当前位置:文档之家› PROE函数公式

PROE函数公式

PROE函数公式
PROE函数公式

致力于数控技术的网络分享 Sunlight'blog

Covering research, news, and knowledge in CNC technology and e-Learning.

? FANUC数控系统的使用心得监控功能-Monitoring functions ?

PROE函数公式

Monday, November 26, 2007 7:53:44 AM 发布:sunlight

名称:正弦曲线

建立环境:Pro/E软件、笛卡尔坐标系

x=50*t

y=10*sin(t*360)

z=0

名称:螺旋线(Helical curve)

建立环境:PRO/E;圆柱坐标(cylindrical)

r=t

theta=10+t*(20*360)

z=t*3

蝴蝶曲线

球坐标 PRO/E

方程:rho = 8 * t

theta = 360 * t * 4

phi = -360 * t * 8

Rhodonea 曲线

采用笛卡尔坐标系

theta=t*360*4

x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta)

y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta)

*********************************

圆内螺旋线

采用柱座标系

theta=t*360

r=10+10*sin(6*theta)

z=2*sin(6*theta)

渐开线的方程

r=1

ang=360*t

s=2*pi*r*t

x0=s*cos(ang)

y0=s*sin(ang)

x=x0+s*sin(ang)

y=y0-s*cos(ang)

z=0

对数曲线

z=0

x = 10*t

y = log(10*t+0.0001)

球面螺旋线(采用球坐标系)

rho=4

theta=t*180

phi=t*360*20

名称:双弧外摆线

卡迪尔坐标

方程: l=2.5

b=2.5

x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)

名称:星行线

卡迪尔坐标

方程:

a=5

x=a*(cos(t*360))^3

y=a*(sin(t*360))^3

名稱:心脏线

建立環境:pro/e,圓柱坐標

a=10

r=a*(1+cos(theta))

theta=t*360

名稱:葉形線

建立環境:笛卡儿坐標

a=10

x=3*a*t/(1+(t^3))

y=3*a*(t^2)/(1+(t^3))

笛卡儿坐标下的螺旋线

x = 4 * cos ( t *(5*360))

y = 4 * sin ( t *(5*360))

z = 10*t

一抛物线

笛卡儿坐标

x =(4 * t)

y =(3 * t) + (5 * t ^2)

z =0

名稱:碟形弹簧

建立環境:pro/e

圓柱坐

r = 5

theta = t*3600

z =(sin(3.5*theta-90))+24*t

方程: 阿基米德螺旋线

x = (a +f sin (t))cos(t)/a

y = (a -2f +f sin (t))sin(t)/b

pro/e关系式、函数的相关说明资料?

关系中使用的函数

数学函数

下列运算符可用于关系(包括等式和条件语句)中。关系中也可以包括下列数学函数:

cos () 余弦

tan () 正切

sin () 正弦

sqrt () 平方根

asin () 反正弦

acos () 反余弦

atan () 反正切

sinh () 双曲线正弦

cosh () 双曲线余弦

tanh () 双曲线正切

注释:所有三角函数都使用单位度。

log() 以10为底的对数

ln() 自然对数

exp() e的幂

abs() 绝对值

ceil() 不小于其值的最小整数

floor() 不超过其值的最大整数

可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数字数。

带有圆整参数的这些函数的语法是:

ceil(parameter_name或number, number_of_dec_places)

floor (parameter_name 或 number, number_of_dec_places)

其中number_of_dec_places是可选值:

?可以被表示为一个数或一个使用者自定义参数。如果该参数值是一个实数,则被截尾成为一个整数。

?它的最大值是8。如果超过8,则不会舍入要舍入的数(第一个自变量),并使用其初值。

?如果不指定它,则功能同前期版本一样。

使用不指定小数部分位数的ceil和floor函数,其举例如下:

ceil (10.2) 值为11

floor (10.2) 值为 10

使用指定小数部分位数的ceil和floor函数,其举例如下:

ceil (10.255, 2) 等于10.26

ceil (10.255, 0) 等于11 [ 与ceil (10.255)相同 ]

floor (10.255, 1) 等于10.2

floor (10.255, 2) 等于10.25

曲线表计算

曲线表计算使使用者能用曲线表特征,通过关系来驱动尺寸。尺寸可以是草绘器、零件或组件尺寸。格式如下:

evalgraph("graph_name", x)

,其中graph_name是曲线表的名称,x是沿曲线表x-轴的值,返回y值。

对于混合特征,可以指定轨线参数trajpar作为该函数的第二个自变量。

注释:曲线表特征通常是用于计算x-轴上所定义范围内x值对应的y值。当超出范围时,y值是通过外推的方法来计算的。对于小于初始值的x值,系统通过从初始点延长切线的方法计算外推值。同样,对于大于终点值的x值,系统通过将切线从终点往外延伸计算外推值。

复合曲线轨道函数

在关系中可以使用复合曲线的轨道参数trajpar_of_pnt。

下列函数返回一个0.0和1.0之间的值:

trajpar_of_pnt("trajname", "pointname")

其中trajname是复合曲线名,pointname是基准点名。

轨线是一个沿复合曲线的参数,在它上面垂直于曲线切线的平面通过基准点。因此,基准点不必位于曲线上;在曲线上距基准点最近的点上计算该参数值。

如果复合曲线被用作多轨道扫瞄的骨架,则trajpar_of_pnt与trajpar或1.0 - trajpar一致(取决于为混合特征选择的起点)。

关于关系

关系(也被称为参数关系)是使用者自定义的符号尺寸和参数之间的等式。关系捕获特征之间、参数之间或组件组件之间的设计关系,因此,允许使用者来控制对模型修改的影响作用。

关系是捕获设计知识和意图的一种方式。和参数一样,它们用于驱动模型-改变关系也就改变了模型。

关系可用于控制模型修改的影响作用、定义零件和组件中的尺寸值、为设计条件担当约束(例如,指定与零件的边相关的孔的位置)。

它们用在设计过程中来描述模型或组件的不同部分之间的关系。关系可以是简单值(例如,d1=4)或复杂的条件分支语句。

关系类型

有两种类型的关系:

?等式 - 使等式左边的一个参数等于右边的表达式。这种关系用于给尺寸和参数赋值。例如:

简单的赋值:d1 = 4.75

复杂的赋值:d5 = d2*(SQRT(d7/3.0+d4))

?比较 - 比较左边的表达式和右边的表达式。这种关系通常用于作为一个约束或用于逻辑分支的条件语句中。例如:

作为约束:(d1 + d2) > (d3 + 2.5)

在条件语句中;IF (d1 + 2.5) >= d7

增加关系

可以把关系增加到:

?特征的截面(在草绘模式中,如果最初通过选择“草绘器”>“关系”>“增加”来创建截面)。

?特征(在零件或组件模式下)。

?零件(在零件或组件模式下)。

?组件(在组件模式下)。

当第一次选择关系菜单时,预设为查看或改变当前模型(例如,零件模式下的一个零件)中的关系。

要获得对关系的访问,从“部件”或“组件”菜单中选择“关系”,然后从“模型关系”菜单中选择下列命令之一:

?组件关系 - 使用组件中的关系。如果组件包含一个或多个子组件,“组件关系”菜单出现并带有下列命令:

─当前 - 缺省时是顶层组件。

─名称 - 键入组件名。

?骨架关系 - 使用组件中骨架模型的关系(只对组件适用)。

?零件关系 - 使用零件中的关系。

?特征关系 - 使用特征特有的关系。如果特征有一个截面,那么使用者就可选择:获得对截面(草绘器)中截面(草绘器)中关系的访问,或者获得对作为一个整体的特征中的关系的访问。

?数组关系 - 使用数组所特有的关系。

注释:

─如果试图将截面之外的关系指派给已经由截面关系驱动的参数,则系统再生模型时给出错误信息。试图将关系指派给已经由截面之外关系驱动的参数时也同样。删除关系之一并重新生成。

─如果组件试图给已经由零件或子组件关系驱动的尺寸变量指派值时,出现两个错误信息。删除关系之一并重新生成。

─修改模型的单位元可使关系无效,因为它们没有随该模型缩放。有关修改单位的详细信息,请参阅“关于公制和非公制度量单位”帮助主题。

关系中使用参数符号

在关系中使用四种类型的参数符号:

?尺寸符号 - 支持下列尺寸符号类型:

─d# - 零件或组件模式下的尺寸。

─d#:# - 组件模式下的尺寸。组件或组件的进程标识添加为后缀。

─rd# - 零件或顶层组件中的参考尺寸。

─rd#:# - 组件模式中的参考尺寸(组件或组件的进程标识添加为后缀)。

─rsd# - 草绘器中(截面)的参考尺寸。

─kd# - 在草绘(截面)中的已知尺寸(在父零件或组件中)。

?公差 - 这些是与公差格式相关连的参数。当尺寸由数字的转向符号的时侯出项这些符号。

─tpm# - 加减对称格式中的公差;#是尺寸数。

─tp# - 加减格式中的正公差;#是尺寸数。

─tm# - 加减格式中的负公差;#是尺寸数。

?实例数 - 这些是整数参数,是数组方向上的实例个数。

─p# - 其中#是实例的个数。

注释:如果将实例数改变为一个非整数值,Pro/ENGINEER将截去其小数部分。例如,2.90将变为2。

?使用者参数 - 这些可以是由增加参数或关系所定义的参数。

例如:

Volume = d0*d1*d2

Vendor = "Stockton Corp."

注释:

─使用者参数名必须以字母开头(如果它们要用于关系的话)。

─不能使用d#、kd#、rd#、tm#、tp#、或tpm#作为使用者参数名,因为它们是由尺寸保留使用的。

─使用者参数名不能包含非字母数字字符,诸如!、@、#、$。

基础1:函数

此类阵列需要一个极重要的函数,即extract(string,position,length)。这个函数的作用是从一个字符串(string)的指定位置(positi on)起,提取出指字数目(length)的字符出来。例:

String=abcdefghijk,po=2,len=3,则extract(string,po,len)=bcd ----从第二个位置起提取出3个连续字符

String=chinaren,A=5,len=1,则extract(string,A,len)=a ----从第五个位置起提取出1个字符

此函数有如下使用注意:

A.string是个字符串变量,position、length都是实数型变量,它们可以是直接的变量,也可是表达式,其中,position如果带小数,则向下取整,即丢掉小数(但小于1的小数取整为1),length如果带小数,是向上取整,即进一位取整。也就是:ex tract(string,0.2,1.2)=extract(string,0.8,1.9)=extract(string,1.2,1.01)=extract(string,1.9,1,9)=extract(string,1,2)。

B.设字符串string的总长度为len_string,有:

1.position=0,运算出错,但无提示;

2.position>len_string,运算出错,有提示;

3.position+length>len_string+1,运算出错,有提示;

4.length=0,无意义(相当于出错),无提示。

因为字符包括数字和字母,数字它本身也是一种字符,不过,如果变量A的值是一个数字的话,那么它可能是一个数值型变量(整型、实数型)也可能是一个字符型变量,如果它是一个数值型变量的话,它就不能用为extract函数的源字符串,必须先转化为一个字符串变量才能使用。为此,PROE提供了一个函数专门用来做这种转换,那就是itos(int),即”int to string”。

Itos(int)的变量int是一个数值型变量或表达式,如果int的值是非整数,则系统先将其四舍五入后再转换。例:itos(1.2)=itos(1.

0)=字符“1”;itos(1.5)=itos(1.9)=字符“2”。

基础2:草绘插入文本使用参数

前面的函数是PROE2001就有的,但这一个是野火版新增的,因此,这种阵列不能在2001版里实现。

这个新增功能是在草绘时,插入文本时,文本内容可以引用已定义参数。这样,我们可以通过控制参数的值来控制文本内容,而参数的值是可以与idx1、idx2发生关系的,因此,草绘文本就可以在不同的阵列子特征里表现为不同的内容。参见下图:

1.jpg

以上分析了其实现的基础,下面我们再对这些实例稍加点评并附part,朋友们可通过点评的思路及所附part来理解这种阵列的实现及其应用。

一)关系式中可以用下列数学函数式表达:

1)、正弦sin( )

2)、余弦cos( )

3)、正切tan( )

4)、反正弦asin( )

5)、反余弦acos( )

6)、反正切atan( )

7)、双曲线正弦sinh( )

8)、双曲线余弦cosh( )

9)、双曲线正切tanh( )

以上九种三角函数式所使用的单位均为“度”。

10)、平方根sqrt( )

11)、以10为底的对数log( )

12)、自然对数ln( )

13)、e的幂exp( )

14)、绝对值abs( )

15)、不小于其值的最小整数(上限值)ceil( )

16)、不超过其值的最大整数(下限值)floor( )

可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数位数。

带有圆整参数的这些函数的语法是:

ceil(parameter_name或number, number_of_dec_places)

floor (parameter_name 或number, number_of_dec_places)

其中的parameter_name或number意为参数名称或者一个带小数位的精确数值

后面跟随着的number_of_dec_places意为十进位的小数位数,是可选值:

A)可以被表示为一个数或一个使用者自定义参数。如果该参数值是一个实数,则被截尾成为一个整数。B)它的最大值是8。如果超过8,则不会舍入要舍入的数(第一个自变量),并使用其初值。

C)如果不指定它,则功能同前期版本一样。

使用不指定小数部分位数的ceil和floor函数,其举例如下:

ceil (10.2) 值为11

floor (10.2) 值为10

使用指定小数部分位数的ceil和floor函数,其举例如下:

ceil (10.255, 2) 等于10.26

ceil (10.255, 0) 等于11 [ 与ceil (10.255)相同]

ceil(10.25531415926,7)等于10.2553142

ceil(10.25531415926,8)等于10.25531416

floor (10.255, 2) 等于10.25

floor (10.255, 0) 等于10.

Floor(10.25531415926,7)等于10.2553141

Floor(10.25531415926,8)等于10.25531415

ProE齿轮参数化建模画法教程

ProE齿轮参数化建模画法作者:lm2000i (一) 参数定义

(二)在Top面上做从小到大的4个圆(圆心点位于默认坐标系原点),直径为任意值。生成后修改各圆直径尺寸名为(从小到大)Df、DB、D、Da,加入关系: Alpha_t=atan(tan(Alpha_n)/cos(Beta)) Ha=(Ha_n+X_n)*M_n Hf=(Ha_n+C_n-X_n)*M_n

D=Z*M_n/cos(Beta) Db=D*cos(Alpha_t) Da=D+2*Ha Df=D-2*Hf 注:当然这里也可不改名,而在关系式中采用系统默认标注名称(如d1、d2...),将关系式中的“Df、DB、D、Da”用“d1、d2…”代替。改名的方法为:退出草绘----点选草图----编缉----点选标注----右键属性----尺寸文本----名称栏填新名称 (三)以默认坐标系为参考,偏移类型为“圆柱”,建立用户坐标系原点CS0。此步的目的在于后面优化(步5)时,能够旋转步4所做的渐开线齿形,使DTM2能与FRONT重合。

选坐标系CS0,用笛卡尔坐标,作齿形线(渐开线):Rb=Db/2 theta=t*45 x= Rb*cos(theta)+ Rb*sin(theta)*theta*pi/180 y=0 z= Rb*sin(theta)- Rb*cos(theta)*theta*pi/180

注:笛卡尔坐标系渐开线方式程式为 其中:theta为渐开线在K点的滚动角。因此,上面关系式theta=t*45中的45是可以改的,其实就是控制上图中AB的弧长。 (四)过Front/Right,作基准轴A_1;以渐开线与分度圆交点,作基准点PNT0;过轴A_1与PNT0做基准面DTM1。

Proe曲线方程大全及关系式详细说明

Proe 曲线方程大全及pro/e 关系式、函数的相关说明资料 Pro/E 各种曲线方程集合 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 图1 2.葉形线. 圆柱坐标(cylindrical ) 方程: r=t theta=10+t*(20*360) z=t*3 图3

笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 图6 11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta))

Pro/E 各种曲线方程集合(二) 22.外摆线 迪卡尔坐标 方程:theta=t*720*5 b=8 a=5 x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=0 图22 23. Lissajous 曲线 theta=t*360 a=1 b=1 c=100 n=3 x=a*sin(n*theta+c) y=b*sin(theta) 图23 24.长短幅圆内旋轮线 卡笛尔坐标 方程:a=5 b=7 c=2.2 theta=360*t*10 x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)

图24 25.长短幅圆外旋轮线 卡笛尔坐标 方程:theta=t*360*10 a=5 b=3 c=5 x=(a+b)*cos(theta)-c*cos((a/b+1)*theta) y=(a+b)*sin(theta)-c*sin((a/b+1)*theta) 图25 26. 三尖瓣线 a=10 x = a*(2*cos(t*360)+cos(2*t*360)) y = a*(2*sin(t*360)-sin(2*t*360))

ProE工具使用方法

Pro/E的scan-tools工具使用方法 z Pro/SCAN-TOOLS 概述 Pro/SCAN-TOOLS是 Pro/ENGINEER 的一个可选的模块,可以让你通过测量数据获得光滑的曲线和曲面。使用Pro/SCAN-TOOLS,你可以建立通过扫描数据建立曲面,并维持曲面和Pro/ENGINEER 的所有其它模块的关联性,你还可以重新定义输入的曲面。要和Pro/SCAN-TOOLS一起工作,你还需要 Pro/SURFACE 的授权。TopicAbout Pro/SCAN-TOOLS Features of Pro/SCAN-TOOLS Using Pro/SCAN-TOOLS Accessing Pro/SCAN-TOOLS About Pro/SCAN-TOOLS Pro/SCAN-TOOLS 最初是应汽车工业的要求开发的,当时汽车工业需要一个工具来帮助设计诸如车身面板之类的光滑曲面。设计汽车车身面板的通常流程是:先根据艺术家的概念草图制作一个油泥模型,当油泥模型做好后,必须在计算机里建立它的曲面,这样其它相关的零部件才可以继续设计下去,车身面板的制造流程才可以继续进行,才可以对面板本身进行分析和修改。要在计算机里建立车身面板的曲面模型,需要使用坐标测量机(CMM)或激光扫描仪来测量用来代替油泥模型的成千上万的点数据。Pro/SCANTOOLS可用光滑的曲线和曲面来拟合测量点,这些曲面可随后使用Pro/ENGINEER 来检查和修改。

z Features of Pro/SCAN-TOOLS Pro/SCAN-TOOLS 提供了很多工具来建立和重新定义光滑的曲线和曲面,包括以下能力: ·自动根据测量的点数据拟合曲线和曲面。 ·动态地通过控制多边形来控制曲线和曲面。 ·建立和修改 style 曲面,通过修改和定义 style 曲面的定义曲面来改变 style 曲面的形状。 ·建立曲面的快照(snapshot)。 ·使用 polyhedron 动态地修改导入的曲线。 ·对曲线和曲面的修改的影响可通过图形显示反馈出来,包括修改曲率,倾斜(slope),变形,和参考点的偏差等等。 ·在修改的时候为曲线和曲面定义边界条件。 ·在模型上显示反射曲线。 z Using Pro/SCAN-TOOLS Pro/SCAN-TOOLS 提供了大量根据扫描数据建立光滑曲面的工具,根据扫描数据的特点、对误差和光滑程度对需要,和拟对逆向工程工具对经验,你可以选择基于曲线的步骤、基于曲面的步骤或两者结合起来。基于曲线的逆向工程在一个基于曲线的步骤里,你根据扫描数据建立了style curves,然后通过style curves 建立曲面。你可通过这个步骤获得最终的曲面或获得用于基于曲面的步骤的起始曲面。在大多数情况下,要想获得光滑的曲面,你只能使用扫描数据的

proe圆锥齿轮参数化画法

3.3锥齿轮的创建 锥齿轮在机械工业中有着广泛的应用,它用来实现两相交轴之间的传动,两轴的相交角一般采用90度。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,本节将介绍参数化设计锥齿轮的过程。 3.3.1锥齿轮的建模分析 与本章先前介绍的齿轮的建模过程相比较,锥齿轮的建模更为复杂。参数化设计锥齿轮的过程中应用了大量的参数与关系式。 锥齿轮建模分析(如图3-122所示): (1)输入关系式、绘制创建锥齿轮所需的基本曲线 (2)创建渐开线 (3)创建齿根圆锥 (4)创建第一个轮齿 (5)阵列轮齿 图3-122锥齿轮建模分析 3.3.2锥齿轮的建模过程 1.输入基本参数和关系式

(1)单击,在新建对话框中输入文件名conic_gear,然后单击; (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图3-123所示; 图3-123 “参数”对话框 (3)在“参数”对话框单击按钮,可以看到“参数”对话框增加了一行,依次输入新参数的名称、值、和说明等。需要输入的参数如表3-3所示; 名称值说明名称值说明 M 2.5 模数DELTA ___ 分锥角 Z 24 齿数DELTA_A ___ 顶锥角 Z_D 45 大齿轮齿数DELTA_B ___ 基锥角 ALPHA 20 压力角DELTA_F ___ 根锥角 B 20 齿宽HB ___ 齿基高 HAX 1 齿顶高系数RX ___ 锥距 CX 0.25 顶隙系数THETA_A ___ 齿顶角 HA ___ 齿顶高THETA_B ___ 齿基角 HF ___ 齿根高THETA_F ___ 齿根角 H ___ 全齿高BA ___ 齿顶宽 D ___ 分度圆直径BB ___ 齿基宽 DB ___ 基圆直径BF ___ 齿根宽 DA ___ 齿顶圆直径X 0 变位系数

Proe中的常用函数关系

Proe中的部分函数关系 一、函数关系 sin 正弦Cos 余弦tan 正切asin 反正弦acos 反余弦atan 反正切sinh 双曲线余弦cosh 双曲线正弦tanh 双曲线正切spar 平方根exp e的幂方根abs 绝对值log 以10为底的对数ln 自然对数 ceil 不小于其值的最小整数floor 不超过其值的最大整数 二、齿轮公式 alpha=20 m=2 z=30 c=0.25 ha=1 db=m*z*cos(alpha) r=(db/2)/cos(t*50) theta=(180/pi)*tan(t*50)-t*50 z=0 三、蜗杆的公式da=8为蜗杆外径m=0.8 为模数angle=20压力角 L=30长度q直径系数d分度圆直径f齿根圆直径n实数

其中之间的关系 q=da/m-2 d=q*m df=(q-2.4)*m n=ceil(2*l/(pi*m)) 在可变剖面扫描的时候运用公式sd4=trajpar*360*n 在扫描切口的时候绘制此图形,其中红色的高的计算公式是sd5=pi*m/2 五、方向盘的公式sd4=sd6*(1-(sin(trajpar*360*36)+1)/8) 其中sd4是sd6的(3/4或者7/8),sin(trajpar*360*36的意思是转过360度且有36个振幅似的 六、凸轮的公式sd5=evalgraph("cam2",trajpar*360) r=150 theta=t*360 z=9*sin(10*t*360) 在方向按sin(10*t*360)的函数关系,9为高的9倍10为10个振幅似的 七、锥齿轮公式 m=4模数z =50齿轮齿数z-am=40与之啮合的齿轮齿数angle=20压力角b=30齿厚long分度圆锥角 d分度圆直径da齿顶圆直径df齿根圆直径db基圆直径关系:long=atan(z/z-am) d=m*z da=d+2*m*cos(long)

PROE族表使用详解

PROE族表使用详解 分享 首次分享者:海的另一边已被分享5次评论(0)复制链接分享转载举报 族表是很多相似零件(或组件或特征)的集合,这些零件(组件/特征)从结构上看很相似,但在一些细节部份不同,比如尺寸大小或详细特征等。一个典型的例子就是螺钉、螺母,同一个标准(如GB/T819.1)里,会有多达上百种不同规格,但它们看起来是一样的并且具有相同的功能,所以我们把这上百种规格的螺钉看成是一个零件族。 “族表”(Family Table) 中的零件也称表驱动零件。 下图(index.gif)是螺钉族。图的左面是普通模型,右面是它的实例。普通模型为父项。 族表的作用: 产生和存储大量简单而细致的对象 把零件的生成标准化,既省时又省力 从零件文件中生成各种零件,而无需重新构造 可以对零件产生细小的变化而无需用关系改变模型 产生可以存储到打印文件并包含在零件目录中的零件表 族表实现了零件的标准化并且同一族表的实例相互之间可以自动互换。 关于族表的许可 Pro/ENGINEER 模块许可证不同,允许实现的族表内容也不同。 有Pro/FEATURE许可,可以:创建表驱动的自定义组,组特征尺寸可以是表驱动的、不变的或可变的。向零件“族表”(Family Table) 中添加表驱动的组。 基本的 Pro/ENGINEER许可,可以:通过向“族表”(Family Table) 中添加尺寸创建表驱动零件。 Pro/ASSEMBLY许可,可以:通过添加“族表”(Family Table) 子组件、零件名称以及组件尺寸来创建表驱动的组件。

族表结构 族表,本质上是用电子表格来管理模型数据,它的外观体现也是一个由行和列组成的电子表格。还是用螺钉来说,GB/T819.1里的上百种螺钉,外形都是一样的,只是尺寸有变化,比如螺纹规格、螺钉总长、螺纹长等等,在标准里,是这样描述这些数据的:(1.gif) 我们把这个表格变换一下,变成下面这样(部份数据):(2.gif) 这个表里,第一行是表头,列出了各列的抬头,第二行起,每一行是一个规格的螺钉的具体尺寸,

学生作业管理系统需求分析

软件工程实验报告题目:作业管理系统 学院:XXXX 专业:XXXX 小组成员: XX XX XX XX 指导教师:XX 完成日期:XXXXXXXX

学生作业管理系统需求分析 一、可行性分析 系统是基于b/s结构,在IIS平台上使用ASP与Microsoft SQL 2005开发的,主要使用本地计算机进行测试和使用,完全可以运行。它具有方便性和灵活性。打破了学生作业的传统管理方式,解决了整个作业管理过程中时间和空间对学生与教师的沟通的约束问题。 二、目标 解决学生上传作业问题,教师可以将新作业传到该系统上,也可以在系统上下载学生上传的作业,并将成绩和答案上传供学生查看。 三、系统为用户提供的功能服务 (一)、功能简述: 1.不同用户登录进入不同的界面3.学生作业成绩的查看 2.学生作业的查看 4.学生作业上传 5.教师布置作业 6.教师删除作业 7.教师修改作业 8.教师发布成绩9.教师修改成绩 10.教师下载作业11.管理员添加教师用户12.管理员添加学生用户13.管理员添加专业14.个人密码的修改15.个人资料的查看 (二)、功能图解

四、数据流图 (一)、总数据图: (二)、细化后数据流图

(三)、数据字典 名称:学号 别名: 描述:唯一地标识学生表中学生的关键域定义:学号=11{数字}11 位置:学生表 名称:教工号 别名:Teacher 描述:唯一地标识教师表中学生的关键域定义:教工号=11{数字}11 位置:教师表 名称:管理员 别名:Administrator 描述:系统的最高管理者 定义:账号=11{数字}11 位置:教师表 名称:学生信息别名:StudentInfor 描述:计算机专业的学生的信息是系统的使用者 定义:信息=学号+教师信息+开课班级信息+成绩 位置:网络硬盘 名字:教师信息 别名:TeacherInfor 描述:计算机专业的老师的信息是系统的使用者和次要管理者 定义:信息=教工号+开课班级信息 位置:网络硬盘 名字:成绩 别名:分数 描述:学生作业批改的结果供学生参考 定义:成绩=0{数字}100 位置:成绩表 五、E—A图 六、实验总结: 由于是第一次做这种实验,对各种图的建立还不熟悉,也对软件工程的要求与方法还有很多要提高的。但通过这次实验,为以后的学习打下了坚实的基础。

PROE画齿轮各种参数

直外齿轮参数和关系式以及渐开线方程 参数: m 0.6 z 41 hax 1 cx 0.25 x 0 alpha 20 关系式: ha=(hax+x)*m hf=(hax+cx-x)*m d=m*z da=d+2*ha df=d-2*hf db=d*cos(alpha) 渐开线方程: ang=90*t r=db/2 s=pi*r*t/2 xc=r*cos(ang) yc=r*sin(ang) x=xc+s*sin(ang) y=yc-s*cos(ang) z=0 解释: m/模数z/齿数hax/齿顶高系数cx/顶系系数x/变位系数alpha/压力角 ha/齿顶高hf/齿根高d/分度圆直径da/齿顶圆直径df/齿根圆直径db/基圆直径ang/角度r/分度圆半径s/渐开线长度xc、yc/初始坐标x、y/渐开线坐标 ---------------------------------------------------------------------------- 斜外齿轮参数和关系式以及渐开线方程 参数: mn 0.8 z 65 hax 1 cx 0.25 x 0 alpha 20

beta 16 关系式: ha=(hax+x)*mn hf=(hax+cx-x)*mn d=mn*z/cos(beta) da=d+2*ha df=d-2*hf db=d*cos(alpha) 关系式补充: 渐开线方程: ang=90*t r=db/2 s=pi*r*t/2 xc=r*cos(ang) yc=r*sin(ang) x=xc+s*sin(ang) y=yc-s*cos(ang) z=0 解释: mn/法向模数z/齿数hax/齿顶高系数cx/顶系系数x/变位系数alpha/压力角beta/螺旋角ha/齿顶高hf/齿根高d/分度圆直径da/齿顶圆直径df/齿根圆直径db/基圆直径 ang/角度r/分度圆半径s/渐开线长度xc、yc/初始坐标x、y/渐开线坐标

Creo常用函数

Creo(PROE)中关系式的理解 一)关系式中可以用下列数学函数式表达: 1)、正弦 sin( ) 2)、余弦 cos( ) 3)、正切 tan( ) 4)、反正弦 asin( ) 5)、反余弦 acos( ) 6)、反正切 atan( ) 7)、双曲线正弦 sinh( ) 8)、双曲线余弦 cosh( ) 9)、双曲线正切 tanh( ) 以上九种三角函数式所使用的单位均为“度”。 10)、平方根 sqrt( ) 11)、以10为底的对数 log( ) 12)、自然对数 ln( ) 13)、e的幂 exp( ) 14)、绝对值 abs( ) 15)、不小于其值的最小整数(上限值) ceil( ) 16)、不超过其值的最大整数(下限值) floor( ) 可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数位数。 带有圆整参数的这些函数的语法是: ceil(parameter_name或number, number_of_dec_places) floor (parameter_name 或 number, number_of_dec_places) 其中的parameter_name或number意为参数名称或者一个带小数位的精确数值 后面跟随着的number_of_dec_places意为十进位的小数位数,是可选值: A)可以被表示为一个数或一个使用者自定义参数。如果该参数值是一个实数,则被截尾成为一个整数。 B)它的最大值是8。如果超过8,则不会舍入要舍入的数(第一个自变量),并使用其初值。C)如果不指定它,则功能同前期版本一样。 使用不指定小数部分位数的ceil和floor函数,其举例如下: ceil (10.2) 值为11 floor (10.2) 值为 10

PROE使用心得体会

关于平整壁:一、欲测边长则为内壁到对应料的延长交点。 二、欲创立反刀的分离的拉伸壁,如果想让钣金的内径相同,则草绘时的半径肯定是不相同的。 三、PROE默认的直角的展开公式边长A+边长B-2*料厚T-2内r+图中显示的折弯余量 四、拉伸出的曲面只能修剪原有的曲面,不能修剪原有的实体。 09-23 一:选取曲面上的边延伸的时候,先点选某边,然后按住SHIFT点选其他边,可以选择整个回圈。 二:在组建里面,点击“信息”,然后点击“元件”,可以查看各个元件的组装关系。 三:“视图”然后“分解”然后“编辑位置”等同于(“视图管理器”然后“分解”-“编辑”-“重定义”-“位置”---此句后来检查有问题)/ “分解”“新建”“属性”“编辑位置”,其中“编辑位置”是对方框上放的第二个图标。 09-24 一:在组件里元件里做的任何动作,最后都要转换到组件再保存。 二:在组件里元件里做的任何动作,最好都要转换到组件再生。 三:插入元件的时候,按住“CTRL”+“ALT”可以全方位旋转元件 四:在组件图里新建元件的时候,可以选择“镜像”,其中又分为“参照”和“复制”,“参照”跟母体有联系,“复制”和母体无联系 五:元件里要巧用关系式,组件里插入的元件在阵列的时候可以根据“参照”来阵列。 六:在组件里对元件做的动作,都不会反应在元件里,若要反映在元件里,一种方法是则要到在组件里对特征动作进行“编辑定义”-“相交”。然后在其中将“顶级”改为“零件级”。另一种方法是“编辑”-“特征操作”“相交”然后选取特征,然后将“顶级”改为“零件级” 09-27 一:修补破面的时候,如果是先删掉然后再创建的话,创建完后一定要组合。 二:修补破面的时候,在创建新线条的时候,如果用到投影,一定要点“确定”后再刷新 三:要删除某个面,一般要到“修补破面”的系统里,选取了再删除。 四:混合的时候,多加一个混合端点就代表多加了一条线段。 五:保存草绘以备以后使用的时候,一定要定临时坐标系。 六:扫描混合的时候第一步是“截面位置”-“草绘”第二步是“插入截面”-“草绘”。 七:点击某个特征后,选取“编辑定义”,如果特征出现白色的点,表示那些白色的点,可以点右键来进行特殊操作的。八:在扫描混合的时候,可以先在轨迹线上任意添加新点,将来扫描混合的时候,可以在这些新点上添加截面。 九:线在面上的投影实际是线所在的面在另一个面的投影。 十:曲面与曲面的交界处如果是混合而成的,可以在边界线点右键选取相切 如果是镜像而成的,可以在边界线点右键选取垂直。 十一:有时候图层里没有将所有的曲线或者曲面包括进去,可以点选所有曲线或者所有曲面的右键,选择图层属性,在里面重新用鼠标框选。 十二:在简化表示里进行筛选的时候,一定要点右键两次选择“新建”. 10-20 一:在工程图制作里面,是可以创建捕捉线的,并且拉动尺寸或是球标等到对齐捕捉线的时候,尺寸或是球标会变成紫色。 二:组件在工程图制作的时候,可以在“视图状态”里面选择“分解视图”,则可以将组件在工程图里炸开。 三:在做工程图里的“剖面视图”的“完全展开”的时候,是不需要选择基础视图是三维还是哪个三视图的,系统最后的出图都是一样的;在做“剖面视图”里的“完全对齐”的时候,是要选择基础视图的,因为基础视图不同,最后做出来的图就不同,并且“完全对齐”里面是选择“基准轴”而不是“基准平面”。 四:哪怕是基础视图都可以旋转。 五:工程图里的任何视图里的线条都可以删除,方法是“视图”,“绘图显示”“边显示”“拭除直线” 六:在工程图里插入“页面”,是在当前页面之后增加一页,而不是在最后增加一页。 七:在工程图里插入页面的时候,“插入”“共享数据”“自文件”,如果插入的是DRW文件,则页面会在最后增加一页,所插入的DRW文件会出现在这最后一页里。如果插入的是DWG文件,则插入的DWG文件会出现在当前的页面里。八:将投影视图的属性改为一般,则可以任意移动视图。

Proe齿轮建模参数及关系

Proe齿轮建模参数及关系(渐开线方程) 1、直齿圆柱齿轮建模 参数:M------------------------齿轮模数 Z------------------------齿轮齿数 B------------------------齿轮宽度 ALPHA-----------------------齿轮压力角 HAX-----------------------齿轮的齿顶高系数 CX------------------------齿轮的齿根高系数 D11----------------------齿根过度圆弧半径 参数关系:d=M*Z 分度圆直径 db=d*cos(ALPHA) 基圆直径 Ha=Hax*M齿顶高 Hf=(Hax+Cx)*M 齿根高 DA=D+2*Ha 齿顶圆直径 DF=D-2*Hf齿根圆直径 D11=0.38*m 笛卡尔坐标渐开线方程: r=DB/2 Theta=t*45 X=r*cos(theta)+r*sin(theta)*theta*pi/180

Z=r*sin(theta)-r*cos(theta)*theta*pi/180 2、直齿圆柱变位齿轮建模 参数:M------------------------齿轮模数 Z-------------------------齿轮齿数 X-------------------------变位系数 B-------------------------齿轮宽度 ALPHA-------------------------齿轮压力角 HAX-------------------------齿轮的齿顶高系数 CX--------------------------齿轮的齿根高系数 D11------------------------齿根过度圆弧半径 参数关系:D=Z*M 分度圆直径 db=D*cos(ALPHA)基圆直径 T_D=(PI/2+2*X*tan(ALPHA))*M分度圆上的齿厚 DA=D+(HAX+X)*M*2齿顶圆的直径 DF=d-((hax+cx)-X)*M*2齿根圆的直径 INV_PHI=tan(ALPHA)- ALPHA*PI/180渐开线函数 T_DB=(T_D+M*Z*INV_PHI)*cos(ALPHA)基圆上的齿厚 SITA=180*(1/Z-T_DB/(PI*db))基圆上的齿槽所对应圆心角度数的一半 D1=B 圆柱坯料宽度等于齿宽

PROE函数公式

致力于数控技术的网络分享 Sunlight'blog Covering research, news, and knowledge in CNC technology and e-Learning. ? FANUC数控系统的使用心得监控功能-Monitoring functions ? PROE函数公式 Monday, November 26, 2007 7:53:44 AM 发布:sunlight 名称:正弦曲线 建立环境:Pro/E软件、笛卡尔坐标系 x=50*t y=10*sin(t*360) z=0 名称:螺旋线(Helical curve) 建立环境:PRO/E;圆柱坐标(cylindrical) r=t theta=10+t*(20*360) z=t*3 蝴蝶曲线 球坐标 PRO/E 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 Rhodonea 曲线 采用笛卡尔坐标系 theta=t*360*4 x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) ********************************* 圆内螺旋线

采用柱座标系 theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta) 渐开线的方程 r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 对数曲线 z=0 x = 10*t y = log(10*t+0.0001) 球面螺旋线(采用球坐标系) rho=4 theta=t*180 phi=t*360*20 名称:双弧外摆线 卡迪尔坐标 方程: l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 名称:星行线 卡迪尔坐标 方程: a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 名稱:心脏线 建立環境:pro/e,圓柱坐標 a=10 r=a*(1+cos(theta)) theta=t*360

proe的使用技巧

第3章习题 1.请实地进入Pro/E中操作主操作窗口的各部位组件。 答:略。 2.请说明设置中英文双语接口的过程。 答: (1)要设置中英文双语接口,一定要安装中文版。请先按附录A,增设 Windows环境变量lang=chs后,再安装Pro/E Wildfire中文版。 (2)将Pro/E的系统变量menu_translation设为both。 (3)将menu_translation设为both的设置,写到一个名为config.pro的文件中。 (4)完成后,我们试点一个含有菜单的选项,就可以发现差别了! 3.请设置您喜欢的系统颜色,并令其在每次进入Pro/E时,都可以自动设置。答:先设定所要的系统颜色。其效果只是暂时的,下次再进入Pro/E后,就会还原回系统的预设颜色了。如果希望每次进入Pro/E后,都能执行这组您所设定的系统颜色,是系统变量的名称是system_colors_file,而其值则是syscol.scl 文件的完整路径。 4.如何自定义一个模板文件,以及如何来妥善使用它? 答:Pro/E提供了两类模板文件,一个是“公制”类模板文件(如,mmns),另一类则是“英制”类模板文件(如,inbls),选公制的“mmns_part_solid”(即公制_零件_实体用)。还有一个是“空”模板,也就是完全不用模板。完全不用模板一样可以画图,只是当需要基准面或点或坐标系时,就要自己建。 如果觉得不方便,则一样可以在Config.pro文件中加入template_solidpart,template_sheetmetalpart,template_designasm,template_mfgcast, template_mfgmold,template_drawing 等系统环境设置,来指定要作为默認模板的模型文件。这样,以后就可以直接勾选该开关项,而直接使用合适的模板。 5.试述Pro/E的鼠标按键控制。 答:

最新ProE-齿轮建模教程

最新ProE-齿轮建模教程1、加入参数 输入m、z、a的值! 2、输入关系式 /* 参数字母含义如下: /* m-->模数 /* z-->齿数 /* a-->压力角 /* p-->齿距 /* pb-->基圆齿距 /* d-->分度圆直径 /* da-->齿顶圆直径 /* df-->齿根圆直径 /* e-->分度圆齿槽宽 /*------------------------------- /*特征尺寸赋值 /*------------------------------- /*定义齿轮常数(ha*&c*) /*定义齿高系数(ha*) ha=1 /*定义齿顶系数(c*) c=0.25 /*定义渐开线展角 B=(tan(a)-(PI/180*a))/(PI/180) /*定义分度圆直径 d=m*z /*定义齿顶圆直径 da=(z+2*ha)*m /*定义齿根圆直径 df=(z-2*(ha+c))*m /*定义基圆直径 db=m*z*cos(a) /*定义齿距 p=PI*m /*定义基圆齿距 pb=p*cos(a) /*定义分度圆齿槽宽 e=(PI*m)/2 /*计算齿槽宽的夹角 Angle=((e/(d/2))*(180/pi))/2

/*定义PATTERN的数量 /*定义PATTERN的增量 /*------------------------------- /*结束 /*------------------------------- 3、创建齿坯 选取front基准面为绘图平面! 将齿顶圆的直径赋予草绘尺寸,sd0=da。如下图所示。接受草图,返回 4、创建渐开线 插入基准曲线 选择“从方程”,然后单击完成 选取坐标系,如下: 然后选择笛卡尔,如下: 输入关系式: alphak=40*t Thetak=(tan(alphak)-alphak*(pi/180))*(180/pi) Rk=(db/2)/cos(alphak) X=rk*cos(thetak) Y=rk*sin(thetak) Z=0 得到渐开线,如下图所示: 旋转复制刚得到的渐开线。 选择复制 单击完成 选取刚刚生成的渐开线,单击完成。 选择中心轴,单击正向。 输入旋转角度20(随便输)。

#CREO关系式函数说明教程

CREO关系式函数说明 1)abs abs() 为绝对值函数 例如:

x=20*(t-0.5)+5*cos(t*540) y=10*sin(t*540) z=abs(t-0.5) 总是没办法输出曲线,有谁清楚为什么? 后来发现一个方法也可以实现绝对值即 z=sqrt((t-0.5)^2) 2)acos acos () 为反余弦 3)asin asin () 为反正弦 4)atan atan () 为反正切 5)atan2 atan2 () 为反正切弧度制 6)bound函数 bound(x,first,last) 返回的是大于等于last而小于等于last并且等于或接近x的值。例:a=bound(3,1,8) 则a=3 因为3在1和8之间,所以a=3 a=bound(8,1,4) 则a=4 因为8>4,所以a=4为最接近结果 a=bound(1,5,12) 则a=5 因为1<5,所以a=5为最接近结果 7)cable_len函数 ??? 8)ceil ceil() 为不小于其值的最小整数 9)comparegraphs函数 ??? 10)cos cos() 为余弦 11)cosh cosh() 为双曲线余弦 12)dbl_in_tol ??? 13)dead ???

14)eang ??? 15)ecoordx ??? 16)ecoordy ??? 17)edist ??? 18)elen ??? 19) evalgraph("图形名称", x) 为图形取值函数 曲线表计算使使用者能用曲线表特征,通过关系来驱动尺寸。尺寸可以是草绘器、零件或组件尺寸。格式如下:evalgraph("图形名称", x) ,其中graph_name是曲线表的名称,x是沿曲线表x-轴的值,返回y值。对于混合特征,可以指定轨线参数trajpar作为该函数的第二个自变量。 注释:曲线表特征通常是用于计算x-轴上所定义范围内x值对应的y值。当超出范围时,y值是通过外推的方法来计算的。对于小于初始值的x值,系统通过从初始点延长切线的方法计算外推值。同样,对于大于终点值的x值,系统通过将切线从终点往外延伸计算外推值。 例如: sd1= evalgraph("1",trajpar*100) 说明:从图形“1”中0~100取值 20)exists exists() 测试项目存在与否 用法:exists(Item) Item可以是参数或尺寸. 例: If exists(d5) 检查零件内是否有d5尺寸. If exists("material") 检查零件内是否有material参数. 21)exp exp() e的幂 22)extract extract() 提取字符串 用法:extract(string,position,length) | | | 原字符串提取位提取字符数 string可以是一个对应的参数。 例:

Proe的主要应用

Pro/E的主要应用 摘要:Pro/E是美国PTC公司旗下的产品Pro/Engineer软件的简称,是美国参数技术公司(Parametric Technology Corporation,简称PTC)的重要产品。Pro/E是一款集CAD/CAM/CAE功能一体化的综合性三维软件,在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。 关键词:三维软件,Pro/e,机械,应用 正是由于Pro/E的强大功能,使得它在很多领域得到了广泛的应用。下面主要通过Pro/E在各方面的应用来介绍其作用和功能。 一、建模 Pro/E是一款参数化建模软件,具有丰富的零件实体建模功能,能进行变量化的草图轮廓绘制,并能自动进行动态约束检查。通过拉伸、旋转、薄壁特征、抽壳、特征阵列,以及打孔等操作,更简便地实现机械产品的开发设计。通过扫描、混合、填充,以及拖动可控的相关操作,能生成形状复杂的构造曲面,可以直观地对曲面进行修剪、延伸、倒角和缝合等操作。 Pro/E的所有模块都是相关联的。这就意味着在产品开发过程中某一处进行的修改,能够扩展到整个设计中,同时自动更新所有的工程文档,包括装配体、设计图纸,以及制造数据。在开发周期的任一点进行修改,却没有任何损失,并使并行工程成为可能,所以能够使开发后期的一些功能提前发挥其作用。 Pro/E是基于特征的参数化造型,可以按预先设置很容易地进行修改、装配、加工、制造,通过给这些特征设置参数,然后修改参数,很容易进行多次设计叠代,实现产品开发。Pro/E的数据管理模块可以加速产品投放市场,在较短的时间内开发更多的产品。 参数化设计是指零件或部件的形状比较定型,用一组参数约束该几何图形的一组结构尺寸序列,参数与设计对象的控制尺寸有显式对应,当赋予不同的参数序列值时,就可驱动达到瓶的目标几何图形,其设计结果是包含设计信息的模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品,大大提高了设计效率。

ProE锥齿轮画法

ProE锥齿轮画法 圆锥齿轮的做法,用的主要的命令就是“混合”。 (直面圆锥齿轮) 本文以节圆锥角C=30度,模数M=2,齿数Z=20,齿宽W=20,压力角A=20,齿顶高系数为1,齿底隙系数为0.2,变位系数为0为例,讲述直面圆锥直齿轮的做法。1. 设置参数,列好关系。 参数,如图:其中, A为压力角 DX系列为另一套节圆,基圆,齿顶圆,齿根圆的代号 各关系如下:d=m*z db=d*cos(a) da=d+2*m*cos(c/2) df=d-2*1.2*m*cos(c/2) dx=d-2*w*tan(c/2) dxb=dx*cos(a) dxa=dx+2*m*cos(c/2) dxf=dx-2*1.2*m*cos(c/2) 其中,D为大端分度圆直径。(圆锥直齿轮的基本几何尺寸按大端计算) DX

选择笛卡尔坐标系 afa=60*t r=dxb/2 x=r*cos(afa)+pi*r*afa/180*sin(afa) y=r*sin(afa)-pi*r*afa/180*cos(afa) z=0 选择‘ 文件--------保存---------关闭’,确定,即可创建第一个渐开线曲线。如图: 6.创建基准点。 选择渐开线曲线和直径为DX的节圆,即可创建基准点PINT0。 7.创建基准轴 点击基准轴命令,选择混合实体,即可创建基准轴。 8.创建平面。 选择基准轴和基准点PINT0,即可创建平面DIM1。 9.创建平面。 选择平面DIM1和基准轴,以90/Z为旋转角度旋转,即可创建平面DIM2。 但DIM2的创建,必定要保证渐开线曲线能镜像成齿轮的轮齿的大体形状;否则,要改变DIM2的旋转方向。 10.镜像 将渐开线曲线以平面DIM2为镜像平面镜像。如图:

Proe 斜齿轮建模详细图文教程

参数化柱形斜齿轮的建模 建模分析: (1)输入参数、关系式,创建齿轮基本圆 (2)创建渐开线 (3)创建扫引轨迹 (4)创建扫描混合截面 (5)创建第一个轮齿 (6)阵列轮齿 斜齿轮的建模过程 1.输入基本参数和关系式 (1)单击,在新建对话框中输入文件名“hecial_gear”,然后单击。 (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图1所示。 图1“参数”对话框 (3)在“参数”对话框内单击按钮,可以看到“参数”对话框增加了一行,依次输 入新参数的名称、值、和说明等。 需要输入的参数如表1所示。 表1齿轮参数设置 名称值说明名称值说明 Mn5模数HA0齿顶高 Z25齿数HF0齿根高ALPHA20压力角X0变位系数BETA16螺旋角D0分度圆直径B50齿轮宽度DB0基圆直径HAX1齿定高系数DA0齿顶圆直径CX0.25顶隙系数DF0齿根圆直径

注意:表1中未填的参数值(暂时写为0),表示是由系统通过关系式将自动生成的尺寸,用户无需指定。 完成后的参数对话框如图2所示。 图2完成后的“参数”对话框 (4)在主菜单上依次单击“工具”→“关系”,系统弹出“关系”对话框,如图3所示。 图3“关系”对话框 (5)在“关系”对话框内输入齿轮的分度圆直径关系、基圆直径关系、齿根圆直径关系和齿顶圆直径关系。由这些关系式,系统便会自动生成表1所示的未指定参数的值。输入的关系式如下:

ha=(hax+x)*mn hf=(hax+cx-x)*mn d=mn*z/cos(beta) da=d+2*ha db=d*cos(alpha) df=d-2*hf 完成后的“关系”对话框如图4所示。 图4完成后的“关系”对话框 点击“再生”按钮,再进入“参数”对话框后,发现数据已经更新,如图5所示。 图5更新后的“参数”对话框

ProE选取操作

Pro/E选取操作 可以使用各种操作选取项目(几何和基准)。下表列出了主要的选取操作: 操作 说明 单击 选取单个的项目以添加到选项集或工具收集器中。 双击 激活“编辑”模式使您能够更改所选项目的尺寸值或属性。 注意:有关特征工具内的操作,请参阅工具的文档。 按CTRL 键并单击(按住CTRL 键同时单击) 选取要包括在同一选项集或工具收集器中的其它项目。 清除所选项目并从选项集或工具收集器中删除它。 按CTRL 键并双击(按住CTRL 键同时双击) 将双击和按CTRL 键并单击组合为一个操作。 注意:有关特征工具内的操作,请参阅工具的文档。 按SHIFT 键并单击(按住SHIFT 键同时单击) 选取边和曲线后,激活链构建模式。 选取实体曲面或面组后,激活曲面集构建模式。 右键单击 激活快捷菜单。 按SHIFT 键并右键单击(按住SHIFT 键同时右键单击) 根据所选的锚点查询可用的链。 Pro/E野火版中的控制柄 控制柄是用于在图形窗口中处理数据的图形对象。也可将控制柄捕捉至现有的几何参照,或用户定义的栅格增量。对几何的更改可动态显示在图形窗口中。 可以沿2D 或3D 轨迹拖动控制柄。 复制控制柄 在“倒圆角”、“拔模”、“延伸”、“偏移曲线”、“基准点”特征创建和“基准点偏移坐

标系”工具中,通过复制控制柄可以增强操作几何的能力。通过复制控制柄,可将特征类型从恒定变为可变或者添加另一个半径或点。 通过移动拖动器并按下SHIFT 键或CTRL 键,可以更改控制柄行为。SHIFT 键- 激活“捕捉”机制(如可用)。 CTRL 键- 激活“复制”机制(如可用)。 Pro/E中的拖放操作 Pro/ENGINEER 允许将文件从浏览器、其它Pro/ENGINEER 进程和Windchill 解决方案移动到图形窗口和模型树。当文件拖动到可接受的目标时,指针发生变化,表示该对象可放置在此处。 也可从浏览器和Pro/ENGINEER 导航器拖动链接,放到嵌入式的Web 浏览器中。 图形窗口 Pro/ENGINEER 文件可从嵌入式的Web 浏览器、独立浏览器或文件管理器放在图形窗口中。注意:Internet Explorer 浏览器必须为5.5 和更新版本。Netscape Navigator 必须为6.0 和更新版本。 当激活“文件夹导航器”时,可从嵌入式Web 浏览器中拖动Pro/ENGINEER 元件,并将其放在图形窗口中。元件在单独的窗口中打开,除非将其放置活动组件中。 缺省情况下,将元件放置在组件中时,Pro/ENGINEER 试图自动放置该元件。如果不能自动装配元件,会打开“元件放置”(Component Placement) 对话框,用于选取参照,并将零件约束在组件中。如果要选择装配该元件或在新窗口中将其打开,请将配置选项autoplace_single_component 设置为no。设置为no 后,会打开“确认检索”(Confirm Retrieval) 对话框,显示要在单独窗口中打开或添加到组件中的元件。有关将元件放置在组件中的详细信息,请参阅Pro/ASSEMBLY 的帮助文件。 可将.zip 文件拖动到图形窗口中。“文件打开”(File Open) 对话框打开,显示 .zip 中的文件。单击“文件打开”(File Open) 对话框中的Pro/ENGINEER 文件将其打开。 模型树 可将元件拖放到“模型树”中。如果组件已打开,则所放下的元件并未放入其中。要放置元件,从“模型树”快捷菜单单击“编辑定义”(Edit Definition)。 搜索导航器 如果连接到Windchill 服务器,会在嵌入式Web 浏览器中列出文件。可将文件

相关主题
文本预览
相关文档 最新文档