壤中的重金属元素,重金属对水稻生理效应的影响,重金属在稻米中的含量,重金属污染控制几个方面的问题,结合国内水稻重金属研究的最新进展进行了综述。 关键词:重金属;水稻;含量测定;研究 重金属是构成地壳的物质之一,它以不同的形态分布于土壤中,水稻植株体内的重金属主要来源于土壤,因此土壤中的重金属浓度的高低直接影响了水稻的生长发育以及稻米中重金属的含量。稻米中的重金属严重威胁人和动物的健康和生命,如何检测以及治理重金属的污染是一个关系人类自身健康与安全的问题。 1 水稻田土壤中的重金属元素 1.1 土壤中重金属元素的来源 重金属存在于全球各生态系统,一般在自然条件下土壤中的重金属主要来自其成土母质,这种背景含量不会对土壤生态系统造成危害[1]。目前,土壤中重金属超标主要受到多种人为因素的影响,主要包括以下几个方面。 (1)业生产、汽车尾气排放等大量含重金属的有害气体和粉尘等进入大气中,经过自然沉降和雨淋沉降进入土壤[2]。 (2)理的城市生活污水、商业污水和工业污水对农田进行灌溉,从而使水中所含的大量重金属等污染物经过灌溉后污染农田土壤[3]。 (3)金属含量较高的肥料、农药,以及不合理施用化肥,都可能导致土壤重金属污染[4]。 (4)山开采冶炼的含有重金属的废水随着矿山排水和降雨,进入水环境或直接进入土壤,从而直接或间接地污染了农田土壤[5]。 1.2 水稻田土壤深红重金属含量的测定方法 通常测定土壤中重金属的含量根据重金属的种类可以采用火焰原子吸收光谱法、分光光度法、离子体发射光谱。此外,还可以采用以下方法。 利用ICP-MS法测定表层土壤中重金属元素。把土壤样品用硝酸、高氯酸、氢氟酸溶解,使可溶性固体的总量较低。然后直接用ICP-MS质谱仪测定。方法具有简单、快速、准确等特点,可用于土壤中重金属元素的分析测试工作[6-7]。 2 国内水稻重金属研究现状 水稻重金属含量一直是人们关心的话题。国内研究者从各个方面进行了重金属污染及测定的研究,系统的阐述了各类污染的污染源以及检测方法。 2.1 公路两侧水稻重金属研究 公路两侧农产品质量安全也是目前研究的热点。已有的研究结果表明,公路两侧的农产品受到了一定程度的重金属污染[8]。如何采取有效措施,防止污染进一步扩大,应从以下几个方面入手:一是加大对公路两旁土壤和不同作物重金属含量的监测,弄清不同作物的污染情况;二是根据监测结果,采取品种调整等措施,引导农民种植不易受污染的作物或者林木、花卉等,尽量减少损失;三是通过合理规划,调整产业结构,寻找新的经济增长点[9]。 2.2污泥有机肥对稻米重金属含量的影响 污泥有机肥是将城市污水处理后的污泥与豆饼、鸡粪、茶叶渣和食用菌培养料等混合堆肥处理制成的有机肥料[10]。施用污泥有机肥是否会造成糙米中重金属含量超标,这是最受关注和重点研究的内容之一。据王新等[11]研究。水稻污泥施用量控制在45t /hm2以内,污泥中的重金属未对土壤、稻谷质量及地下水产生不良的影响;莫争等[12]研究重金属Cu、Pb、Zn、C r、Cd在水稻植株中的富集和分布表明, 重金属被水稻吸收以后,大部分停留在根部,少量向地上部分迁移;重金属在水稻植株不同器官的含量为:根部> 根基茎> 主茎> 穗> 籽实> 叶部;重金属在水稻植株中迁移能力的大小依次为:Cd、Cr、Zn、Cu、Pb。

水中重金属离子的测定

一、实验目的与要求 1、掌握水的前处理和消解技术。 2、了解水中重金属的测定方法,掌握原子吸收分光光度计的测定技术。 3、了解利用AAS测定水的硬度和测定废水中SO42+。 4、了解水中重金属的种类、危害及有关知识,掌握水中重金属污染分析与评价的方法。 5、掌握水样的处理方法技术,并小结以前的处理方法。通过测定水中Cr、Pb 的含量分析所取水样的污染程度 二、实验方案 1、原理 (1)火焰原子吸收光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。将试样溶液喷入空气乙炔火焰中,被测的元素化合物在火焰中离解形成原子蒸汽,由锐线光源(元素灯)发射的某元素的特征普线光辐射通过原子蒸汽层的时候,该元素的基态原子对特征普线产生选择性吸收。在一定的条件下,特征普线与被测元素的浓度成正比。通过测定基态原子对选定吸收线的吸光度,确定试样中元素的浓度。 原子吸收法具有很高的灵敏度。每种元素都具有自己为数不多的特征吸收普线,不同元素的测定采用相应的元素灯,因此普线干扰在原子吸收光度法中是少见的。影响原子吸收光度法准确度的主要是基体的化学干扰。由于试样和标准溶液的基体不一样,试样中存在的某种基体常常影响被测元素的原子化效率,如在火焰中形成难离解的化合物,这时就会发生干扰作用。一般说来Cu,Zn,Pb,Cd的基体干扰不是很严重。 (2)干扰及消除。共存元素的干扰受火焰状态和观测高度的影响很大,在实验的时候应该特别注意。因为铬的化合物在火焰中易生成难以熔融和原子化的氧化物,因此一般在试液中加入适量的助熔剂和干扰元素的抑制剂,如NH4Cl(K2S2O7,NH4F,NH4ClO2)。加入NH4Cl可以增加火焰中的氯离子,使铬生成易于挥发和原子化的氯化物,而且NH4Cl还可以抑制Fe,Co,Ni,V,Al,Pb,Mg的干扰。(3)适用范围。本方法可以适用于地表水和废水中总铬的测定,用空气-乙炔火焰的最佳定量分析范围是0.1-5mg/L。最低检测限是0.03mg/L。

水中重金属实验报告

《环境化学实验》报告 实验考核标准及得分

题目:水中重金属的污染评价 一、实验目的与要求 1、了解水中重金属的消解与测定方法。 2、掌握原子吸收分光光度计分析技术。 3、了解水体的重金属污染状况,制定相应的污染控制对策 二、实验方案 1、实验原理: 环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。常用火焰原子吸收光度法测定试样中元素的浓度来测重金属浓度。原子吸收光度法是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。元素的气态基态原子外层的电子可以吸收与其发射波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律: A=lg(I0 / I)=KcL 根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。 原子吸收光度法具有较高的灵敏度。每种元素都有自己为数不多的特征吸收谱线,不同元素的测定采用相应的元素灯,因此,谱线干扰在原子吸收光度法中是少见的。影响原子吸收光度法准确度的主要是基体的化学干扰。由于试样和标准溶液整体的不一致,试样中存在的某些基体常常影响被测元素的原子化效率,如在火焰中形成难于离解的化合物或使离解生成的原子很快重新形成在该火焰温度下不再离解的化合物,这时就发生干扰作用。一般来说,铜、铅、锌、镉的基体干扰不太严重。 2、实验仪器: 3个250mL烧杯、AAS、电热板、100mL比色管 3、试剂 (1)浓硝酸:优级纯 (2)3mol/L盐酸:优级纯 (3)双氧水 (4)10%氯化铵溶液 4、实验步骤 (1)各取3组废水水样50mL放入烧杯中,加入浓硝酸5mL,在电热板上加热消解 (2)蒸至剩余40mL左右,加入5mL浓硝酸和2mL双氧水,继续于电热板上加热消解 (3)蒸至剩余30mL左右,加入2mL10%的氯化铵和10mL 3mol/L的HCl,取下来冷却,待冷却后,装入比色管中,定容到100mL,若溶液比较混浊,则先过滤再测。 (4)用AAS测定并记录数据结果 三、实验结果与数据处理

水体中重金属污染实例

水体中重金属污染实例 1 引言 20世纪70年代以来快速发展的环境磁学,由于其测量简便、快速、经济和无破坏性的特点,被广泛应用于地球科学和环境科学领域.近年来,国内外许多学者利用环境磁学手段对湖泊、河 口和海洋沉积物、城市和交通道路土壤、大气悬浮物及降尘、植物等进行了表征,并探讨了其在 指示重金属、有机化合物污染方面的应用.不少研究发现,在受工业、交通排放显著影响的城市 土壤、大气悬浮颗粒物和降尘中,重金属污染与磁性特征具有显著相关关系,其机制在于工业活动、燃料燃烧、汽车尾气等排放的颗粒污染物中,往往含有亚铁磁性矿物(如Fe3O4),因而利用 磁学方法可以诊断上述物质中的重金属污染情况. 河流沉积物因受水体和大气污染的输入,往往存在重金属污染现象.在河流开放的环境中, 探讨环境磁学对重金属污染的指示,国内近年来已有相关报道,多集中在干旱半干旱区域,而季 风气候控制下的我国南方地区研究较少.这些研究也揭示出河流沉积物磁性参数与重金属污染关 系的复杂性,二者之间并非简单的线性关系.因此,在不同的研究区域,在利用磁学方法进行重 金属污染诊断前,需要对磁性特征的变化因素,及其与重金属污染关联的机制加以分析.我国南 方江浙地区由于工业发达,河流沉积物已遭受不同程度的重金属污染.本研究以浙江省金华市义 乌江城区段边滩沉积物为对象,拟通过系统环境磁学、地球化学、粒度和有机碳分析,旨在探讨 环境磁学方法诊断河流沉积物重金属污染的可行性. 2 材料与方法 2.1 研究区域概况 义乌江位于浙江省中部金华市(119°13′~120°47′E,28°31′~29°41′N)境内,上游 称为东阳江,发源于金华市磐安县龙鸟尖,入义乌接纳南江后,称义乌江,流域面积3407 km2,上游属山区性河流,流至义乌后坡降逐渐平缓.流域地处金衢盆地,属于亚热带季风性湿润气候,年平均气温17°C,年均降水量超过1400 mm,降水季节性差异明显.流域流经的东阳市、义乌市 均为浙中经济重镇和交通中心,经济活动频繁,人口密度大.商品贸易、磁性电子、建筑建材等 产业等是义乌江流域重要经济支柱,经济发展的同时也造成了河流严重的污染. 2.2 样品采集与实验方法 研究样品取自义乌江金华城区建筑艺术公园附近,距离下游拦江橡皮坝5 km左右,洪季和 橡皮坝蓄水期间,采样点为水淹没,物理扰动干扰较小.在枯季(2010年12月)使用PVC管获得 30 cm柱样YW.在实验室用按2 cm间隔逐层取样,得到15个样品.去除样品中植物根系、砂石等 异物杂质后,40 ℃低温下烘干,以备分析.

食米中重金属(镉、汞、铅)含量调查(精)

(2 (3,4 (International Agency for Research on Cancer, IARC (Group 1(5 (6 (Itai-Itai disease (1 35% ( 1 1 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 ( 98 5 10 ( 77 84 161 ( 0.04 ppm ( ~0.37 ppm, 0.002 ppm ( 0.01 ppm 0.02 ppm ( 0.16 ppm 0.04 ppm ( 0.17 ppm 0.002 ppm ( 0.007 ppm 0.02 ppm ( 0.16 ppm 0.04 ppm ( 0.37 ppm 0.001 ppm ( 0.01 ppm 0.02 ppm ( 0.14 ppm 161 ( 0.4 ppm 0.05 ppm 0.2 ppm . 1 : 12-22 2010Ann. Rept. Food Drug Res. 1 : 12-22 2010 12 13 ( (7 (osteomalacia (proteinuria(6 (7 ( 1958 1965 (Minamata disease (8 (Food and Drug Administration, FDA (Food and Agriculture Organization of the United Nations, FAO (1,6,7 IARC (Group 2(5 (9 δ (delta- aminolevulinic acid dehydrogenase, ALAD (10

(11 (9 (The Agency for Toxic Substances and Disease Registry, ATSDR 20 (2005 (12 (13 (14 ( 0.4 ppm 0.05 ppm 0.2 ppm (15 (Joint FAO/WHO Food Standards Programmed, Codex Alimentarius Commission (Provisional Tolerable Weekly Intake, PTWI(22-24 85 98 14 17 ( 98 77 84 161 ( ( ㈠ (Z e e m a n G r a p h i t e F u r n a c e A t o m i c A b s o r p t i o n Spectrophotometer Perkin Elmer 4110ZL, U.S.A. ㈡ (Mercury Atomic Fluorescene Spectrometer Merlin PSA 10.023, PS Analytical, U.K. ㈢ Retsch ZM 100, Germany ㈣ Schott SLK2, Germany ㈤ Type 48000 Programmable Furnace, Barnstead/Thermolyne Corporation, U.S.A. ㈥ (Focused Microwave Digester Prolabo Microdigest 301, France (Pyrex (1/1, v/v Merck (Darmstadt, Germany (1000 mg/ L (1000 mg/L (1000 mg/L Certified Pure Merck SRM 1568a rice flour 1515 apple leaves National Institute of Standards and Technology (NIST, U.S.A. ㈠ (1000 mg/L 1 mL 0.05 N 100 mL 0.05 N 0.1 0.5 1 2 3 μg/L

小麦叶片中细胞器中重金属含量测定

小麦叶片中细胞器中重金属含量测定 一实验目的 1了解生物毒性的一般方法。 2掌握匀浆器、原子吸收仪的使用。 3掌握生物样品的处理方法。 二实验原理 湿法消化:使用具有强氧化性酸混合液(如HNO3、HCl、HClO4等),式样共同加热消化,使细胞器中的金属元素锌、铜、镉以离子态溶解在消解液中。 差速离心法:细胞内不同细胞器的比重和大小都不相同,在均匀密度介质中不同离心力下沉降的细胞器组成不同或在梯度介质中离心后分布于不同密度层,根据这一原理,差速离心法或密度梯度离心法就可将细胞内各种组分分离出来。分离流程: 破碎组织(匀浆或研磨)-差速离心或密度梯度离心分离细胞器-结果检验分析 原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、单色仪和数据处理系统(包括光电转换器及相应的检测装置)。 原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。但氧化亚氮—乙炔火焰安全性较差,应用不普遍。空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm 级(10-6),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种 型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。 石墨炉原子吸收分光光度计,可以测定近50种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/mL级。 三实验内容 1 实验液的预处理。 2 小麦叶片中细胞器中的重金属含量。 四实验仪器设备和材料清单 1 仪器设备:25ml匀浆器,电热板,原子吸收仪,石墨炉原子吸收分光光度计,电子分析天平,离心机;25ml、50ml比色管,离心管,50ml烧杯,50ml、500ml容量瓶,玻璃珠若干,剪刀,镊子。1ml、2ml、5ml、10ml、25ml移液

土壤中金属汞的污染与防治

土壤中金属汞的污染与防治 重金属汞是构成地壳的物质, 在自然界中分布非常的广泛。重金属汞在自然环境的各部分均存在着最低含量,如果其含量超过标准, 就会对水体、土壤、人体造成不可估量的污染与危害。 一.土壤中重金属汞的来源 正如同学们所知道的,土壤中的汞归根结底是来自于大自然的,然而人类的生产活动打破了汞在自然界中的平衡,于是就有了土壤中汞的人为来源 1 汞的自然形态来源 天然土壤中汞主要来源于母岩和母质。岩石中平均含汞量0.08mg/kg, 其中页岩含汞量最高(0.4mg/kg), 花岗岩含汞量最低(0.1mg/kg)。 2 土壤中汞的人为来源 与众多的重金属一样,汞来到土壤中也有多种多样的方式,而这些方式同时也是重金属的共性,总的来说这些方式有: 2.1 大气中重金属沉降 大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降和雨淋沉降进入土壤的。 经过自然沉降和雨淋沉降进入土壤的重金属污染,主要以工矿烟囱、废物堆和公路为中心,向四周及两侧扩散;由城市—郊区—农区,

随距城市的距离加大而降低,特别是城市的郊区污染较为严重。此外,还与城市的人口密度、城市土地利用率、机动车密度成正相关;重工业越发达,污染相对就越严重。 此外,大气汞的干湿沉降也可以引起土壤中汞的含量增高。大气汞通过干湿沉降进入土壤后,被土壤中的粘土矿物和有机物的吸附或固定,富集于土壤表层,或为植物吸收而转入土壤,造成土壤汞的浓度的升高。 2.2 农药、化肥和塑料薄膜使用 施用含有汞的农药和不合理地施用化肥,都可以导致土壤中重金属汞的污染。 2.3 污水灌溉 污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。在分布上,往往是靠近污染源头和城市工业区土壤污染严重,远离污染源头和城市工业区,土壤几乎不污染。 2.4 污泥施肥 污泥中含有大量的有机质和氮、磷、钾等营养元素,但同时污泥中也含有大量的重金属,随着大量的市政污泥进入农田,使农田中的重金属的含量在不断增高。 2.5 含重金属废弃物堆积

土壤重金属汞的污染与防治

土壤重金属汞的污染与防治 环科121 李恩德2012011757 【摘要】随着我国的工业化和现代化的进程加快,环境问题日益显著,重金属污染进一步的加剧。其中汞的毒性是最强的,汞污染对于土壤、农作物、人体和经济都有严重的影响。尤其是对于土壤的危害根治严重,该篇文章主要对汞污染的来源和防治做了简要的说明,进一步的说明土壤中汞金属的防治的紧迫性和实际意义。 【关键词】土壤;重金属污染;汞污染;治理;防治方法 重金属是指比重大于5.0g/cm3的重金属元素,在自然界中大约存在45种。其中包括环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷, 还包括具有毒性的重金属锌、铜、钻、镍、锡、钒等污染物。由于人们生产生活所造成的重金属对土壤的污染日趋严重,在2014 年4 月17 日,环保部和国土资源部联合发布的《全国土壤污染状况调查公报》显示,我国耕地土壤环境质量堪忧,点位超标率为 19.4%,其中轻微、轻度、中度和重度污染点位比例分别为 13.7%、2.8%、1.8%和1.1%,由此可见重金属污染问题比较突出。汞金属作为土壤重污染物之一,其存在形式多重多样,汞在自然界中以金属汞、无机汞和有机汞形态存在,有机汞的毒性远远地高于无机态和原子态的汞。汞在地壳中的丰度很低,平均含量为7.0ug/kg。土壤的类型对汞的背景值也有明显的影响。水稻土及石灰(岩)土中的汞的背景值含量较高,前者显然是认为影响,后者主要是成母质和成土过程所致。因而如何有效地控制及治理土壤金属汞的污染, 改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 一、土壤中汞金属污染的主要来源 1.大气干湿沉降 全世界每年生产的汞在7000t以上,约有 25 ~ 50%被排入环境中。散发到大气中的汞经过一定距离的传输, 大约有93.7%回降于陆地,土壤是大气汞的最大受体。大气中汞的降落是土壤中汞的一个十分重要的来源 , Manson(1994)等估算了北半球不同纬度地区大气汞对陆地汞的贡献:在北纬300~ 700 地区 ,汞的沉降量为15.8μgm-2a-1,我国北京东郊污水灌溉区调查表明, 大气沉降输入到农田中的汞为 3.54gha-1 a-1,大气中的汞通过干湿沉降进入土壤环境中 ,由于土壤中的黏土矿物和有机质的吸附作用, 使得绝大部分汞迅速被土壤固定,富集于土壤表层 ,造成土壤汞含量增加。刘如海 (2002)认为大气沉降是三江平原湿地土壤汞的主要来源。 2.含汞污染水引入农田会导致局部的区土壤被汞污染 由于我国北方地区比较干旱,缺水严重,而许多大城市都是重工业城市,耗水量大,所以农业用水更加紧张,污灌在这些地区比较普遍,比如沈阳、西安、太原、郑州、北京、天津、兰州、石家庄、哈尔滨等均存在比较严重的因污灌引起的农田土壤和农作物的重金属累积或者污染问题,而我国规定农田灌溉水质标准为含汞不超过0.001mgkg-1, 根据统计目前被汞污染的耕地面积 3.2×104ha,涉及 15个省 21个地区。天津常年污灌区土壤汞含量高达 0.292mgkg-1,已经超过土壤环境质量一级标准(0.15mgkg-1 ), 北京东郊灌区土壤中汞含量达 0.076 ~ 4.55 mgkg-1, 造成汞在土壤中的积累。 3.污泥的施用 污染泥土有许多有机质和氮、磷、钾等营养元素, 所以作为肥料施入农田很受到欢迎 ,但还含有多种污染物质,施用不当会引起局部地区土v壤汞含量增高。Anthony研究表明 , 污染泥土使表层土壤汞的浓度明显增加,土壤汞含量为 0.08 -1.1mgkg-1,因此美国规定作为

相关主题
文本预览
相关文档 最新文档