当前位置:文档之家› (信息学奥赛辅导)排列和组合基础知识

(信息学奥赛辅导)排列和组合基础知识

(信息学奥赛辅导)排列和组合基础知识
(信息学奥赛辅导)排列和组合基础知识

排列与组合基础知识

有关排列与组合的基本理论和公式:

加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不冋的方法,在第二类中办法中有m2种不冋的方法,???…,在第n类办法中有m n种不冋方法。那么完成这件事共有

N = m i+ m2+-+ m n种不同的方法,这一原理叫做加法原理。

乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m i种不同的方法,做第二步有m2种不同的方法,,做第n步有m n种不同的方法,那么完成这件事共有N = m i Xm2X —>mn 种不同的方法,这一原理叫做乘法原理。

公式:阶乘公式n! = n (n -1) (n -2^13 2 1,规定0!= 1;

全排列公式P n n = n!

选排列公式仁⑴-叽泗…“占、PJcW

n丨

圆排列:n个不同元素不分首位围成一个圆圈达到圆排列,则排列数为:(n -1)!

n

组合数公式c n" P m n(n-1)( n-2川|( n-m 1) n!

P m m! m!( n-

m)!

规定C0 =1

n -m

n

m m mJ 0 1 2 n n、

C n 1 = G ' C n 、C n ' C n ' C n C n = 2)

提示:(1)全排列问题和选排列问题,都可根据乘法原理推导出来。

(2)书写方式:戌记为P (n,r); C;记为C (n,r)。

加法原理例题:图1中从A点走到B点共有多少种方法?(答案:4+ 2+ 3 = 9)

乘法原理例题:图2中从A点走到B点共有多少种方法?(答案:4X 6= 24)

加法原理与乘法原理综合:图3、图4中从A走到B共有多少种方法?(答案:28、42)

B

注意:在信息学奥赛中,有许多只需计数而不需具体方案的问题,都可以通过思维转换或方法转 换,最后变为两类问题:一类是转变为排列组合问题,另一类是转变为递推公式问题。因此对于加法 原理、乘法原理、排列、组合等知识,需要非常熟练,以达到简化问题的目的。 加法原理、乘法原理、排列、组合例题:

1. ( 1)用数字0、1、2、3能组成多少个三位数? ( 2)要求数字不能重复, 又能组成多少个三位数?

(提示:(1)先确定百位数,只能是 1、2、3之间的数字;再确定十位数,可以为 0、1、2、3任 何一个;最后确定个位数,可以为

0、1、2、3任何一个。根据乘法原理,共有

3X 4X 4 = 48个。

(2)同理,先确定百位数、再确定十位数、最后确定个位数,根据乘法原理,共有 3X 3X 2个)

2. 国际会议洽谈贸易,有 5家英国公司,6家日本公司,8家中国公司,彼此都希望与异国的每个公 司单独洽

谈一次,问需要安排多少个会谈场次?

(提示:共分为中英、中日、英日会谈三类,对于中英会谈,先选定中方公司有

8种选法,在选

定英方公司有 5种选法,故根据乘法原理有 5X &同理中日8X6;英日5X 6;总的会谈:118)

3. 有编号为1、2、3、4、5的五本书需要摆放在书架上,问有多少种不同的摆放方案数。

(提示:此题为全排列,故摆放方案总数为

P (5,5)=5!=120种。也可以按乘法原理思考,即摆放第

一本书有5种选择,摆放第二本数有 4种选择,……,最后结果为 5X 4 X 3 X 2X 1即5!)

4. 有编号为1、2、3、4、5的五本书需要任选 3本书摆放在书架上,问有多少种不同方案。

(提示:可根据选排列公式计算,总数为 P (5,3)。也可以根据乘法原理计算,答案为 5X 4X 3= 60)

5. 有编号为1、2、3、4、5的五本书需要任选 3本书,问有多少种方法。

5 4 3

(提示:此题为组合问题,答案为 c 3二5

= 10)

5

3!

6. 五种不同颜色的珠子串成一圈项链,问有多少种不同的方法。

(提示:此题属于圆排列问题,答案为( 5- 1)!= 24)

7. 把两个红色球、两个蓝色球、三个黄色球摆放在球架上,问有多少种方案。

(提示:此题为排列问题。摆放方案总数为( 2+ 2+ 3 )!种,但是两个红球一样,所以要除以 2!,

同理两个蓝球,除以 2!,三个黄球,除以 3!,即摆放方案总数为

(2

+2*

3)!

=210 )

2声2严3!

8. 有男女各5人,其中3对是夫妻,他们坐成一排,若每对夫妻必须相邻而坐,问有多少种方法?

(提示:因为 3对夫妻必须相邻而坐,因此可以将每对夫妻看为一个整体进行排列,这样排列总 数为(7!)种方法,又因为每对夫妻可以可以左右调换位置,因此总的方案为(

7! X 2X 2X 2))

9. ( 1)把3个相同的球放到4个不同颜色的盒子中去,问有多少种方法?

(2)把4个相同的球放到3个不同颜色的盒子中去,问有多少种方法? (3 )推广开来,把 R 个相同的球放到 N 个不同颜色的盒子中去,问有多少种方法? (提示:这是允许重复组合的典型模型。 ) (解答(1) : 3个球放入4个不同颜色盒子的分法共有

3、0、0、0; 1、2、0、0; 1、1、1、0三

A

图3

类;对于第一类3、0、0、0的方法,共有P4种方法,但是有3个0是一样的,所以应该除以P3 ,

4/P33种,同理,第二种分法的方法数为p4/p2,第三种分法的方法即第一类分法的方法数为P

数为F/P3,所以总共的方法数为(P4/P3+ P4/P2+ P:/戌)种。

解答(2)自行求解。

解答(3):这一类问题,我们称为重复组合问题,其求解公式为C(n+r-1,r)。请记住该公式即可。)排列组合练习习题:

1.有5本日文书、7本英文书、10本中文书。问(1 )从中任取2本书有多少种方案?(2)从中取2

本相同文字的书有多少种方案?(3)从中取2本不同文字的书有多少种方案?

(提示:此题为组合问题。答案分别为:C;.710、C;? C;? C0、C:7.10-2; - C; - C10))2.把八个“车”放在8X 8的国际象棋棋盘上,如果它们两两均不能互吃(即在任何一行、任何一列

都只有一个“车”),那么称八个“车”处于一个安全状态。问共有多少种不同的安全状态?

(提示:乘法原理。先在第一行放置一个“车” ,有8种选法,再在第二行放置一个“车”,还有7 种选法,同理……,总共有8 X 7 X-X 2 X 1, 即卩8!种不同的安全状态。)

3.从1?300之间任取3个不同的数,使得这3个数的和正好被3除尽,问有多少种方案?

(提示:1?300之间的数被3除的余数共有三类,分别是余数为0、余数为1、余数为2,每类各

100个数。任取3个数且这3个数相加的和正好被3除尽的情况只能是以下四种情况之一:余数为0+ 1 + 2; 0+ 0+ 0; 1 + 1+ 1; 2 + 2+ 2。再根据乘法原理和加法原理即可求解。

答案为:100X 100X 100+ 100X 99X 98+ 100X 99X 98+ 100X 99X 98)

4.5对夫妇围绕圆桌坐下吃饭,共有多少种方案?如果要求夫妇必须坐在一起,又有多少种方案?

(提示:此题为圆排列问题。第一问的答案为(10- 1)!。对于第二问,因为夫妇必须坐在一起,因此可以将每对夫妇看为一个整体先行进行圆排列,排列方案为(5 —1) !,又因为每对夫妇可以左右交换位置,因此总的排列方案为(5—1)! X 2X 2 X 2 X 2X 2。)

5.N个男同学和N个女同学围绕圆桌坐下,要求男女必须交替就座,问共有多少种就座方法?

(提示:先经这N个男同学进行圆排列,方案为(N —1)!,然后每个女同学依次坐入到两个男同学中间,第一个女同学有N个位置可以选,第二个女同学有N- 1个位置可以选,依此类推。根

据乘法原理,所有的就座方案为(N—1) ! X N !)

6.8人站成一排排队,如果其中的甲和乙两人要求一定站在一起,问有多少种排队方法?如果甲和乙

两人要求一定不站在一起,又有多少种方法?

(提示:第一问中,甲和乙一定站在一起,因此可以先将此二人看为一个整体,则排队方法为7!, 又因为甲和乙可以交换位置,因此总的方案为7!X 2。对于第二问,则用8个人的总排队方案数减去甲和乙站在一起的方案数即可,答案为8! —7! X 2。)

7.有N个男同学和M个女同学站成一排,其中这M个女同学要求站在一起,问共有多少种排队方法?

(提示:排列问题+乘法原理。分两步:第一,先将这M个女同学看成一个整体排列;第二,再

将这M个女同学再排列。然后根据乘法原理即可求得。答案为:(N + 1)! X M !)

8.一个长度为N + M个字符的01字符串,问其中有N个1的字符串有多少个?

(提示:组合问题。现有N + M个字符,如果把1看作取字符,把0看作不取字符,那么其中有N 个1的字符串即相当于从N + M个字符中,任取N个字符的组合。答案为: C (N + M , N))9.一个N*M (N表示行,M表示列)的网格,从左上角(1, 1)点开始走到右下角(N, M)点,每次只能向右

或者向下走,问有多少种不同的路径。

(方法一:从(1 , 1)点走到(N , M )点,无论如何走一共都要走(N —1) + ( M —1)步,其中N —1步向右走,M —1步向下走,因为只有两种走法,不妨用二进制表示走路

方式,1表示向

右走,0表示向下走。则可用一个长度为( N + M —2)的二进制串来表示

走路方法,其中如果出现了N —1个1,则表示找到了

一种路径。从而把题目转化为求长度为N+ M —2的2进制串中

有N —1个1的个数,即求组合数学公式C ( N + M —2, N —1)

的值。

方法二:对本题稍加分析就能发现,要到达棋盘上的某个点,只能从该点的上边过来,或者从该点的左边过来,根据加法原理,要到达该点的路径数目,就等于到达该点上点的路径与该点左点

的路径数目之和,因此我们可以按照逐行递推的方法求出从起点到终点的路径数目。上角第

初始化,左一个元素值为1,其它点的值为上点与左点的和。)

对于如右图的网格,用方法一的答案为 C (4 + 3, 3)= 35;

用方法二逐行递推的方法得到网格上的数字,最后答案也为35。

比较两种方法,当数据较小时,采用公式一比较直接,但如果数据较大时,公式一的乘法运算量较大,这时可考虑用方法二逐行递推求得答案。

10.在上题中,若规定N

坐标(a,b)恒满足a

(测试数据:N = 4,M = 5; 答案:)

11.在上上题中,如果其中有X个点设置有障碍而无法通过,问有多少条路径?其中X的值以及这X 个点的坐标

由键盘输入。

(测试数据:N = 5,M = 4,X = 2,这2个障碍点坐标为(2,3)和(4,2);答案:)

12.一个由N个0和N个1组成的01字符串,要求从左往右,1的个数始终不少于0的个数的字符串共有多少

个?如N = 1时,只有字符串10;如N = 2时,有1100、1010两个字符串;如N = 3时,有111000、110100、110010、101100、101010 五个字符串。

(提示:该字符串的长度为2N,其中规定有N个1,即相当于从2N个字符中取出N个字符,方

案数为C (2N , N)。该题还规定从左往右,1的个数始终不少于0的个数,那么在 C (2N , N ) 个方案中,必定有一些排列方案不符合要求,那么是哪些不符合要求呢?我们看N = 2的例子,此时所有的排列方案有0011、0101、0110、1001、1010、1100六种,其中只有1010和1100两种方案符合要求,为什么呢?实际上,在N = 2时,即有N个1,这样,我们将任意一个0填充

到这N个1中的方案数有N + 1种,如下图有①、②、③三个格子可以填充0,但是要保证所有

的0总在1之后,因此也就只有③的位置符合要求(如1100和1010我们都认为是所有的0在1 的右边,而1001则有一个0不在1的右边),即只有C (2N , N )的1/( N + 1)种方案符合要求。所以答案为:C (2N , N)/( N + 1))。该数列称为Catalan数列,其数列为1、2、5、14、

42

① 1 ② 1 ③

(举一反三:一个由N个0和N个1组成的01字符串,要求从左往右,1的个数始终不多于0的个数的字符串共有多少个?

同理:相当于1的位置只能排在所有0的位置之后,因此个数同样为:C (2N , N) / ( N + 1)。)

13.用N个A和N个B排列成一个字符串,要求从左往右的任意一位,A的个数不能少于B的个数,

问有多少种排列方案。

14.有2N个顾客排队购买一种产品,该产品的售价为5元,其中N个顾客手持5元的货币,其余N

个顾客手持10元货币。由于售货员手中没有零钱找零,因此售货员必须将这2N个顾客按照一定

的次序排好队,问有多少种排队方式可以依次顺利发售货品,而不出现无法找零的情况。

15.

学校某年级参加数学、物理、化学的培训,人

数分别是

150、120、100人。

同时培训数学、物理两门课的学生有

21人;同时培训数学、化学的有

16人;

同时培训物理、化学的有8人;三科都培训的有5人。问该年级共有多少人? (提示:对于此类问题,我们可以用一个图示法表示,从图中我们看出,总

人数即为: A + B + C — A n B — B n C — C n A + A n B n C = 150+ 120+

100 —21 — 16— 8 + 5= 330)

排列组合考试题:

16. 在15个同学中准备选出 4名同学参加国际信息学奥林匹克竞赛,其中学生甲和学生乙两人中,至

少有一人必须被选中,问共有多少种选法?

(提示:15人中任意选出4人的总方案为C (15, 4), 15人中选4人并且甲和乙都不选的方案为

C (13, 4),这样答案为:C (15, 4)— C (13, 4))

17. 用A 、B 、C 、D 、E 、F 六个字母进行排列,其字符排列中不出现“

ACE ”或“ DF ”字串的排列方

案有多少种?

(提示:六个字母的总排列方案为 P (6, 6),又因为要求排列的字符串中不得出现 “ACE ”或“DF ”

字串,因此我们可以将“ ACE ”看作一个整体,排列方案为 P (4, 4),将“DF ”看作一个整体, 排列方案

为P

(5, 5), “ ACE ”和“ DF ”同时出现的方案为 P ( 3, 3),所以答案为:P

(6, 6)

—P (4, 4)— P ( 5, 5)+ P (3, 3);即 6! — ( 4! + 5!) + 3!。)

18. 栈的计数。编号分别为1?N (1<=N<=18 )的N 辆列车顺序进入一个栈式结构的站台

(先进后出),

试问这N 辆列车开出车站的所有可能次序有多少种序列。 (此题为NOIP2003年第九届普及组复赛试题第三题)

(分析:我们用1表示进栈,0表示出栈,考虑到列车必须先进栈再出栈,因此从左到右 1的个数

总不少于0的个数(即总是进栈的列车多于或等于出站的列车,否则无列车可以出栈) ,这样问

题就转化为我们已经解决了的问题。答案为: C (2N , N )/( N + 1))

19. 有一排格子排成一排,已知共有8个格子。现有两个不同颜色的球要放在其中,

要求两个球不能相

令邻,问共有多少种摆放方案。

(提示:在所有的摆放方案中,减去两个球相邻的摆放方案,即将此二球看为一个整体,

(注意此

20.

有一排格子排成一

排,已知共有8个格子。现有三个不同颜色的球要放在其中,

要求任意两个球不

能相邻,问共有多少种摆放方案。

(提示:为了方便理解说明,不妨将这三个不同颜色的球编号为 1、2、3号。所有的摆放方案为 p 8

,

减去任意两个球相邻的摆放方案,共有六种情况(即 12、21、13、31、23、32),此时需要注意三

个球相邻的情况,三个球相邻的情况有 123、312、213、321、132、231共六种情况,在减去任意

两个球相邻的情况时,比如减去

12相邻的情况时,三个球相邻的情况

123和312同时被减去了,

同理还有其它五种情况,说明三球相邻的情况各被多减了一次, 所以最后需要加上三球相邻的情况。

答案为:= 120种)

二球可以左右交换位值),因为有六个格子一样,最后需要除以

P 。答案:

PS -2F 77

P 66

=42 种)

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高中排列组合基础题

排列、组合问题基本题型及解法 同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法. 一、相邻问题“捆绑法” 将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法” 该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端). 例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?. 分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2 种方法.则共有52 54A A =440种排法. 三、定位问题“优先法” 指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素. 例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种. 分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个 排在余下的5个位置上,有55A 种方法.则共15 45A A =480种排法.还可以优先排两端 (位置优先). 四、同元问题“隔板法” 例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ×××× 一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列 对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和. 例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( ) (A )210个 (B )300个 (C )464个 (D )600个 分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、13 33A A 个,合计300个,所以选B 例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个? 【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种, 其中0居首位的有314 544C C A 种,故符合条件的五位数共有325314 555544C C A C C A =11040个. 【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的. ①不含0的:由三个奇数字和两个偶数字组成的五位数有325 545C C A 个; ②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法, 再选三个奇数数与一个偶数数字全排放在其他数位上,共有3141 5444C C A A 种排法. 综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +3141 5444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

信息学奥赛基础知识习题(答案版)

信息学奥赛基础知识习题(答案版) 一、选择题(下列各题仅有一个正确答案,请将你认为是正确的答案填在相应的横线上) 1.我们把计算机硬件系统和软件系统总称为 C 。 (A)计算机CPU (B)固 件 (C)计算机系统 (D)微处 理机 2.硬件系统是指 D 。 (A)控制器,器运算 (B)存储器,控制器 (C)接口电路,I/O设备 (D)包括(A)、(B)、(C) 3. 计算机软件系统包括 B 。 A) 操作系统、网络软件 B) 系统软件、应用软件 C) 客户端应用软件、服务器端系统软件 D) 操作系统、应用软件和网络软件4.计算机硬件能直接识别和执行的只有 D 。 (A)高级语言 (B)符号语言 (C)汇编语言 (D)机器语言 5.硬盘工作时应特别注意避免 B 。 (A)噪声 (B)震动 (C)潮 湿 (D)日光 6.计算机中数据的表示形式是 C 。 (A)八进制 (B)十进制 (C)二进 制 (D)十六进制

7.下列四个不同数制表示的数中,数值最大的是 A 。 (A)二进制数11011101 (B)八进制数334 (C)十进制数219 (D)十六进制 数DA 8.Windows 9x操作系统是一个 A 。 (A)单用户多任务操作系统 (B)单用户单任务操 作系统 (C)多用户单任务操作系统 (D)多用户多任务操 作系统 9.局域网中的计算机为了相互通信,必须安装___B__。 (A)调制解调器(B)网卡(C)声卡(D)电视卡 10.域名后缀为edu的主页一般属于__A____。 (A)教育机构(B)军事部门(C)政府部门(D)商业组织 11. 在世界上注册的顶级域名是__A____。 (A)hk(B)cn(C)tw(D) 12.计算机能够自动、准确、快速地按照人们的意图进行运行的最基本思想是( D )。 (A)采用超大规模集成电路(B)采用CPU作为中央核心部件 (C)采用操作系统(D)存储程序和程序控制 13.设桌面上已经有某应用程序的图标,要运行该程序,可以 C 。 (A)用鼠标左键单击该图标 (B)用鼠标右键单击该 图标 (C)用鼠标左键双击该图标 (D)用鼠标右键双击该 图标

高中排列组合练习题[1]

高二数学排列与组合练习题 黎岗 排列练习 1、将3个不同的小球放入4个盒子中,则不同放法种数有() A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于() A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数() A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是() A、2160 B、120 C、240 D、720 5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且 合唱节目不能相邻,则不同排法的种数是() A、 B、 C、 D、 6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() A、 B、 C、 D、 7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有()

A、24 B、36 C、46 D、60 8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是() A、B、 C、D、 答案: 1-8 BBADCCBA 一、填空题 1、(1)(4P 84+2P 8 5)÷(P 8 6-P 9 5)×0!=___________ (2)若P 2n 3=10P n 3,则n=___________ 2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为 __________________________________________________________________ 3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法。 4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成 _________种不同币值。 二、解答题 5、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数, (1)在下列情况,各有多少个?

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

信息学奥赛基础知识提纲

信息学奥赛基础知识提纲 (2014年9月) 1 计算机系统 1-1概述 一个完整的计算机系统包括硬件系统和软件系统两大部分,必须具有五大功能:数据传送功能、数据存储功能、数据处理功能、操作控制功能、操作判断功能。它的工作特点是:运算速度快、运算精度高、记忆能力强、通用性广、自动运算。 计算机按照规模可分为:巨型机、大型机、中型机、小型机、微型机、单片机等几种类型。根据用途不同分为通用机和专用机。 硬件指的是计算机的设备实体;软件通常泛指各类程序和文件。软硬件的关系:硬件是软件的基础。软件是硬件的扩充与完善。硬件与软件在逻辑上是等价的。 1946年,世界上第一台计算机诞生于宾夕法尼亚大学,称为ENIAC 。 1949年,第一台存储计算机EDSAC,英国剑桥大学威尔克斯(Wilkes )设计和制造的。 1951年,第一台商用计算机是UNIVAC 。 1-2 硬件系统 1-2-1 冯·诺伊曼(J.von Neumann )机:美籍匈牙利数学家 现代计算机的基本结构被称为冯·诺伊曼结构。它的主要特点是储存程序的概念: (1) 采用二进制形式表示数据和指令。 (2) 将程序(包括操作指令和操作数)事先存入主存储器中,使计算机在工作时能够自 动高速地从存储器中取出指令加以执行。 (3) 由运算器、存储器、控制器、输入设备、输出设备五大基础部件组成计算机系统。 冯·诺伊曼机 运 算 器存 储 器 输出设备 输入设备 控 制 器控 制 台 控制信号请 求 信 号 请 求 信 号 控制信号结 果 程序 反馈信息 操作指令 地址 指令

1-2-2 计算机的总线结构 计算机的各个部件需要以某种方式互联,进行数据交换。最常见的互联结构就是总线互联结构和多总线互联结构。总线是一种连接多种设备的信息传递通道,实际上是一组信号线。 典型的计算机总线结构由内部总线和系统总线组成。 (1) 内部总线:用于连接CPU 内部的各个模块。 (2) 系统总线:又称外部总线,用于连接CPU 、存储器和输入输出设备。系统总线的信 号线分为三类:数据线、地址线和控制线。 数据线(Data Bus ):数据总线的宽度就是指组成数据总线的信号线的数目,它决定了在该总线上一次可以传送的二进制位数。 地址线(Address Bus ):用以传递地址信息,来指示数据总线上的数据来源和去向。地址线的数目决定了能够访问空间的大小。 控制线(Control Bus ):用来控制数据总线和地址总线。 某SRAM 芯片,其存储容量为64K*16位,则该芯片的地址线数目和数据线的数目? 1-2-3 中央处理器(Central Processor Unit ) 1、CPU 包含了冯机五大部件中的运算器(即加法器)和控制器。 运算器:对信息加工和处理的部件,主要完成各种算术运算和逻辑运算。 控制器:通过读取各种指令,并进行翻译、分析,而后对各部件作出相应的控制。 2、CPU 主要由三大部分组成:寄存器组、算术逻辑单元(ALU )和控制单元(控制器)。 寄存器组:分为通用寄存器(通用寄存器、数据寄存器、地址寄存器、标志寄存器)和状态控制寄存器(程序计数器PC 、指令寄存器IR 、存储器地址寄存器MAR 、存储器缓冲寄存器MBR )以及程序状态字PSW 。 算术逻辑单元ALU : 寄存器、存储器、I/O 设备把待处理的数据输入到ALU 。 控制单元:控制器的基本功能就是时序控制和执行控制。根据当前运行的程序,控 制器使CPU 按一定的时序关系执行一序列 的微操作从而完成程序。 时钟信号:控制器根据时钟电路产生的时钟信号进行定时,以控制各种操作按指定的时序进行。计算机的基本功能是执行程序,而程序由一连串的指令组成;计算机的执行过程由一连串的指令周期组成,每一指 令周期完成一条指令。这些指令周期又可进一步细分为更小的单元,直到微操作uop-----CPU 完成的基本的原子操作。 时钟脉冲发生器的晶振频率成为机器的主频,它产生的时钟脉冲信号是整个机器的时间基准,其周期T 称为该计算机的时钟周期。 完成一个微操作的时间就称为CPU 周期(机器周期)。执行一条机器指令所需的时间称为一个指令周期。 3、指令系统(精简指令系统):操作类指令和控制类指令 一条指令:操作码 + 地址码 一条机器指令的执行:取指令――分析指令――执行指令 4、CPU 的主要指标有: 字长:CPU 一次所能处理的二进制位数。它决定着寄存器、加法器、数据总线等的位数。主频:计算机的时钟频率。(即内频)单位:MHz 或GHz 。 运算速度:CPU 每秒钟能完成的指令数MIPS 。运算速度=1÷ 执行一条机器指令所需的时间

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

排列组合基本知识

有关排列组合的基本知识 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列,当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!

(三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力 (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)

信息学奥赛一本通题解目录-信息学奥赛取消

信息学奥赛一本通题解目录:信息学奥赛取消 第1章 数论1.1 整除1.2 同余1.3 最大公约数1.3.1 辗转相除法1.3.2 进制算法1.3.3 最小公倍数1.3.4 扩展欧几里得算法1.3.5 求解线性同余方程1.4 逆元1.5 中国剩余定理1.6 斐波那契数1.7 卡特兰数1.8 素数1.8.1 素数的判定1.8.2 素数的相关定理1.8.3 Miller-Rabin素数测试1.8.4 欧拉定理1.8.5 PollardRho算法求大数因子1.9

Baby-Step-Giant-Step及扩展算法1.10 欧拉函数的线性筛法1.11 本章习题第2章群论2.1 置换2.1.1 群的定义2.1.2 群的运算2.1.3 置换2.1.4 置换群2.2 拟阵2.2.1 拟阵的概念2.2.2 拟阵上的最优化问题2.3 Burnside引理2.4 Polya定理2.5 本章习题第3章组合数学3.1 计数原理3.2 稳定婚姻问题3.3 组合问题分类3.3.1 存在性问题3.3.2 计数性问题3.3.3 构造性问题3.3.4 最优化问题3.4 排列3.4.1

选排列3.4.2 错位排列3.4.3 圆排列3.5 组合3.6 母函数3.6.1 普通型母函数3.6.2 指数型母函数3.7 莫比乌斯反演3.8 Lucas定理3.9 本章习题第4章概率4.1 事与概率4.2 古典概率4.3 数学期望4.4 随机算法4.5 概率函数的收敛性4.6 本章习题第5章计算几何5.1 解析几何初步5.1.1 平面直角坐标系5.1.2 点5.1.3 直线5.1.4 线段5.1.5 多边形5.1.6

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

信息学奥赛试题汇编

第19届全国青少年信息学(计算机)奥林匹克BASIC 试题说明: 请考生注意,所有试题的答案要求全部做在答题纸上。 一、基础知识单项选择题(共10题,每小题3分,共计30分) 1、存储容量2GB相当于() A、2000KB B、2000MB C、2048MB D、2048KB 2、输入一个数(可能是小数),再按原样输出,则程序中处理此数的变量最好使用() A、字符串类型 B、整数类型 C、实数类型 D、数组类型 3、下列关于计算机病毒的说法错误的是() A、尽量做到使用正版软件,是预防计算机病毒的有效措施。 B、用强效杀毒软件将U盘杀毒后,U盘就再也不会感染病毒了。 C、未知来源的程序很可能携带有计算机病毒。 D、计算机病毒通常需要一定的条件才能被激活。 4、国标码的“中国”二字在计算机内占()个字节。 A、2 B、4 C、8 D、16 5、在计算机中,ASCⅡ码是( )位二进制代码。 A、8 B、7 C、12 D、16 6、将十进制数2013转换成二进制数是( )。 A、11111011100 B、11111001101 C、11111011101 D、11111101101 7、现有30枚硬币(其中有一枚假币,重量较轻)和一架天平,请问最少需要称几次,才能找出假币( )。 A、3 B、4 C、5 D、6 8、下列计算机设备中,不是输出设备的是()。 A、显示器 B、音箱 C、打印机 D、扫描仪 9、在windows窗口操作时,能使窗口大小恢复原状的操作是() A、单击“最小化”按钮 B、单击“关闭”按钮 C、双击窗口标题栏 D、单击“最大化”按钮 10、世界上第一台电子计算机于1946年诞生于美国,它是出于()的需要。 A、军事 B、工业 C、农业 D、教学二、问题求解(共2题,每小题5分,共计10分) 1、请观察如下形式的等边三角形: 边长为 2 边长为4 当边长为2时,有4个小三角形。 问:当边长为6时,有________个小三角形。 当边长为n时,有________个小三角形。 2、A、B、C三人中一位是工人,一位是教师,一位是律师。已知:C比律师年龄大,A和教师不同岁,B比教师年龄小。问:A、B、C分别是什么身分? 答:是工人,是教师,是律师。 三、阅读程序写结果(共4题,每小题8分,共计32分) 1、REM Test31 FOR I =1 TO 30 S=S+I\5 NEXT I PRINT S END 本题的运行结果是:( 1) 2、REM Test32 FOR I =1 TO 4 PRINT TAB (13-3*I); N=0 FOR J =1 TO 2*I-1 N=N+1 PRINT N; NEXT J PRINT NEXT I END 本题的运行结果是:( 2)

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

(完整)信息学奥赛(NOIP)必看经典书目汇总,推荐文档

信息学奥赛(NOIP)必看经典书目汇总! 小编整理汇总了一下大神们极力推荐的复习资料!(欢迎大家查漏补缺) 基础篇 1、《全国青少年信息学奥林匹克分区联赛初赛培训教材》(推荐指数:4颗星) 曹文,吴涛编著,知识点大杂烩,部分内容由学生撰写,但是对初赛知识点的覆盖还是做得相当不错的。语言是pascal的。 2、谭浩强老先生写的《C语言程序设计(第三版)》(推荐指数:5颗星) 针对零基础学C语言的筒子,这本书是必推的。 3、《骗分导论》(推荐指数:5颗星) 参加NOIP必看之经典 4、《全国信息学奥林匹克联赛培训教程(一)》(推荐指数:5颗星) 传说中的黄书。吴文虎,王建德著,系统地介绍了计算机的基础知识和利用Pascal语言进行程序设计的方法 5、《全国青少年信息学奥林匹克联赛模拟训练试卷精选》 王建德著,传说中的红书。 6、《算法竞赛入门经典》(推荐指数:5颗星) 刘汝佳著,算法必看经典。 7、《算法竞赛入门经典:训练指南》(推荐指数:5颗星) 刘汝佳著,《算法竞赛入门经典》的重要补充 提高篇 1、《算法导论》(推荐指数:5颗星) 这是OI学习的必备教材。

2、《算法艺术与信息学竞赛》(推荐指数:5颗星) 刘汝佳著,传说中的黑书。 3、《学习指导》(推荐指数:5颗星) 刘汝佳著,《算法艺术与信息学竞赛》的辅导书。(PS:仅可在网上搜到,格式为PDF)。 4、《奥赛经典》(推荐指数:5颗星) 有难度,但是很厚重。 5、《2016版高中信息学竞赛历年真题解析红宝书》(推荐指数:5颗星) 历年真题,这是绝对不能遗失的存在。必须要做! 三、各种在线题库 1、题库方面首推USACO(美国的赛题),usaco写完了一等基本上就没有问题,如果悟性好的话甚至能在NOI取得不错的成绩. 2、除此之外Vijos也是一个不错的题库,有很多中文题. 3、国内广受NOIP级别选手喜欢的国内OJ(Tyvj、CodeVs、洛谷、RQNOJ) 4、BJOZ拥有上千道省选级别及以上的题目资源,但有一部分题目需要购买权限才能访问。 5、UOZ 举办NOIP难度的UER和省选难度的UR。赛题质量极高,命题人大多为现役集训队选手。

高中排列组合知识点汇总及典型例题

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2.规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !!10 =n C 规定: 组合数性质:.2n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空 法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。

相关主题
文本预览
相关文档 最新文档