当前位置:文档之家› 计算机图形学实验指导书

计算机图形学实验指导书

计算机图形学实验指导书
计算机图形学实验指导书

实验1 考察Visual Basic的图形能力实验目的:通过本实验了解Visual Basic的基本图形能力,掌握建立图形坐标系的方法;掌握图形控件和图形方法;能绘制简单几何图形。

实验内容:

1、在窗体上放置一个图形框,两个命令按钮,设置标题为“画图”和“返回”,如下图所示。单击“画图”按钮,在图形框内绘制参数方程的图形;当单击“返回”按钮,程序结束。

参考程序如下:

Const pi = 3.14159

Dim a, e, f

Dim x1, y1, x2, y2, d As Integer

d = 120

Picture1.Cls

Picture1.Scale (0, 0)-(640, 480)

For a = 0 To 4 * pi Step pi / 60

e = d * (1 + 1 / 2 * Cos(2.5 *

a))

x1 = 320 + e * Cos(a)

x2 = 320 + e * Cos(a + pi / 6)

y1 = 240 - e * Sin(a)

y2 = 240 - e * Sin(a + pi / 8)

Picture1.Line (x1, y1)-(x2, y2), QBColor(12)

Next a

2、编一个循环程序,用line控件对象在屏幕上随机产生20条长度、颜色、宽度不同的直线,如下图所示(提示:在窗体上要先设置一个line控件对象,使其Index值为0)。

参考程序如下:

Private Sub Form_Load()

For i = 1 To 20

Load Line1(i) ‘添加控件

Line1(i).BorderWidth = Rnd *

10 + 1

Line1(i).BorderColor = QBColor(Rnd

* 15)

Line1(i).X1 = Form1.Width *

Rnd

Line1(i).X2 = Form1.Width * Rnd

Line1(i).Y1 = Form1.Height * Rnd

Line1(i).Y2 = Form1.Height * Rnd

Line1(i).Visible = True

Next i

End Sub

3、用Circle方法绘制如下图所示图形。

参考程序如下:

Private Sub Command1_Click()

For i = 1 To 20

x = i * 100 + Width / 4

y = Form1.Height / 2

r = i * 50

Circle (x, y), r

Next i

End Sub

4、设计一个程序以动画方式显示如下图

所示图形。

参考程序如下:

Private Sub Form_Click()

Scale (0, 0)-(20, 20)

For i = 0 To 7 Step 0.1

x = 10 + i * Cos(i)

y = 8 + i * Sin(i)

Line (10, 8)-(x, y)

Next i

End Sub

5、在窗体上用Pset画10个随机点,用Line画10条随机线,用Circle画10个随机圆,随机值应与窗体的宽度和高度相关。点的大小、线的粗细以及颜色均随机产生。也可选择产生自定义的图案。

请写出相应程序,试验运行并捕捉结果图片,要求图片上要有自己的名字。

实验2 计算机图形变换程序设计

实验目的:通过本实验了解计算机图形变换的基本原理,掌握计算机图形变换的基本方法,能完成简单的图形变换程序设计。

实验内容:

1、设计一个如图所示的图形,然后可以将其任意平移。

参考程序如下:

Dim x1%, x2%, y1%, y2%

‘---------------------------------------------

Private Sub Form_Load()

'请先将窗体的AutoReDraw属性设为True

Scale (-320, 240)-(320, -240)

Cls

Line (-320, 0)-(320, 0) '画坐标轴

Line (0, 240)-(0, -240)

x1 = 0: x2 = 100

y1 = 0: y2 = 80

Line (x1, y1)-(x2, y2), QBColor(12), B

End Sub

‘---------------------------------------------

Private Sub menuh_Click() ‘水平平移过程

x = InputBox("请输入水平平移距离", "水平平移", 10)

Line (x1, y1)-(x2, y2), QBColor(7), B

x1 = x1 + x

x2 = x2 + x

Line (x1, y1)-(x2, y2), QBColor(12), B

End Sub

‘---------------------------------------------

Private Sub menur_Click() ‘图形还原过程

Form_Load

End Sub

‘---------------------------------------------

Private Sub menuv_Click() ‘垂直平移过程

y = InputBox("请输入垂直平移距离", "垂直平移", 10)

Line (x1, y1)-(x2, y2), QBColor(7), B

y1 = y1 + y

y2 = y2 + y

Line (x1, y1)-(x2, y2), QBColor(12), B

End Sub

2、设计一个如图所示的图形,然后可以将其任意旋转。

参考程序如下:

Dim x!(1 To 4), y!(1 To 4), alpha!

‘---------------------------------------------

Private Sub Form_Load()

'请先将窗体的AutoReDraw属性设为True

Scale (-320, 240)-(320, -240)

Cls

Circle (0, 0), 100

Line (-320, 0)-(320, 0) '画坐标轴

Line (0, 240)-(0, -240)

x(1) = 0: x(2) = 100: x(3) = 100: x(4) = 0

y(1) = 0: y(2) = 0: y(3) = 80: y(4) = 0

For i = 1 To 3

Line (x(i), y(i))-(x(i + 1), y(i + 1)), QBColor(12)

Next i

End Sub

‘-------------------------------------------

Private Sub menuc_Click() ‘图形旋转过程

alpha = Val(InputBox("请输入旋转角度", "旋转", 10)) * 3.14159 / 180

For i = 1 To 3

Line (x(i), y(i))-(x(i + 1), y(i + 1)), QBColor(7)

Next i

For i = 1 To 4

xx! = x(i) * Cos(alpha) - y(i) * Sin(alpha)

yy! = x(i) * Sin(alpha) + y(i) * Cos(alpha)

x(i) = xx

y(i) = yy

Next i

For i = 1 To 3

Line (x(i), y(i))-(x(i + 1), y(i + 1)), QBColor(12)

Next i

End Sub

‘---------------------------------------------

Private Sub menur_Click() ‘图形还原过程

Form_Load

End Sub

3、设计一个程序,使任意位置的一个矩形以其左下角为中心旋转15度。请写出相应程序,试验运行并捕捉结果图片,要求图片上要有自己的名字。

实验3 计算机图形动画程序设计

实验目的:通过本实验了解计算机图形动画的基本原理,掌握控制计算机图形有计划的移动或改变形状和尺寸的方法,初步掌握计算机图形动画的程序设计。

实验内容:

1、移动矩形。

(1)设计窗体如下:

其中各对象的部分属性如下:

矩形(Shape控件)

名称:shpCard

梅花(Image控件)

名称:imgClub

方块(Image控件)

名称:imgDiamond

红心(Image控件)

名称:imgHeart

黑桃(Image控件)

名称:imgSpade

标签(Label控件)

名称:lblEnter

按钮(Command控件)

名称:cmdClose

底条(PictureBox控件)

名称:picStatus

注意:所有的Icon文件位于\Program Files\Microsoft Visual

Studio\Common\ Graphics\ Icons\Misc

文件夹中

(2)设计代码如下:

Private Sub cmdClose_Click()

Unload Me

End Sub

Private Sub Form_Load()

shpCard.Left = -500

End Sub

Private Sub imgClub_Click()

shpCard.Left = imgClub.Left

picStatus.Cls

picStatus.Print "选中: 梅花"

End Sub

Private Sub imgDiamond_Click() shpCard.Left = imgDiamond.Left

picStatus.Cls

picStatus.Print "选中: 方块"

End Sub

Private Sub imgHeart_Click()

shpCard.Left = imgHeart.Left

picStatus.Cls

picStatus.Print "选中: 红心"

End Sub

Private Sub imgSpade_Click()

shpCard.Left = imgSpade.Left

picStatus.Cls

picStatus.Print "选中: 黑桃"

End Sub

2、蝴蝶飞舞。

(1)设计窗体如下:

其中各对象的部分属性如下:

三个图片框(PictureBox控件)

名称分别为Btrfly、btrfly1和btrfly2;一个按钮(Command控件)

名称:Okay;

一个计时器(Timer控件)

Interval值:200。

窗体设计好之后,要缩小到下面两个图片框不可见为宜。

(2)设计代码如下:

Dim flap As Integer

Private Sub butterfly()

' 在两幅位图之间进行替换。

If flap = 0 Then

btrfly.Picture = btrfly1.Picture

flap = 1

Else

btrfly.Picture = btrfly2.Picture

flap = 0

End If

End Sub

Private Sub Okay_Click()

Unload me

End Sub

Private Sub Timer1_Timer()

' 注意:计时器的Interval属性

' 决定了蝴蝶翅膀扇动频率的快慢。

butterfly

End Sub

3、自行设计。

设计要求:窗体任意,图形任意,控制方式任意。

要求:画出窗体示意图,写出程序代码和运行说明,试验运行并捕捉结果图片,要求图片上要有自己的名字。

计算机图形学实验内容汇总

计算机图形学实验 肖加清

实验一图形学实验基础 一、实验目的 (1)掌握VC++绘图的一般步骤; (2)掌握OpenGL软件包的安装方法; (3)掌握OpenGL绘图的一般步骤; (4)掌握OpenGL的主要功能与基本语法。 二、实验内容 1、VC++绘图实验 (1)实验内容:以下是绘制金刚石图案。已给出VC++参考程序,但里面有部分错误,请改正,实现以下图案。 N=3 N=4

N=5 N=10 N=30

N=50 (2)参考程序 //自定义的一个类 //此代码可以放在视图类的实现文件(.cpp) 里class CP2 { public: CP2(); virtual ~CP2(); CP2(double,double); double x; double y; }; CP2::CP2() { this->x=0.0; this->y=0.0; } CP2::~CP2() { } CP2::CP2(double x0,double y0) { this->x=x0; this->y=y0; }

//视图类的一个成员函数,这个成员函数可以放在OnDraw函数里调用。 //在视图类的头文件(.h)里定义此函数 void Diamond(); //在视图类的实现文件(.cpp)里实现此函数 void CTestView::Diamond() { CP2 *P; int N; double R; R=300; N=10; P=new CP2[N]; CClientDC dc(this); CRect Rect; GetClientRect(&Rect); double theta; theta=2*PI/N; for(int i=0;i #include #include #include //定义输出窗口的大小 #define WINDOW_HEIGHT 300

研究生计算机图形学课程室内场景OpenGL--实验报告Word版

《高级计算机图形学》实验报告 姓名:学号:班级: 【实验报告要求】 实验名称:高级计算机图形学室内场景 实验目的:掌握使用OpenGL生成真实感复杂对象的方法,进一步熟练掌握构造实体几何表示法、扫描表示法、八叉树法、BSP树法等建模方法。 实验要求:要求利用OpenGL生成一个真实感的复杂对象及其周围场景,并显示观测点变化时的几何变换,要具备在一个纹理复杂的场景中漫游功能。要求使用到光线跟踪算法、 纹理映射技术以及实时绘制技术。 一、实验效果图 图1:正面效果图

图2:背面效果图 图4:背面效果图

图4:室内场景细节效果图 图5:场景角度转换效果图

二、源文件数据代码: 共6个文件,其实现代码如下: 1、DlgAbout.cpp #include "StdAfx.h" #include "DlgAbout.h" CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialog::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) END_MESSAGE_MAP() 2、FormCommandView.cpp #include "stdafx.h" #include "Tool.h" #include "MainFrm.h" #include "FormCommandView.h" #include "ToolDoc.h" #include "RenderView.h" // Download by https://www.doczj.com/doc/2212921817.html, #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CFormCommandView IMPLEMENT_DYNCREATE(CFormCommandView, CFormView) CFormCommandView::CFormCommandView() : CFormView(CFormCommandView::IDD) { //{{AFX_DATA_INIT(CFormCommandView)

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学实验报告,DOC

欢迎共阅

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握 3. 1.利用 2.加强对 四 { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } voidDDALine(intx0,inty0,intx1,inty1) { glColor3f(1.0,0.0,0.0); intdx,dy,epsl,k; floatx,y,xIncre,yIncre; dx=x1-x0;dy=y1-y0;

x=x0;y=y0; if(abs(dx)>abs(dy))epsl=abs(dx); elseepsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glEnd(); } } { } { } { glutInitWindowSize(400,300); glutInitWindowPosition(100,120); glutCreateWindow("line"); Initial(); glutDisplayFunc(Display); glutReshapeFunc(winReshapeFcn); glutMainLoop(); return0; }

计算机图形学课程设计书

计算机图形学课程设计 书 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课程设计(论文)任务书 理学院信息与计算科学专业2015-1班 一、课程设计(论文)题目:图像融合的程序设计 二、课程设计(论文)工作: 自2018 年1 月10 日起至2018 年1 月12日止 三、课程设计(论文) 地点: 2-201 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟悉Delphi7的使用,理论与实际应用相结合,养成良好的程序设计技能;(2)了解并掌握图像融合的各种实现方法,具备初步的独立分析和设计能力;(3)初步掌握开发过程中的问题分析,程序设计,代码编写、测试等基本方法;(4)提高综合运用所学的理论知识和方法独立分析和解决问题的能力; (5)在实践中认识、学习计算机图形学相关知识。 2.课程设计的任务及要求 1)基本要求: (1)研究课程设计任务,并进行程序需求分析; (2)对程序进行总体设计,分解系统功能模块,进行任务分配,以实现分工合作;(3)实现各功能模块代码; (4)程序组装,测试、完善系统。 2)创新要求: 在基本要求达到后,可进行创新设计,如改进界面、增加功能或进行代码优化。

3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文 (2)论文包括封面、设计任务书(含评语)、摘要、目录、设计内容、设计小结(3)论文装订按学校的统一要求完成 4)参考文献: (1)David ,《计算机图形学的算法基础》,机械工业出版社 (2)Steve Cunningham,《计算机图形学》,机械工业出版社 (3) 5)课程设计进度安排 内容天数地点 程序总体设计 1 实验室 软件设计及调试 1 实验室 答辩及撰写报告 1 实验室、图书馆 学生签名: 2018年1月12日 摘要 图像融合是图像处理中重要部分,能够协同利用同一场景的多种传感器图像信息,输出一幅更适合于人类视觉感知或计算机进一步处理与分析的融合图像。它可明显的改善单一传感器的不足,提高结果图像的清晰度及信息包含量,有利于更为准确、更为可靠、更为全面地获取目标或场景的信息。图像融合主要应用于军事国防上、遥感方面、医学图像处理、机器人、安全和监控、生物监测等领域。用于较多也较成熟的是红外和可见光的融合,在一副图像上显示多种信息,突出目标。一般情况下,图像融合由

计算机图形学实验报告

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include #include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void)

{ glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glVertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre;

计算机图形学实验二

实验报告 课程名称:计算机图形学 实验项目:区域填充算法 实验仪器:计算机 系别:计算机学院 专业:计算机科学与技术 班级姓名:计科1602/ 学号:2016011 日期:2018-12-8 成绩: 指导教师:

一.实验目的(Objects) 1.实现多边形的扫描线填充算法。 二.实验内容 (Contents) 实现多边形的扫描线填充算法,通过鼠标,交互的画出一个多边形,然后利用种子填充算法,填充指定的区域。不能使用任何自带的填充区域函数,只能使用画点、画线函数或是直接对图像的某个像素进行赋值操作;

三.实验内容 (Your steps or codes, Results) //widget.cpp //2016CYY Cprogramming #include"widget.h" #include #include #include using namespace std; #define H 1080 #define W 1920 int click = 0; //端点数量 QPoint temp; QPoint first; int result = 1; //判断有没有结束 int sign = 1; //2为画线 int length = 5; struct edge { int ymax; float x; float dx; edge *next; }; edge edge_; QVector edges[H]; QVector points;//填充用 bool fin = false; QPoint *Queue = (QPoint *)malloc(length * sizeof(QPoint)); //存放端点的数组 Widget::Widget(QWidget *parent) : QWidget(parent) { } Widget::~Widget() { } void Widget::mouseMoveEvent(QMouseEvent *event) { setMouseTracking(true); if (click > 0 && result != 0) { startPt = temp; endPt =event->pos(); sign = 2; update(); } } void Widget::mouseReleaseEvent(QMouseEvent *event) { if (event->button() == Qt::LeftButton) { } else if (event->button() == Qt::RightButton) { sign = 2;

计算机图形学实验指导书1

佛山科学技术学院计算机图形学实验指导书 李晓东编 电信学院计算机系 2011年11月

实验1 直线段的扫描转换 实验类型:设计性 实验类别:专业实验 实验目的 1.通过实验,进一步理解直线段扫描转换的DDA算法、中点bresenham算法及 bresenham算法的基本原理; 2.掌握以上算法生成直线段的基本过程; 3.通过编程,会在C/C++环境下完成用DDA算法、中点bresenham算法及 bresenham算法对任意直线段的扫描转换。 实验设备及实验环境 计算机(每人一台) VC++6.0或其他C/C++语言程序设计环境 实验学时:2学时 实验内容 用DDA算法中点bresenham算法及bresenham算法实现任意给定两点的直线段的绘制(直线宽度和线型可自定)。 实验步骤: 1、复习有关算法的基本原理,明确实验目的和要求; 2、依据算法思想,绘制程序流程图; 3、设计程序界面,要求操作方便; 4、用C/C++语言编写源程序并调试、执行; 5、分析实验结果 6、对程序设计过程中出现的问题进行分析与总结; 7、打印源程序或把源程序以文件的形式提交; 8、按格式要求完成实验报告。 实验报告要求: 1、各种算法的基本原理; 2、各算法的流程图 3、实验结果及分析(比较三种算法的特点,界面插图并注明实验条件) 4、实验总结(含问题分析及解决方法)

实验2 圆的扫描转换 实验类型:设计性 实验类别:专业实验 实验目的 1、通过实验,进一步理解和掌握中点bresenham画圆算法的基本原理; 2、掌握以上算法生成圆和圆弧的基本过程; 3、掌握在C/C++环境下完成用中点bresenham算法圆或圆弧的绘制方法。实验设备及实验环境 计算机(每人一台) VC++6.0或其他C/C++语言程序设计环境 实验学时:2学时 实验内容 用中点(Besenham)算法实现圆或圆弧的绘制。 实验步骤 1.复习有关圆的生成算法,明确实验目的和要求; 2.依据算法思想,绘制程序流程图(注意圆弧生成时的输入条件); 3.设计程序界面,要求操作方便; 4.用C/C++语言编写源程序并调试、执行; 5.分析实验结果 6.对程序设计过程中出现的问题进行分析与总结; 7.打印源程序或把源程序以文件的形式提交; 8.按格式要求完成实验报告。 实验报告要求: 1.分析算法的工作原理; 2.画出算法的流程图 3.实验结果及分析(比较圆与圆弧生成算法的不同) 4.实验总结(含问题分析及解决方法)

计算机图形学课程教学大纲

《计算机图形学》课程教学大纲一、课程基本信息 课程代码:110053 课程名称:计算机图形学 英文名称:Computer Graphics 课程类别:专业课 学时:72 学分: 适用对象:信息与计算科学专业本科生 考核方式:考试(平时成绩占总成绩的30%) 先修课程:高级语言程序设计、数据结构、高等代数 二、课程简介 中文简介: 计算机图形学是研究计算机生成、处理和显示图形的学科。它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据已经成为信息领域的一个重要发展趋势。通过本课程的学习,使学生掌握计算机图形学的基本原理和基本方法,理解图形绘制的基本算法,学会初步图形程序设计。 英文简介: Computer Graphics is the subject which concerned with how computer builds, processes and shows graphics. Its importance has been shown in people’s more and more intensively need for harmony human-machine interface. Graphics user interface has become an important part of software. It is a significant trend to show abstract conception or data in graphics way. Through the learning of this course, students could master Computer Graphics’basic theories and methods,understand graphics basic algorithms and learn how to design basic graphics program. 三、课程性质与教学目的 《计算机图形学》是信息与计算科学专业的一门主要专业课。通过本课程的学习,使学生掌握基本的二、三维的图形的计算机绘制方法,理解光栅图形生成基本算法、几何造型技术、真实感图形生成、图形标准与图形变换等概念和知识。学会图形程序设计的基本方法,为图形算法的设计、图形软件的开发打下基础。 四、教学内容及要求 第一章绪论 (一)目的与要求 1.掌握计算机图形学的基本概念; 2.了解计算机图形学的发展、应用; 3.掌握图形系统的组成。

《计算机图形学实验报告》

一、实验目的 1、掌握中点Bresenham直线扫描转换算法的思想。 2掌握边标志算法或有效边表算法进行多边形填充的基本设计思想。 3掌握透视投影变换的数学原理和三维坐标系中几何图形到二维图形的观察流程。 4掌握三维形体在计算机中的构造及表示方法 二、实验环境 Windows系统, VC6.0。 三、实验步骤 1、给定两个点的坐标P0(x0,y0),P1(x1,y1),使用中点Bresenham直线扫描转换算法画出连接两点的直线。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、使用中点Bresenham直线扫描转换算法实现自己的画线函数,函数原型可表示如下: void DrawLine(CDC *pDC, int p0x, int p0y, int p1x, int p1y); 在函数中,可通过调用CDC成员函数SetPixel来画出扫描转换过程中的每个点。 COLORREF SetPixel(int x, int y, COLORREF crColor ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用DrawLine 函数画出不同斜率情况的直线,如下图:

最后、调试程序直至正确画出直线。 2、给定多边形的顶点的坐标P0(x0,y0),P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)…使用边标志算法或有效边表算法进行多边形填充。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、实现边标志算法或有效边表算法函数,如下: void FillPolygon(CDC *pDC, int px[], int py[], int ptnumb); px:该数组用来表示每个顶点的x坐标 py :该数组用来表示每个顶点的y坐标 ptnumb:表示顶点个数 注意实现函数FillPolygon可以直接通过窗口的DC(设备描述符)来进行多边形填充,不需要使用帧缓冲存储。(边标志算法)首先用画线函数勾画出多边形,再针对每条扫描线,从左至右依次判断当前像素的颜色是否勾画的边界色,是就开始填充后面的像素直至再碰到边界像素。注意对顶点要做特殊处理。 通过调用GDI画点函数SetPixel来画出填充过程中的每个点。需要画线可以使用CDC的画线函数MoveTo和LineTo进行绘制,也可以使用实验一实现的画直线函数。 CPoint MoveTo(int x, int y ); BOOL LineTo(int x, int y ); 实现边标志算法算法需要获取某个点的当前颜色值,可以使用CDC的成员函数 COLORREF GetPixel(int x, int y ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用FillPolygon 函数画出填充的多边形,如下: void CTestView::OnDraw(CDC* pDC) { CTestcoodtransDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc);

计算机图形学课程参考文献

《计算机图形学》课程参考文献 [1 Kenneth R. Castleman, “Digital Image Processing”, Prentice-Hall International,Inc, 1996 [2] James Sharman. The Marching Cubes Algorithm[EB]. https://www.doczj.com/doc/2212921817.html,/. [3] William E. Lorensen, Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algrorithm[J].Computer Graphics, 1987, 21(4). [4] Jan Horn. Metaballs程序[CP]. http://www.sulaco.co.za. [5] 唐泽圣,等.三维数据场可视化[M].北京:清华大学出版社,1999.177-179. [6] 白燕斌,史惠康,等.OpenGL三维图形库编程指南[M].北京:机械工业出版社,1998. [7] 费广正,芦丽丹,陈立新.可视化OpenGL程序设计[M].北京:清华大学出版社,2001. [8] 田捷,包尚联,周明全.医学影像处理与分析[M].北京:电子工业出版社,2003. [9] 三维表面模型的重构、化简、压缩及其在计算机骨科手术模拟中的应用[R]. https://www.doczj.com/doc/2212921817.html,/~yike/uthesis.pdf ; [10] 首套中国数字化可视人体二维图像[DB]. http://www.chinesevisiblehuman. com/ pic/pictype.asp [11] 季雪岗,王晓辉,张宏林,等.Delphi编程疑难详解[M].北京:人民邮电出版社,2000. [12] 郑启华.PASCAL程序设计(第二版)[M].北京:清华大学出版社,1996. [13] 涂晓斌,谢平,陈海雷,蒋先刚.实用微机工程绘图实验教程[M].西南交通大学出版社,2004,4. [14] David F.Rogers.计算机图形学算法基础[M].北京:电子工业出版社,2002. [15] 李信真,车刚明,欧阳洁,封建湖.计算方法[M].西安:西北工业大学出版社,2000. [16] Paul Bourke Polygonising a scalar field [CP]. http://astronomy. https://www.doczj.com/doc/2212921817.html,.au/ ~pbourke/ modelling/polygonise/ [17] 刘骏.Delphi数字图像处理及高级应用[M].北京:科学出版社,2003. [18] 李弼程,彭天强,彭波,等.智能图像处理技术[M].北京:电子工业出版社,2004. [19] Kenneth R.Castleman著,朱志刚,石定机,等译.数字图像处理[M].北京:电子工业出版社,2002. [20] Milan Sonka, Vaclav Hlavac, Roger Boyle.Image Processing, Analysis, and Machine Vision [M].北京:人民邮电出版社,2003. [21] 阮秋奇.数字图像处理学[M]. 北京:电子工业出版社, 2001. [22] 刘宏昆,等.Delphi应用技巧与常见问题[M]. 北京:机械工业出版社, 2003. [23] 张增强,李鲲程,等.专家门诊—Delphi开发答疑300问[M].北京:人民邮电出版社,2003.6.

《计算机图形学》 课程实验指导(1)

《计算机图形学》课程实验指导 一.实验总体方案 1.教学目标与基本要求 (1)掌握教材所介绍的图形算法的原理; (2)掌握通过具体的平台实现图形算法的方法,培养相应能力; (3)通过实验培养具有开发一个基本图形软件包的能力。 2. 实验平台与考核 实验主要结合OpenGL设计程序实现各种课堂教学中讲过的图形算法为主。程序设计语言主要以C/C++语言为主,开发平台为Visual C++。 每次实验前完成实验报告的实验目的、实验内容、实验原理、实验代码四部分并接受抽查,实验完成后完成实验结果、实验体会两部分,本次实验课结束前提交。 3. 实验步骤 (1) 预习教材与实验指导相关的算法理论及原理; (2) 仿照教材与实验指导提供的算法,利用VC+OpenGL进行实现; (3) 调试、编译、运行程序,运行通过后,可考虑对程序进行修改或改进。 二. 实验具体方案 实验预备知识 OpenGL作为当前主流的图形API之一,它在一些场合具有比DirectX更优越的特性。 1)与C语言紧密结合: OpenGL命令最初就是用C语言函数来进行描述的,对于学习过C语言的人来讲,OpenGL是容易理解和学习的。如果你曾经接触过TC的graphics.h,你会发现,使用OpenGL 作图甚至比TC更加简单; 2)强大的可移植性: 微软的Direct3D虽然也是十分优秀的图形API,但它只用于Windows系统。而OpenGL 不仅用于 Windows,还可以用于Unix/Linux等其它系统,它甚至在大型计算机、各种专业计算机(如:医疗用显示设备)上都有应用。并且,OpenGL 的基本命令都做到了硬件无关,甚至是平台无关; 3) 高性能的图形渲染: OpenGL是一个工业标准,它的技术紧跟时代,现今各个显卡厂家无一不对OpenGL提供强力支持,激烈的竞争中使得OpenGL性能一直领先。 总之,OpenGL是一个非常优秀的图形软件接口。OpenGL官方网站(英文)https://www.doczj.com/doc/2212921817.html, 下面将对Windows下的OpenGL编程进行简单介绍。如下是学习OpenGL前的准备工作:1.选择一个编译环境 现在Windows系统的主流编译环境有Visual C++,C++ Builder,Dev-C++等,它们都是支持OpenGL的。但这里我们选择Visual C++ 作为学习OpenGL的实验环境。 2.安装GLUT工具包 GLUT不是OpenGL所必须的,但它会给我们的学习带来一定的方便,推荐安装。Windows环境下的GLUT下载地址:(大小约为150k) https://www.doczj.com/doc/2212921817.html,/resources/libraries/glut/glutdlls37beta.zip Windows环境下安装GLUT的步骤: 1)将下载的压缩包解开,将得到5个文件 2)在“我的电脑”中搜索“gl.h”,并找到其所在文件夹(如果是VisualStudio2005,则

计算机图形学 课程设计作品

《计算机图形学Visual c++版》考试作业报告 题目:计算机图形学图形画板 专业:推荐IT学长淘宝日用品店530213 班级:推荐IT学长淘宝日用品店530213 学号:推荐IT学长淘宝日用品店530213 姓名:推荐IT学长淘宝日用品店530213 指导教师:推荐IT学长淘宝日用品店530213 完成日期: 2015年12月2日

一、课程设计目的 本课程设计的目标就是要达到理论与实际应用相结合,提高学生设计图形及编写大型程序的能力,并培养基本的、良好的计算机图形学的技能。 设计中要求综合运用所学知识,上机解决一些与实际应用结合紧密的、规模较大的问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握计算机图形学基本知识和算法设计的基本技能术,掌握分析、解决实际问题的能力。 通过这次设计,要求在加深对课程基本内容的理解。同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。 二、设计内容推荐IT学长淘宝日用品店530213 设计一个图形画板,在这个图形画板中要实现: 1,画线功能,而且画的线要具备反走样功能。 2, 利用上面的画线功能实现画矩形,椭圆,多边形,并且可以对这些图形进行填充。 3,可以对选中区域的图形放大,缩小,平移,旋转等功能。 三、设计过程 程序预处理:包括头文件的加载,常量的定义以及全局变量的定义 #include "stdafx.h" #include "GraDesign.h" #include "GraDesignDoc.h" #include "GraDesignView.h" #include "math.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif //******自定义全局变量 int type = -1; CPoint point1; CPoint point2; CPoint temp[2];

计算机图形学实验C++代码

一、bresenham算法画直线 #include #include #include void draw_pixel(int ix,int iy) { glBegin(GL_POINTS); glVertex2i(ix,iy); glEnd(); } void Bresenham(int x1,int y1,int xEnd,int yEnd) { int dx=abs(xEnd-x1),dy=abs(yEnd-y1); int p=2*dy-dx; int twoDy=2*dy,twoDyMinusDx=2*dy-2*dx; int x,y; if (x1>xEnd) { x=xEnd;y=yEnd; xEnd=x1; } else { x=x1; y=y1; } draw_pixel(x,y); while(x

} void myinit() { glClearColor(0.8,1.0,1.0,1.0); glColor3f(0.0,0.0,1.0); glPointSize(1.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0,500.0,0.0,500.0); } void main(int argc,char **argv ) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(200.0,200.0); glutCreateWindow("CG_test_Bresenham_Line example"); glutDisplayFunc(display); myinit(); glutMainLoop(); } 二、中点法绘制椭圆 #include #include #include inline int round(const float a){return int (a+0.5);} void setPixel(GLint xCoord,GLint yCoord) { glBegin(GL_POINTS); glVertex2i(xCoord,yCoord); glEnd(); } void ellipseMidpoint(int xCenter,int yCenter,int Rx,int Ry) { int Rx2=Rx*Rx; int Ry2=Ry*Ry; int twoRx2=2*Rx2; int twoRy2=2*Ry2; int p; int x=0; int y=Ry; int px=0; int py=twoRx2*y; void ellipsePlotPoints(int,int,int,int);

一种基于计算几何方法的最小包容圆求解算法.kdh

2007年 工 程 图 学 学 报2007 第3期 JOURNAL OF ENGINEERING GRAPHICS No.3一种基于计算几何方法的最小包容圆求解算法 张 勇, 陈 强 (清华大学机械工程系先进成形制造重点实验室,北京 100084) 摘要:为实现点集最小包容圆(最小外接圆)的求解,将计算几何中的α-壳的概 念应用到最小包容圆的计算过程,提出了一种精确有效的最小包容圆求解算法。根据α-壳定 义及最小包容圆性质,证明当1/α等于最小包容圆半径时点集的α-壳顶点共圆,1/α小于最小 包容圆半径时α-壳不存在,1/α大于最小包容圆半径时随着1/α减小α-壳顶点数逐渐减小的规 律。将α-壳顶点数目作为搜索最小包容圆半径的依据,实现了最小包容圆半径的搜索和最小包容圆的求解。 关键词:计算机应用;优化算法;计算几何;最小包容圆;α-壳 中图分类号:TP 391 文献标识码:A 文章编号:1003-0158(2007)03-0097-05 Algorithm for Minimum Circumscribed Circle Detection Based on Computational Geometry Technique ZHANG Yong, CHEN Qiang ( Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China ) Abstract: α-hulls are applied to calculate the minimum circumscribed circle (MCC) of point set and an accurate and effective method for MCC detection is established through finding the least squares circle of the point set and iteratively approaching the MCC with recursive subdivision. Several theorems concerning the properties of α-hulls are presented. If 1/α is equal to the radius of points’ MCC, all vertices of the α-hull will be on the same circle. When 1/α is larger than the MCC’s radius, the number of vertices of α-hulls will decrease with decreasing of 1/α, and the number of vertices’ number will reach zero when 1/α is smaller than MCC’s radius. From the above rules, an algorithm for detecting MCC is developed, and experimental results show this algorithm is reliable. Key words: computer application; optimized algorithm; computational geometry; minimum circumscribed circle; α-hull 收稿日期:2005-12-20 基金项目:国家自然科学基金资助项目(50275083);高校博士点基金资助项目(20020003053)

相关主题
文本预览
相关文档 最新文档