当前位置:文档之家› 1太阳能光伏发电应用技术考试试题

1太阳能光伏发电应用技术考试试题

1太阳能光伏发电应用技术考试试题
1太阳能光伏发电应用技术考试试题

杂质能级的位置位于禁带中心附近,电离能较大,在室温下,处于这些杂质能级上的杂质一般不电离,对半导体材料的载流子没有贡献,但是它们可以作为电子或空穴的复合中心,影响非平衡少数载流子的寿命,这类杂质称为深能级杂质

常用的形成p n 结的工艺主要有合金法、扩散法、离子注入法和薄膜生长法,其中扩散法是目前硅太阳电池的p 一n 结形成的主要方法。合金法是指在一种半导体单晶上放置金属或半导体元素,通过升温等工艺形成p-n 结。

扩散法是指在n 型(或p 型)半导体材料中,利用扩散工艺掺人相反类型的杂质,在一部分区域形成与体材料相反类型的p 型(或n 型)半导体,从而构成p-n 结。

离子注人法是指将n 型(或p 型)掺杂剂的离子束在静电场中加速,使之具有高动能,注人p 型半导体(或n 型半导体)的表面区域,在表面形成与体内相反的n 型(或p 型)半导体,最终形成p-n 结薄膜生长法是在n 型(或p 型)半导体表面,通过气相、液相等外延技术,生长一层具有相反导电类型的p 型(或n 型)半导体薄膜,在两者的界面处形成p-n 结。

p-n 结具有许多重要的基本特性,包括电流电压特性、电容效应、隧道效应、雪崩效应、开关特性、光生伏特效应等

没有整流效应的金属和半导体的接触,这种接触称为欧姆接触。欧姆接触不会形成附加的阻抗,不会影响半导体中的平衡载流子浓度。从理论上讲,要形成这样的欧姆接触,金属的功函数必须小于型半导体的功函数,或大于p 型半导体的功函数,这样,在金属一半导体界面附近的半导体一侧形成反阻挡层(电子或空穴的高电导区),可以阻止整流作用的产生。

常用的欧姆接触制备技术有:低势垒接触、高复合接触和高掺杂接触。

所谓的低势垒接触,就是选择适当的金属,使其功函数和相应半导体的功函数之差很小,导致金属一半导体的势垒极低,在室温下就有大量的载流子从半导体向金属或从金属向半导体流动,从而没有整流效应产生。对于p 型硅半导体而,金、铂都是较好的可以形成低势垒欧姆接触的金属。

高复合接触是指通过打磨或铜、金、镍合金扩散等手段,在半导体表面引人大量的复合中心,复合掉可能的非平衡载流子,导致没有整流效应产生。高掺杂接触,是在半导体表面掺人高浓度的施主或受主电学杂质,导致金属一半导体接触的势垒区很薄。在室温下电子通过隧穿效应产生隧道电流,从而不能阻挡电子的流动,接触电阻很小,最终形成欧姆接触。

光生伏特效应,当p 型半导体和n 型半导体结合在一起,形成p 一n 结时,由于多数载流子的扩散,形成了空间电荷区,并形成一个不断增强的从n 型半导体指向p 型半导体的内建电场,导致多数载流子反向漂移。达到平衡后,扩散产生的电流和漂移产生的电流相等。如果光照在p-n 结上,而且光能大于p-n 结的禁带宽度,则在p-n 结附近将产生电子一空穴对。由于内建电场的存在,产生的非平衡电子载流子将向空间电荷区两端漂移,产生光生电势(电压),破坏了原来的平衡。如果将p 一n 结和外电路相连,则电路中出现电流,称为光生伏特现象或光生伏特效应

太阳电池主要工艺步骤:绒面制备、p 一n 结制备、铝背场制备、正面和背面金属接触以及减反射层沉积。

绒面制备是利用晶体硅化学腐蚀的各向异性,在NaOH 等化学溶液中处理,形成金字塔形的结构,增加了对人射光线的吸收;

p n 结制备是在掺硼的p 型硅上,通过液相、固相和气相等技术,扩散形成n 型半导体;然后沉积铝作为铝背场,再通过丝网印刷、烧结形成金属电极。绒面结构对于单晶硅而言,如果选择择优化学腐蚀剂,就可以在硅片表面形成金字塔结构,称为绒面结构,又称表面织构化,除化学腐蚀以外,还可以利用机械刻槽、激光刻槽和等离子蚀刻等技术,在硅片表面制造不同形状的绒面结构,其目的就是降低太阳光在硅片表面的反射率,增加太阳光的吸收和利用

P- n 结制备晶体硅太阳电池一般利用掺硼的p 型硅作为基底材料,在900 ℃ 左右,通过扩散五价的磷原子形成n 型半导体,组成p-n 结。

磷扩散的工艺有多种,主要包括气态磷扩散、固态磷扩散和液态磷扩散等形式。

铝背场为了改善硅太阳电池的效率,p 一n 结制备完后,在硅片的背光面,沉积一层铝膜,制备P+ 层,称为铝背场,其作用减少少数载流子在背面复合的概率,作为背面的金属电极。

制备铝背场最简便的方法是利用溅射等技术在硅片背面沉积一层铝膜,然后在800 一1000℃ 热处理,使铝膜和硅合金化并内扩散,形成一层高铝浓度掺杂的p+ 层.构成铝背场。

丝网印刷电极制备.就是利用丝网印刷的方法,把金属导体浆料按照所设计的图形,印刷在已扩散好杂质的硅片正面、背面。然后,在适当的气氛下,通过高温烧结,使浆料中的有机溶剂挥发,金属颗粒与硅片表面形成牢固的硅合金,与硅片形成良好的欧姆接褳,从而形成太阳电池的上、下电极。减反射膜的基本原理是利用光在减反射膜上、下表面反射所产生的光程差,使得两束反射光干涉相消,从而减弱反射,增加透射。

减反射层的薄膜材料通常要求有很好的透光性,对光线的吸收越少越好;同时具有良好的耐化学腐浊性良好的硅片粘接性如果可能最好还具有导电性能。化学气相沉积(CVD) 、等离子化学气相沉积(PECVD) 、喷涂热解、溅射、蒸发等技术,都可以用来沉积不同的减反射膜。减反射膜的最佳厚度为70nm

工业上和实验室一般使用等离子体增强化学气相沉积法(PECVD) 来生成氮化硅薄膜。这是因为,相对于其他制备技术,PECVD 制备薄膜的沉积温度低,对多晶硅中少数载流子的寿命影响较小,而且生产能耗较低;而且沉积速度较快,生产效率高;氮化硅薄膜的质量好,薄膜均匀且缺陷密度较低

非晶硅薄膜太阳电池与晶体硅太阳电池相比,具有重量轻、工艺简单、成本低和耗能少等优点,主要应用于电子计算器、手表、路灯等消费产品。

由于非晶硅材料具有独特的性质,所以其太阳电池结构不同于晶体单的p 一n 结结构,而是pin 结构。这是因为非晶硅材料属于短程有序、长程无序的晶体结构,对载流子有很强的散射作用,导致载流子的扩散长度很短,使得光生载流子在太阳电池中只有漂移运动而无扩散运动。

晶体硅薄膜太阳电池一般被设计成pin 结构,其中p 为人射光层,i为本征吸收层,n 为基底层。由结和i 一n 结形成的内建电场几乎跨越整个本征层。当人射光穿过p 型人射光层在本征吸收层中产生电子一空穴对很快被内建电场分开,空穴漂移到p 层,电子漂移到n 层,形成光生电流和光生电压

非晶硅的pi n 结构通常是利用气相沉积法制备的,根据不同的技术又可以分为辉光放电法、溅射法、真空蒸发法、热丝法、光化学气相沉积法和等离子气相沉积法。其中,等离子气相沉积法在工业界和研究界被广泛应用

多晶硅薄膜太阳电池制备在具有一定机械强度的低成本的衬底材料上,衬底为玻璃、晶体硅、低纯度的多品硅、s ℃等。在此基础上,利用等离子化学

气相沉积法、等离子体溅射沉积法、液相外延法和化学沉积法,来制备掺硼的p 型多晶硅薄膜,其中化学沉积法得到了广泛、应用。

单晶硅是根据晶体生长方式的不同,可以分为区熔单晶硅和直拉单晶硅。

区熔单晶硅是利用悬浮区域熔炼的方法制备的,所以又称为FZ 硅单晶。直拉单晶硅是利用切氏法备单晶硅,称为CZ 单晶硅。

高纯多晶硅的制备三氯氢硅氢还原法是德国西门子1954 年发明的,又称西门子法,是广泛采用的高纯多晶硅制备技术,硅烷热分解法,四氯化硅氢还原区熔单晶硅利用悬浮区熔方法制备的区熔单晶硅,纯度很高,电学性能均匀;但是,直径小,机械加工性差。利用区熔单晶硅制备的太阳电池的光电转换效率高,但是生产成本高,价格昂贵

在区熔单晶硅的制备过程中,首先以高纯多晶硅作为原料,制成棒状,并将多晶硅棒垂直固定;在多晶硅棒的下端放置具有一定晶向的单晶硅,作为单晶生长的籽晶,其晶向一般为〈111 〉或〈100 〉;然后在真空或氩气等惰性气体保护下,利用高频感应线圈加热多晶硅棒,使多晶硅棒的部分区域形成熔区,并依靠熔区的表面张力保持多晶硅棒的平衡和晶体生长的顺利进行。晶体生长首先从多晶硅棒和籽晶的结合处开始,多晶硅棒和籽晶以一定的速度做相反方向的运动,熔区从下端沿着多晶硅棒缓慢向上端移动,使多晶硅逐步转变成单晶硅。

直拉单晶硅的制备工艺一般包括:多晶硅的装料和熔化、种晶、缩颈、放肩、等径和收尾

分凝现象由两种或两种以上元素构成的固溶体,在高温熔化后,随着温度的降低将重新结晶,形成固溶体。在再结品过程中,浓度小的元素(作为杂质)在浓度高的元素晶体及熔体中的浓度是不同的。

平衡分凝系数在固溶体结晶时,如果固相和液相接近平衡状态,即以无限缓慢的速度从熔体中凝固出固体,固相中某杂质的浓度,液相中该杂质的浓度,那么,两者的比值称为该杂质在此晶体中的平衡分凝系数

对于晶体硅而言,杂质浓度极低,杂质的平衡分凝系数就是固液相图中固相线与液相线的斜率之比。对于硅中不同的杂质,平衡分凝系数k也不同。k< 1意味着晶体生长时,杂质在品体中的浓度始终小于在熔体中的浓度,即杂质在硅熔体中富集,最终导致品体尾部的杂质含量高于品体头部;反之,k> 1 意味着晶体生长时,杂质在晶体中的浓度始终大于在熔体中的浓度,即杂质在硅熔体中浓度会越来越小,使得晶体尾部的杂质含量低于晶体头部;k= 1 时杂质在晶体和熔体中的浓度始终一致,导致晶体生长完成后,从品体的头部到晶体的尾部,浓度都保持一致。

对于大规模集成电路用单晶硅,一般需要对单晶硅棒进行切断(割断)、滚圆、切片、倒角、磨片、化学腐蚀和抛光等工艺,在不同的工艺间还需进行不同程度的化学清洗。而对于太阳电池用单晶硅,硅片的要求比较低,通常应用前几道加工工艺即切断(割断、滚圆(切方块)、切片和化学腐蚀。直拉单晶硅除了电活性杂质外,一般主要存在氧、碳、氮、氢和金属杂质。其中氧是主要杂质,氮杂质是在晶体生长阶段加人的杂质,对控制微缺陷和增加机械强度有益。而氢杂质是在器件加工过程中引人的,主要用来钝化金属杂质和缺陷。

太阳电池直拉单晶硅比集成电路直拉单品硅具有更多的杂质和缺陷。在太阳电池用直拉单晶硅中,主要的杂质是氧、碳和金属杂质,主要的缺陷是位错

氧是直拉单晶硅中的3还可以形成氧沉淀,主要杂质,它来源于晶体生长过程中石英坩埚的污染1氧可以与空位结合,形成微缺陷;2可以团聚形成氧团簇,具有电学性能;引人诱生缺陷,氧浓度表现为头部高、尾部低.

硅中金属的测量一是测量硅中各个金属杂质总体的浓度;二是测量硅中各个金属单个原子状态的浓度;三是测量硅中金属沉淀的浓度

铸造多晶硅的制备工艺一种是浇铸法,即在一个坩埚内将硅原材料熔化,然后浇铸在另一个经过预热的坩埚内冷却,通过控制冷却速率,采用定向凝固技术制备大品粒的铸造多晶硅。另一种是直接熔融定向凝固法.简称直熔法,又称布里奇曼法,即在坩埚内直接将多晶硅熔化,然后通过坩埚底部的热交换等方式,使熔体冷却,采用定向凝固技术制造多晶硅也有人称这种方法为热交换法

在制备铸造多晶硅时,首先将多晶硅的原料在预熔坩埚内熔化,然后硅熔体逐渐流人到下部的凝固坩埚,通过控制凝固坩埚周围的加热装置,使得凝固坩埚的底部温度最低,从而硅熔体在凝固坩埚底部开始逐渐结晶。结晶时始终控制固液界面的温度梯度,保证固液界面自底部向上部逐渐平行上升最终达到所有的熔体结晶。

利用定向凝固技术生长的铸造多品硅,生长速度慢,坩埚是消耗件,不能重复循环使用,即每一炉多品硅需要一支坩埚;而且,在晶锭的底部和上部,各有几厘米厚的区域由于质量低而不能应用。为了克服这些缺点,电磁感应冷坩埚连续拉品法简称EMC 或EMCP 法。其原理就是利用电磁感应的冷坩埚来熔化硅原料,这种技术熔化和凝固可以在不同部位同时进行,节约生产时间;而且,熔体和坩埚不直接接触,既没有坩埚的消耗,降低成本,又减少了杂质污染长度,特别是氧浓度和金属杂质浓度有可能大幅度降低。另外,该技术还可以连续浇铸,速度可达5mm/min不仅如此,由于电磁力对硅熔体的作用,使得掺杂剂在硅熔体中的分布可能更均匀。

铸造多晶硅的晶体生长1装料2加热3化料4晶体生长5退火6冷却

非晶硅薄膜具有制备工艺简单、成本低且可大面积连续生产的优点。在太阳电池领域,其优点具体表现为材料和制造工艺成本低,易于形成大规模的生产能力,多品种和多用途,易实现柔性电池

等离子体化学气相沉积制备非晶硅薄膜

多晶硅薄膜的制备技术凡是制备固态薄膜的技术,如真空蒸发、溅射、电化学沉积、化学气相沉积、液相外延和分子束外延等,都可以用来制备多晶硅薄膜。液相外延是其中一种重要的制备多晶硅薄膜的技术。

布里奇曼法制备GaAs 单晶布里奇曼法生长单晶实质上是一种区域熔炼(区熔)技术,可分为水平布里奇曼法(HB) 和垂直布里奇曼法(VB) 两种,通常都是利用水平布里奇曼法生长的,而区熔单晶硅则是利用垂直布里奇曼法生长的。其实,两种生长方物理过程都是相同的。

液相外延制备GaAs 薄膜单晶

硅材料Eg 一1. 12ev 间接锗材料Eg 一0 · 67ev 间接磷化铟Eg 一1. 35ev 直接带隙材料砷化镓Eg 一1. 43ev 直接

锑化镉Eg 一1. 45ev 直接硫化镉Eg 一2 · 4ev 直接铜铟镓锡Eg 一1. 04ev 直接铜铟镓硫Eg 一1. 50ev 直接

氧沉淀形成热处理温度可分为低中和低温(600 一800 ℃ 棒状又称针状或带状,中温(850 一1050 ℃ )片状沉淀高(1100 一1250 ℃ 多面体沉淀。

铝背场的作用:①减少少数载流子在背面复合的概率;②作为背面的金属电极;③提高电池的开路电压;④提高太阳电池的收集效率;⑤降低电池的反向饱和暗电流和背表面复合速率;⑥制作良好的欧姆接触。

简述晶体硅的制备工艺过程?

答:晶体硅太阳电池的制备工艺:p 型硅片-清洗制绒-扩散制结-去周边层-去磷硅玻璃-镀减反射膜-印刷电极-高温烧结-检测-分选-入库包装

P-N 结的形成原理当P型半导体与N型半导体连接在一起时,由于PN结中不同区域的载流子分布存在浓度梯度,P型半导体材料中过剩的空穴

通过扩散作用流动至N型半导体材料;同理,N型半导体材料中过剩的电子通过扩散作用流动至P型半导体材料。电子或空穴离开杂质原子后,该固定在晶格内的杂质原子被电离,因此在结区周围建立起了一个电场,以阻止电子或空穴的上述扩散流动,该电场所在的区域及耗尽区或者空间电荷区

简述制绒的定义、目的、原理、作用以及工艺流程;

答:1. 制绒的定义:制绒是利用硅的各向异性腐蚀的特性在表面刻出类似于金字塔或者是蜂窝状的结构。2. 目的:为了在硅片上获得绒面结构,利用陷光原理,增加光透性,减少光的反射,提高ISC; 增加光的吸收率,去除损伤层,增加PN结面积(PN结厚,VOC增加,Eg宽)3. 原理:陷光原理4. 绒面的作用:①减少了太阳光的反射;②增加太阳光被吸收的机会。

简述表面织构化答:晶体硅在进行切片时,是硅片表面留下一层10-20um的损伤层,而在太阳电池制备时首先要利用化学腐蚀去除损伤层,然后制备表面绒面机构,若选择择优化学腐蚀剂就可以在硅片表面形成倒金字塔结构,称为绒面结构,又称表面织构化。

丝网印刷的工艺三步骤:背Ag,背Al, 正Ag

减反射膜的基本原理:利用光在减反射膜上、下表面反射所产生的光程差,使得两束反射光干涉想消,从而减弱反射,增加透射。

减反射层薄膜材料要求:①透光性好②对光吸收系数③良好的耐化学腐蚀性④良好的硅片粘结性⑤良好的导电性能

常用的减反射膜制备方法:①化学气相沉积(CVD)②等离子化学气相沉积(PECVD )③喷涂热解④溅射⑤蒸发

单晶硅片的一般制作流程:高纯多晶硅原料熔化→种晶→缩颈→放肩→等径→收尾→圆柱状单晶硅→切断、滚圆、切片、化学清洗→单晶硅片

各种硅材料的优缺点对比:直拉单晶硅:优点:电池效率高,工艺稳定成熟;缺点:成本相对较高。

薄膜非晶硅:优点:制作成本低缺点:光电转换率低,存在光致衰减行为,稳定性较差。

铸造多晶硅优点:成本相对较低,光电转换效率较高缺点:高密度的位错、微缺陷和晶界,影响光电转换效率。

薄膜多晶硅:优点:潜在低成本,相对高效率缺点:光电转换效率低

高纯多晶硅的制备方法:①三氯氢硅氢还原法②硅烷热分解法③四氯化硅还原法

区熔单晶硅的制备过程:首先以高纯多晶硅作为原料,制成棒状,并将多晶硅棒垂直固定;在多晶硅棒的下端放置具有一定晶向的单晶硅,作为单晶生长的籽晶,其晶向一般为<111>或(100);然后在真空或氩气等惰性气体保护下,利用高频感应线圈加热多晶硅棒,使多晶硅棒的部分区域形成熔区,并依靠熔区的表面张力保持多晶硅棒的平衡和晶体生长的顺利进行。

直拉单晶硅的制备工艺流程:多晶硅的装料→熔化→种晶→缩颈→放肩→等径收尾

简述分凝现象、分凝系数;分凝现象: 在结晶过程,浓度小的元素(作为杂质)在浓度高的元素晶体中和熔体中的浓度是不同的,称为分凝现象。⑵分凝系数: “分凝系数”= ( 杂质在固相中的溶解度)/( 杂质在液相中的溶解度)

大规模集成电路用单晶硅加工工艺流程:切断(割断)→滚圆→磨定位标志→切片→倒角→研磨→腐蚀→热处理→背面损伤→抛光→清洗→检验→包装

太阳电池用单晶硅加工工艺流程:切断→滚圆→切片→化学腐蚀

线切割的优缺点:优点:①效率高②耗材少③切割应力小,切割后表面损伤小。缺点:①硅片的平整度差;②设备相对昂贵,维修困难

影响直拉单晶硅中的氧浓度的因素:①熔硅中的热对流②熔硅与石英坩埚的接触面积③晶体生长时的机械强制对流④SiO 自熔硅表面的蒸发⑤氧与晶体中点缺陷的作用。

简述单晶硅与多晶硅的制作工艺流程,谈谈各自的影响因素与改进措施?

答:1. 单晶硅:多晶硅的装料→熔化→种晶→缩颈→放肩→收尾,多晶硅:装料加热化料晶体生长退火冷却

2.影响因素: .单晶硅:温度、浓度、时间、位置多晶硅:温度、浓度、时间、位置

3. 改进措施:对于单晶硅而言,采用新型直拉单晶硅的生长技术;对于多晶硅而言,采用电磁感应冷坩埚连续拉晶法。

63.简述硅锭的切片过程,切片过程中存在哪些影响因素,如何减小掉片风险?

答:硅锭的切片过程:切断(割断)→滚圆→磨定位标志→切片→倒角→研磨→腐蚀→热处理→背面损伤→抛光→清洗→检验→包装。

切片过程中存在的影响因素:线速、张力、桌面移动速度、砂浆粘度、温度和研磨特性、线径、碳化硅数目、密度。

64.直拉单晶硅电池中氧杂质会有哪些影响,如何控制、如何解加热化料晶体生长退火冷却装料决?

答:直拉单晶硅电池中氧杂质影响:会形成缺陷:控制:采取精细的工艺和外加磁场加以控制。解决:对于热施主可以在550℃以上的短时间热处理中予以消除,通常利用的热施主消除温度为650℃。对B-O,硼氧复合体的缺陷可以经低温(200℃左右)热处理予以消除。

铸造多晶硅的优点与缺点?答:优点:是材料的利用率高、能耗小、制备成本低,而且其晶体生长简便,易于大尺寸生长。缺点:是含有晶界、高密度的位错、微缺陷和相对较高的杂质浓度,其晶体的质量明显低于单晶硅,从而降低了太阳电池的光电转换效率。

铸造多晶硅的主要制备工艺?答:①浇铸法;②直熔法。

简述浇铸法的工作原理和基本原理?答:工作原理:在制备多晶硅时,首先将多晶硅的原料在预熔坩埚内熔化,然后硅熔体逐步流入到下部的凝固坩埚,通过控制凝固坩埚的加热设备,使得凝固坩埚的底部温度最低,从而硅熔体在凝固坩埚底部开始逐渐结晶。结晶时始终控制固液界面的温度

梯度,保证固液界面自底部向上部逐渐平行上升,最终达到所有的熔体结晶。基本原理:在一个坩埚内将硅原料溶化,然后浇铸在另一个经过预热的坩

埚内冷却,通过控制冷却速率,采用定向凝固技术制备大晶粒的铸造多晶硅。

简述直熔法的工作原理和基本原理?

答:工作原理:硅原材料首先在坩埚中熔化,坩埚周围的加热器保持坩埚上部温度的同时,自坩埚的底部开始逐渐降温,从而使坩埚底部的熔体首先结晶。同样的,通过保持固液界面在同一水平面并逐渐上升。使得整个熔体结晶为晶锭。在这种制备方法中,硅原材料的熔化和结晶都在同一个坩埚中进行。基本原理:直接熔融定向凝固法,简称直熔法,又称布里奇曼法,即在坩埚内直接将多晶硅溶化,然后通过坩埚底部的热交换等方式,使得熔体冷却,采用定向凝固技术制造多晶硅,所以,也有人称这种方法为热交换法

直熔法制备铸造多晶硅的具体工艺装料→加热→化料→晶体生长→退火→冷却

铸造多晶硅中需要解决的主要问题①尽量均匀的固液界面温度;②尽量小的热应力;③尽量大的晶粒;④尽可能少的来自于坩埚的污染。

1. 半导体太阳能光伏电池工作原理的四个基本过程。

答:第一,必须有光照射,可以是单色光,太阳光和模拟光源。第二,光子源注入到半导体内后,产生电子- 空穴对,且电子- 空穴对具有足够的寿命。第三,利用PN结,将电子- 空穴对分离,分别集中于两端。第四,被分离的电子和空穴,经由电极收集,运输到电池体外,形成电流。

2. 空间电荷区,内建电场及方向;漂移电流和扩散电流及其方向。

答:空间电荷区:扩散结果:n 区出现正电荷区,p 区出现负电荷区,则交界面的两侧的正,负电荷区,总称为空间电荷区。内建电场:由于空间电荷区正负电荷相互吸引,形成一个称为势垒电场的内建电场,带正电荷的n 区指向带负电荷的p区。扩散电流:当两种不同型号半导体连接起来,在交界处产生载流子扩散。由n 型半导体与p 型半导体交界处两侧不同型号载流子(多数载流子)浓度差引起的载流子扩散产生的电流。扩散电流=电子扩散电流+空穴扩散电流。方向p 指向n。漂移电流:内建电场的形成对多数载流子扩散运动起阻挡运动的作用。载流子在内建电场中的运动叫做漂移电流。漂移运动产生的电流叫做漂移电流。漂移电流=空穴漂移电流+电子漂移电流。方向与扩散电流方向相反。

PN 结两端接触电势及其表达方式;接触电势与电池的开路电压有关,说明影响太阳电池开路电压的因素。

答:接触电势是PN结空间电荷区两端的电势差Vo。

影响因素:1. 与n 区和p 区中净摻杂浓度有关(Nd,Na)有关,摻杂浓度越大,V0越大即太阳电池的开路电压Voc 越大。

2. 与半导体材料种类有关,不同半导体有不同的本征载流子浓度(ni ),在同样摻杂浓度下,其Vo不同即Voc 不同。

3. 温度T 有关温度愈高ni 愈大,Vo 愈小,所以随环境温度增高,太阳电池Voc 成指数下降。

金属电极作用收集光生电流,然后引导到负载;

对金属电极的要求1. 与硅片形成良好的欧姆接触。2电极线宽要越细越好。

金属电极的丝网印刷制作工艺按设计好的电极图形的模板,用丝网印刷法将导体浆料(用超细银粉与有机溶剂调成浆料),印制在电池表面,然后在适当的温度下烧结,使有机溶液挥发,而金属颗粒(Ag) 与硅片紧紧的粘附,形成(Ag)与硅的合晶

铝背场结构:在pn 结制备完后,在硅片背面淀积一层铝膜,经合金化高温处理后,在硅片内形成p+层(高浓度p 型杂质层),在硅片背侧面产生了内建电场。

合金化作用:1. AL 原子进入硅片内,形成一层高浓度的p+层形成BSF结构。2. 使Al 膜紧紧的黏在硅片的表面,形成背电极。

铝背场结构的作用:1. 能提高电池的光电转换效率原因:由于P+层存在,在电池背面形成一个P+/p 结,从而产生一个内建电场,由于这个电场的方向与电池端电压方向相反,阻止了光生电压少数载流子向P+层扩散,由此减少了少子在背面的复合几率,提高了电子的收集效率,即提高了光生电

流,同时提高了电池的开路电压,提高了光电转换效率。2. 可做电池背面的金属电极。

薄膜电池存在的问题1. 光电转换效率低2. 电池效率的光衰减:

PN 结的内建电场是从N 区指向P区。

P 型硅为基体的太阳电池,未导通的情况下,其光生电压的方向是P→N。

电池开路且有稳定光照时,正向结电流I F 和光电流I L 大小相等,方向相反。光电流的方向是n→p。

影响金属电极和硅之间的接触电阻最直接的工艺是烧结工艺

1光生伏达效应:半导体在受到光照射时产生电动势的现象。

2.单晶硅:由晶面取向相同的晶粒形成的晶体硅。

3.光致衰退效应:光电转换效率会随着光照时间的延续而衰减,使电池性能不稳定。

5. 方阻:正方形的薄膜导电材料边到边之间的电阻。

6. 刻蚀:通过溶液、反应离子或其他机械方式来剥离、去除材料的一种统称。

7. 等离子体:处于主要由电子和正离子(或是带正电的核)组成状态的物质。8. 等离子态:电子、正离子、中性粒子混合组成的一种形态。

9. 开路电压:太阳能电池空载时的端电压10. 短路电流:端电压为零时,通过太阳能电池的电流。

1. 太阳能电池根据所用材料的不同,可以分为硅太阳能电池、化合物太阳能电池、染料敏化电池和有机薄膜电池。

2. 太阳能电池按照结构可以划分为晶体硅太阳能电池和薄膜太阳能电池。

3. 晶体硅太阳能电池生产过程大致分为五个步骤:提纯、拉棒、切片、制电池、封装。

4. 单晶硅太阳能电池在实验室转换效率为24.7%,规模生产时转换效率为15%。

5. 多晶硅太阳能电池的实验室转换效率为18%,规模生产时转换效率为10%。

6. 非晶硅薄膜经过不同的电池工艺过程可以分别制得单结电池和叠层太阳能电池。

10. 清洗制绒设备的功能:除去表面油污、损伤层、金属离子,制绒、自然氧化。15. 刻蚀可以分为干法刻蚀和湿法刻蚀两种

18. 减反射膜是以光的波动性和干涉现象为基础的

1. 砷化镓太阳能电池属于第三代太阳能电池。(×)碲化镉太阳能电池属于第二代太阳能电池。(√)

5. 硅片表面的反射率一般为20%左右,制绒后,单晶硅的反射率可以降低至10%,多晶硅可降至15%(√)

1. 简述晶体硅太阳能电池的工作原理。

太阳光照在半导体PN结上形成新的空穴电子对,在PN结内在电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。微晶硅薄膜电池具有哪些优势?低成本;电导率高,吸收系数高,无明显光致衰退现象;易大面积制备,集成化;

简述湿法刻蚀的优缺点优点:选择性好重复性好-生产效率高-设备简单-成本低-缺点-钻刻严重对图形的控制性较差-不能用于小的特征尺寸-会产化学废液简述干法刻蚀的优缺点优点:各向异性好,选择比高,可控性、灵活性、重复性好-细线条操作安全-易实现自动化,无化学废液-缺点:成本高,设备复杂TPT是为了防水和绝缘

太阳能电池的上电极一般制成什么形状栅线状有利于光生电流的收集,并使电池有较大的受光面积。

太阳能电池组件生产的工艺流程。电池测试正面焊接背面串接层压敷设组件层压修边装框焊接接线盒组件测试

制绒工序的检测内容有哪几项减薄量反射率外观均匀性

背板主要使用什么材料TPT 防止水汽进入太阳电池组件内部,并对阳光起反射作用。

2、太阳能玻璃的铁杂质含量一般控制在0.015%之下。(对)

5、照度和温度是确定光伏电池输出特性的两个重要参数

6、在城市中配电侧并网的光伏发电系统,也称作分布式发电系统。

8、根据有无隔离变压器,光伏并网逆变器可分为隔离型和非隔离型。

9、在隔离型光伏并网逆变器中,隔离变压器所起到的作用是进行电压变换(电压匹配)和电气隔离。

10、最大功率点跟踪(MPPT)技术就是利用控制方法实现光伏电池的最大功率输出运行的技术。

5、传统的MPPT 方法依据判断方法和准则,可被分为开环和闭环

MPPT 方法,以下那种属于闭环的MPPT 方法。(C )A、定电压跟踪法B、短路电流比例系数法C、扰动观测法D、插值计算法

4.BIPV 的含义是建筑光伏发电一体化3. 太阳能热发电只能利用太阳能中的直射辐射资源,不能利用太阳能散射辐射资源

8. 光伏发电系统可分为带蓄电池和不带蓄电池的并网发电系统

10. 光伏发电的缺点主要有:照射能量分布密度小、随机性强、地域性强

12. 太阳能电池的基本特性有:光谱特性、光照特性、温度特性

13. 太阳能电池分为晶硅片太阳能电池和薄膜太阳能电池两大类。

14. 交流光伏供电系统和并网发电系统,方阵的电压等级往往是110V 或220V

16. 太阳能电池的热斑往往在单个电池上发生。

22. 蓄电池组的其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。

23. 充放电控制器是能自动防止蓄电池过充电和过放电的设备。

29. 光伏于建筑结合的方式有两种,分别为BIPV 和BAPV 。

30. 薄膜电池分为:多晶硅薄膜电池和非晶硅薄膜电池

33. 光伏并网逆变器对孤岛现象一般有被动检测和主动检测两种检测方式。

8. 光伏于建筑结合的方式有两种,分别为BIPV 和BAPV,其中对BIPV 解释正确的是(A )。A. 光伏建筑一体化

25. 太阳能电池的电流随着电压增大而(A )。A. 先保持相对平坦,后减小

4. 什么是太阳能电池的热斑效应?其根源是什么?

答:一个方阵在阳光下出现局部发热点的现象称为热斑效应,这种热斑往往在单个电池上发生。造成热斑效应的根源是有个别坏电池的混入、电极焊片虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局部受到阴影遮挡等。

5. 光伏发电系统中常用的最大功率跟踪技术有哪些?

答:1)功率匹配方法;2)曲线拟合技术;3)扰动和观察法;4)导纳增量法。

6. 什么是太阳能电站的孤岛现象?

答:电网失压时,光伏电站仍保持对失压电网中的某一部分线路继续供电的状态。孤岛现象可分为非计划性孤岛现象和计划性孤岛现象。

10. 浅谈薄膜太阳能电池相对与晶硅片太阳能电池的优势和劣势。

答:优势:薄膜电池发电成本比晶体硅电池要便宜很多,可以媲美传统火电价格。

劣势:与多晶硅电池板,薄膜电池的不足之处在于,单位面积内多晶硅的电转换

率较高,现在在15%左右,而薄膜目前的技术仅仅只能够做到6%。也就是说,

相同面积的电池板,铺设同样的面积,薄膜电池的功率仅有多晶硅电池板的40%。

光伏发电与节能技术

2012 ~ 2013 学年第一学期 《能源与节能技术》 期末考试论文 题目:光伏发电和节能技术 系别:电气工程系 班级:09自动化 姓名:于传龙 学号:0909111057 指导教师:董德智 电气工程系 2012年11月12日

光伏发电和节能技术 摘要: 节能技术是指采取先进的技术手段来实现节约能源的目的。具体可理解为,根据用能情况,能源类型分析能耗现状,找出能源浪费的节能空间,然后依此采取对应的措施减少能源浪费,达到节约能源的目的。 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 关键词:光伏发电节能技术 光伏发电的工作原理: 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设周期短的优点。光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。 不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。目前,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。 应用领域: 一、用户太阳能电源:(1)小型电源10-100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;(2)3-5KW家庭屋顶并网发电系统;(3)光伏水泵:解决无电地区的深水井饮用、灌溉。 二、交通领域如航标灯、交通/铁路信号灯、交通警示/标志灯、宇翔路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。 三、通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。 四、石油、海洋、气象领域:石油管道和水库闸门阴极保护太阳能电源系统、石油钻井平台生活及应急电源、海洋检测设备、气象/水文观测设备等。

太阳能光伏发电系统的设计与控制技术研究

太阳能光伏发电系统的设计与控制技术研究 发表时间:2016-03-29T17:40:08.700Z 来源:《基层建设》2015年23期供稿作者:雷云 [导读] 中信建筑设计研究总院有限公司此外本文所设计的太阳能光伏发电系统可以将电能直接输送到交流电网系统中,这样可降低蓄电池的费用。 雷云 中信建筑设计研究总院有限公司 摘要:本文针对太阳能光伏发电系统的常规要求,提出了一种实用的太阳能光伏发电系统的主电路、控制电路方案,并设计了相关的硬件电路原理图。 关键词:最大功率跟踪;电导增量法;Boost变换器;太阳能光伏发电系统 一引言 本文设计的太阳能光伏发电系统的基本输出参数为:单相AC220V、50Hz,输出功率为3kVA。 系统的结构框图如图1.1所示。光伏电池96V~128V直流经过DC-DC升压变换器,升压得到400V的直流电压,再经过DC-AC逆变器,可输出220V、50Hz的正弦电压。 根据系统的输入输出的特点,整个系统分为两级,前级的DC-DC升压变换器和后级的DC-AC逆变器,从而避免了工频变压器的使用,缩小了装置的体积。此外本文所设计的太阳能光伏发电系统可以将电能直接输送到交流电网系统中,这样可降低蓄电池的费用。DC-DC变换器的功能主要是将光伏阵列的输出直流升压成400V直流电,并实现最大功率跟踪。因此,DC-DC变换器的拓扑结构采用Boost电路,采用电导增量法,使光伏阵列工作在最大功率点。 DC-AC逆变器的功能主要是将直流电转换成220V、50Hz的正弦交流电压,并维持DClink的电压为400V。DC-AC逆变器的拓扑结构采用全桥式逆变器,控制方法选用平均电流控制。 图1.1 太阳能光伏发电系统结构框图 二太阳能光伏发电系统的设计与控制技术研究 1 电导增量法(导纳微分法) (1)电导增量法 电导增量法在光伏发电系统中广泛使用,它通过比较光伏电池阵列的检测变量的增量和瞬时电导值跟踪最大功率点。电导值的增量通过测量光伏电池阵列的输出电压、电流的变化量来确定。 dP/dV的值是与输出电压值一一对应的: ●当dP/dV=0(≈0),在最大功率点处或在非常接近最大功率点处(电压应该保持不变)。由于d I和d V不是精确计算的结果,因此在实际中可以认为dP/dV= e(e ≈ 0)时系统就工作在最大功率点。 ●当dP/dV>0,在最大功率点左边(应该增加电压)。 ●当dP/dV<0,在最大功率点右边(应该减小电压)。 通过测量和计算I/V和dI/dV的值就可以通过上边的关系判断出太阳能输出电压与实际最大功率点输出电压的关系。具体的实现方法如下: V(k)、I(k)为阵列当前电压、电流值;V(k-1)、I(k-1)为阵列上一周期电压、电流值;Vref为Boost电路开关占空比的参考电压值;△V为单个采样周期的电压增量。 因为dP/dV=d(IV)/dV=I+VdI/dV,所以通过判断I/V+dI/dV即G+dG的符号,就可以确定工作点在曲线的左、右哪侧的位置,从而对电压Vref进行相应的调节。 ● 若dV=0(表示系统在上一周期已经工作在最大功率点): 若dI=0,电压Vref保持不变;若dI>0,增加Vref;若dI<0,减小Vref; ● 若dV≠0: 若dI/dV=-I/V,阵列已工作在最大功率点,无须再调节电压Vref;若dI/dV>-I/V,增加Vref;若dI/dV<-I/V,减小Vref。(2)改进的电导增量法 针对电导增量法存在固定步长的缺点,采用变步长的寻优策略。 期望的目标是:

太阳能光伏发电原理与应用实验报告资料

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

太阳能光伏发电系统方案书

(BIPV)光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成...............................................错误!未定义书签。第3章光伏并网发电系统设计原则与原理. (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司...................................................错误!未定义书签。 6.1 雄厚的集团背景.................................................................................................................. 错误!未定义书签。 6.2 超强的项目管理能力.......................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队.................................................................................................................. 错误!未定义书签。 6.4 “一揽子交钥匙服务”...................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

太阳能光伏发电技术及其发展前景

本文由午夜寒光贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 (s' 『 1 Ⅲ…节能减排 :e l { 1 l o n l na l 一 太阳能光伏发电技术及其发展前景 ●湖北十堰刘道春 1 太阳能光伏发电市场前景广阔 当煤炭 , 油等化石能源频频告急 , 源问题日益成石能为制约国际社会经济发展的瓶颈时 ,越来越多的国家开始实行" 阳光计划 " 开发太阳能资源 , 求经济发展的新 , 寻动力 .欧洲一些高水平的核研究机构也开始转向可再生能源 . 国际光伏市场巨大潜力的推动下 , 国的太阳能在各电池制造商争相投入巨资 , 大生产 , 争一席之地 . 扩以 美国推出了" 阳能路灯计划 "旨在让美国一部分城太 , 阳能发电往往指的就是太阳能光伏发电 . 太阳能发电有两种方式 : 种是光一热一电转换方式 , 一种是光一电一另 直接转换方式 . 光一热一电转换方式通过利用太阳辐射 产生的热能发电 .一般是由太阳能集热器将所吸收的热能转换成工质的蒸气 . 驱动汽轮机发电 .与普通的火力再发电一样 .太阳能热发电的缺点是效率很低而成本很高 , 估计它的投资至少要比普通火电站贵 5 1 — O倍 . 一座 l0 MW 的太阳能热电站需要投资 2 ~ 5亿美元 ,平均O0 02 lW 的投资为 2 0 ~ 5 0美元 .因此 . k 002O 目前只能小规模地市的路灯都改为由太阳能供电 , 据计划 , 盏路灯每年根每 可节电 8 0 Wh 日本也正在实施太阳能 " 0k . 7万套工程计 应用于特殊的场合 . 大规模利用在经济上很不合算 , 而还 不能与普通的火电站或核电站相竞争 .光一电直接转换 划 " 准备普及太阳能住宅发电系统 , 是装设在住宅屋 , 主要 方式是利用光电效应 , 太阳辐射能直接转换成电能 , 将它的基本装置就是太阳能电池 .太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件 ,是一 个半导体光电二极管 .当太阳光照到光电二极管上时 , 光电二极管就会把太阳的光能变成电能 , 生电流 .当多个产电池串联或并联起来就可以成为有比较大的输出功率的 顶上的太阳能电池发电设备, 家庭剩余的电量还可以卖给 电力公司 .欧洲则将研究开发太阳能电池列入著名的" 尤里卡 " 科技计划 , 出了 "O万套工程计划 " 日本 , 国高推 l . 韩以及欧洲地区总共8个国家最近决定携手合作 , 亚洲内在 陆及非洲沙漠地区建设世界上规模最大的太阳能发电站 . 他们的目标是将占全球陆地面积约 l , 4的沙漠地区的长时间日照资源有效地利用起来 ,为 3 0万用户提供 1 0万 0 太阳能电池方阵 .太阳能电池是一种大有前途的新型电源 , 有永久性 , 洁性和灵活性三大优点 . 太阳能电池具清

光伏发电技术及应用专业课程

公共必修课 思想道德修养及法律基础、毛泽东思想、邓小平理论和“三个代表”重要思想概论、大学英语、大学体育、计算机文化基础、大学语文、军事理论、大学生就业与创业指导、沐浴经典、红色江西、形势政策 专业基础课 高等数学、大学物理、光伏技术概论、电工电子学、半导体物理器件、太阳电池材料、光伏设备概论 专业课 专业技能课 工程计价与计量、工程制图、AutoCAD 专业必修课 太阳电池原理与工艺、太阳能发电技术、光伏建筑电气控制技术、光伏系统设计与施工、供配电系统、光伏建筑工程 专业任选课 高级语言程序设计、工业计算机控制技术、新能源发电技术、专业英语 集中实践教学 太阳能发电技术课程设计、光伏系统设计与施工课程设计、光伏建筑工程课程设计、军事训练、入学教育、岗位实训、毕业设计(论文) 主干课程 (1)《太阳电池原理与工艺》 课程简介:本课程主要讲授光生伏打效应机理、p-n结、太阳电池的工作原理、制造工艺、测试和应用等方面的技术,使学生对太阳电池器件的原理及工艺有较为系统的掌握。 (2)《太阳能发电技术》 课程简介:本课程主要讲授太阳能光伏发电工作原理、内容包括太阳能电池组件的特性、结构及种类,功率调节器的工作原理、功能、电路构成及种类、选择方法、相关设备及部件,太阳能光伏发电系统设计与施工、维护检查与测量,熟悉太阳能光伏发电系统的法律法规及并网系统技术要求准则。 (3)《光伏系统设计与施工》 课程简介:主要介绍光伏系统的构成及设计原理和规则,阐述光伏系统的施工技术和方法。使学生初步掌握光伏系统的设计方法,了解光伏系统的施工步骤,为学生将来独立参与光伏系统的设计和施工打下基础。 (4)《光伏建筑电气控制技术》 课程简介:本课程主要结合光伏发电讲授建筑配电系统常用的电器元件、继电器、接触器控制的基本控制电路、建筑电气控制技术的设计、建筑中常用的电气设备的控制原理、可编程控制器的基本工作原理及其在光伏建筑中的应用等方面知识。 (5)《太阳电池材料》 课程简介:介绍太阳能及光电转换的基本原理、太阳电池的基本结构和工艺,着重从材料制备和性能的角度出发,阐述常用的太阳能光电材料的基本制备原理、制备技术以及材料结构组成对太阳电池的影响。 (6)《工程计价与计量》 课程简介:本课程主要介绍太阳发电建设项目在决策、设计、招投标、实施、竣工验收等阶段的计价方法,使学生初步掌握工程计价与计量专业技能,扩展学生的工程经济知识与相关能力。

光伏发电技术及应用试卷及答案E

《光伏发电技术及应用》期末试卷(E) 注:所有答案填写在答题纸中。 一、 判断题(每题2分,共30分,正确的标“T ”,错误的标“F ”) 1.2000年,我国太阳能电池产量仅为3MW ,到2007年年底达到1088MW ,超过欧洲(1062.8MW ),跃居世界第二位。 2.BIPV 将太阳能发电与建筑材料相结合,充分利用建筑的屋顶和外立面,使得大型建筑能实现电力自给、并网发电,这将是今后的一大发展方向。 3.根据太阳能发电发展“十二五”规划,到2020年底,我国太阳能发电装机容量达到2100 万千瓦以上,年发电量达到250 亿千瓦时。 4.太阳能能辐射量单位有卡(cal )、焦耳(J )、瓦(W)等。其关1卡(cal)=4.1868焦(J) =1.16278毫瓦时(mWh) 。 5.从海拔高度来看,海拔越高,大气透明度越好,所以水平辐射量越低。 6. 太阳能电池易腐蚀,若直接暴露在大气中,电池的转换效率会受到潮湿、灰尘、酸碱物质、冰雹、风沙以及空气中含氧量等的影响而下降。 7. 太阳能电池的峰值电流Im 也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片最大的工作电流,峰值电流的单位是安培(A)。 8. 蓄电池放电深度是指蓄电池在某一放电速率下,电池放电到终止电压时实际放出的有效容量与电池在该放电速率的额定容量的百分比。 9. 蓄电池的容量是指铅酸蓄电池在一定的放电条件下, 放电到规定的终止电压时所能给出的电量称为电池容量,以符号C 表示,常用单位是安时(Ah)。 10. 蓄电池过充电寿命是指采用一定的充电电流对蓄电池进行连续过充电,一直到蓄电池寿命终止时所能承受的过充电时间。其寿命终止条件一般设定在容量低于10小时率额定容量的80%。 11. 超级电容器又叫双电层电容器,是一种新型储能装置。其特点主要为充电时

新能源发电与控制技术复习题完整版

《新能源发电与控制技术》 蓄能元件及辅助发电设备 3大部分组成。 多晶硅太阳电池、非晶硅太阳电池 、碲化镉太阳电池 与 铜铟硒太阳电池5种类型。 18. 天然气是指地层内自然存在的以 碳氢化合物为主体的可燃性气体。 19.燃气轮机装置主要由 燃烧室、压气机 和 轮机装置3部分组成。 二、简答题 1. 简述能源的分类? 答:固体燃料、液体燃料、气体燃料、水力、核能、电能、太阳能、生物质能、风能、海洋能、地 热能、核聚变能。还可以分为:一次能源、二次能源、终端能源,可再生能源、非可再生能源,新能源、 常规能源,商品能源、非商品能源。 2. 什么是一次能源? 所谓一次能源是指直接取自自然界没有经过加工转换的各种能量和资源 ,它包括:原煤、原油、天然 气、油页岩、核能、太阳能、水力、风力、波浪能、潮汐能、地热、生物质能和海洋温差能等等 3. 什么是二次能源? 由一次能源经过加工转换以后得到的能源产品 ,称为二次能源,例如:电力、蒸汽、煤气、汽油、柴 油、重油、液化石油气、酒精、沼气、氢气和焦炭等等 4. 简述新能源及主要特征。 答:新能源是指技术上可行,经济上合理,环境和社会可以接受,能确保供应和替代常规化石能源 的可持续发展能源体系。新能源的关键是准对传统能源利用方式的先进性和替代性。广义化的新能源体系 主要包涵两个方面:①、新能源体系包括可再生能源和地热能,氢能,核能;②、新能源利用技术,包括高 效利用能源,资源综一、填空题 1. 一次能源是指直接取自 自然界没有经过加工转换 的各种能量和资源。 2. 二次能源是指由一次能源经过加工转换以后得到 的能源产品。 3. 终端能源是指供给社会生产、非生产和生活中直接用于消费的各种能源。 4. 典型的光伏发电系统由 光伏阵列、蓄电池组、控制器、电力电子变换器和 负载等组成。 5. 光伏发电系统按电力系统终端供电模式分为 独立光伏发电系统和并网光伏发电系统。 6. 风力发电系统是将 风能转换为电能,由机械、电气和控制3大系统组合构成。 7. 并网运行风力发电系统有 恒速恒频方式和变速恒频方式两种运行方式。 8. 风力机又称为风轮,主要有 水平轴风力机和垂直轴风力机。 9. 风力同步发电机组并网方法有 自动准同期并网和自同步并网 10. 风力异步发电机组并网方法有 直接并网、降压并网 和晶闸管软并网 11. 太阳的主要组成气体为 氢 和氦。 12. 太阳的结构从中心到边缘可分为 核反应区、辐射区 、对流区和太阳大气。 13. 太阳能的转换与应用包括了太能能的 采集、转换、 储存、运输与应用。 14. 光伏发电是根据 光生伏特效应 原理,利用 太阳电池 将太阳光能直接转化为电能。 15. 光伏发电系统主要由 太阳电池组件 ,中央控制器、充放电控制器、逆变器 和蓄电池、 17.生物质能是绿色植物通过叶绿素将 太阳能转化为化学能而储存在生物质内部的能量。 16.太阳电池主要有单晶硅太阳电池

太阳能光伏发电的现状与前景

太阳能光伏发电的现状与前景.txt心脏是一座有两间卧室的房子,一间住着痛苦,一间住着快乐。人不能笑得太响,否则会吵醒隔壁的痛苦。本文由haitaohuahua贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏发电研究现状与发展前景探讨 可再生能源,包括太阳能、风能、生物质能、水能、地热能、海洋能等,是取之不尽、用之不竭、清洁环保、免费使用的能源,也是世界上最终可依赖的初级 [1] 能源。太阳能是一种清洁的可再生能源。太阳能开发利用的巨大潜力推动着太阳能光伏发电技术不断向前发展。 1893 年,法国科学家贝克勒尔发现“光生伏打效应” , 即“光伏效应”。1930 年,朗格首次提出用“光伏效应”制造“太阳能电池”,使太阳能变成电能。1954 年,恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶太阳能电池。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第 1 块薄膜太阳能电池。随着世界经济的不断发展,全球能源短缺、环境污染等问题日益严重,可再生能源的应用受到了各国的普遍关注。太阳能光伏发电作为可再生能源利用的重要组成部分,得到了众多国家政府的大力扶持。20 世纪 70 年代以来,美国、德国、日本等国政府陆续出台相关政策,加大太阳能光伏发电产业的发展力度,使得世界光伏发电产业高速发展。 1997—2007 年,太阳能电池的产量由 125.8MW(该功率为峰值功率,下同)增加到 4 000. 05MW,年平均增长率高达 41.3%。根据欧盟联合研究中心的预测,到 2030 年太阳能光伏发电在世界总电力供应中将达到 10%以上, 到 2040 年这一比例将达到 20%以上,在不远的未来将成为世界能源供应的主体。 [2] 1 太阳能光伏产业的发展现状 在技术进步和相关鼓励政策的双重推动下,太阳能光伏产业自 20 世纪 90 年代后期进入了快速发展时期。截止 2007 年底,世界累计生产了 12. 64GW 太阳能 [3] 电池,由此推断,光伏发电的实际总装机应该接近 12GW 。欧洲光伏市场是世界最大的光伏市场,而且在持续增长。其中,德国光伏市场份额全球最大, 2006 年占 51. 0%, 2007 年占 46. 99%。亚洲光伏市场近几年有所萎缩(主要由于亚洲拥有最大光伏市场的日本结束了光伏补贴政策,导致市场发展滞后),我国光伏市场份额更小。2006 年、2007 年亚洲太阳能电池产量约占世界电池产量的 65%。由此可见,亚洲是太阳能电池的主要生产和输出地区。亚洲的太阳电池生产主要集中在中国大陆、中国台湾和日本。2007 年中国大陆太阳能电池产量达到 1 088MW,占全世界太阳能电池产量的 27. 2%。从产量看,我国已经成为太阳能电池的第一生产国。 2 太阳能光伏发电的原理 光伏发电的基本原理如图 l 所示。半导体材料组成的 PN 结两侧因多数载流子(N 区中的电子和 P 区中的空穴)向对方的扩散而形成宽度很窄的空间电荷区 w, 建立自建电场 Ei。它对两边多数载流子是势垒,阻挡其继续向对方扩散,但它对两边的少数载流子(N 区中的空穴和 P 区中的电子)却有牵引作用,能把它们迅速拉到对方区域。稳定平衡时,少数载流子极少,难以构成电流和输出电能。但是, 当太阳光照射到 PN 结时,如图 l(a)、(b)所示,以光子的形式与组成 PN 结的原子价电子碰撞,产生大量处于非平衡状态的电子-空穴对,其中的光生非平衡少数载流子在内建电场Ei 的作用下,将 P 区中的非平衡电子驱向 N 区,N 区中的非平衡空穴驱向 P 区,从而使得N 区有过剩的电子,P 区有过剩的空穴。这样在 PN 结附近就形成与内建电场方向相反的光生电场 Eph。光生电场除一部分抵消内建电场外,还使 P 型层带正电,N 型层带负电,在 N 区和 P 区之间的薄层产生光生电动势。当接通外部电路时,就会产生电流,输出电能。当把众多这样小的太阳能光伏电池单元通过串并联的方式组合在一起构成光伏阵列,就会在太阳能作用下输出足够 [4] 大的电能。 3 太阳能光伏发电的几个关键问题

1太阳能光伏发电应用技术考试试题

杂质能级的位置位于禁带中心附近,电离能较大,在室温下,处于这些杂质能级上的杂质一般不电离,对半导体材料的载流子没有贡献,但是它们可以作为电子或空穴的复合中心,影响非平衡少数载流子的寿命,这类杂质称为深能级杂质 常用的形成p n 结的工艺主要有合金法、扩散法、离子注入法和薄膜生长法,其中扩散法是目前硅太阳电池的p 一n 结形成的主要方法。合金法是指在一种半导体单晶上放置金属或半导体元素,通过升温等工艺形成p-n 结。 扩散法是指在n 型(或p 型)半导体材料中,利用扩散工艺掺人相反类型的杂质,在一部分区域形成与体材料相反类型的p 型(或n 型)半导体,从而构成p-n 结。 离子注人法是指将n 型(或p 型)掺杂剂的离子束在静电场中加速,使之具有高动能,注人p 型半导体(或n 型半导体)的表面区域,在表面形成与体内相反的n 型(或p 型)半导体,最终形成p-n 结薄膜生长法是在n 型(或p 型)半导体表面,通过气相、液相等外延技术,生长一层具有相反导电类型的p 型(或n 型)半导体薄膜,在两者的界面处形成p-n 结。 p-n 结具有许多重要的基本特性,包括电流电压特性、电容效应、隧道效应、雪崩效应、开关特性、光生伏特效应等 没有整流效应的金属和半导体的接触,这种接触称为欧姆接触。欧姆接触不会形成附加的阻抗,不会影响半导体中的平衡载流子浓度。从理论上讲,要形成这样的欧姆接触,金属的功函数必须小于型半导体的功函数,或大于p 型半导体的功函数,这样,在金属一半导体界面附近的半导体一侧形成反阻挡层(电子或空穴的高电导区),可以阻止整流作用的产生。 常用的欧姆接触制备技术有:低势垒接触、高复合接触和高掺杂接触。 所谓的低势垒接触,就是选择适当的金属,使其功函数和相应半导体的功函数之差很小,导致金属一半导体的势垒极低,在室温下就有大量的载流子从半导体向金属或从金属向半导体流动,从而没有整流效应产生。对于p 型硅半导体而,金、铂都是较好的可以形成低势垒欧姆接触的金属。 高复合接触是指通过打磨或铜、金、镍合金扩散等手段,在半导体表面引人大量的复合中心,复合掉可能的非平衡载流子,导致没有整流效应产生。高掺杂接触,是在半导体表面掺人高浓度的施主或受主电学杂质,导致金属一半导体接触的势垒区很薄。在室温下电子通过隧穿效应产生隧道电流,从而不能阻挡电子的流动,接触电阻很小,最终形成欧姆接触。 光生伏特效应,当p 型半导体和n 型半导体结合在一起,形成p 一n 结时,由于多数载流子的扩散,形成了空间电荷区,并形成一个不断增强的从n 型半导体指向p 型半导体的内建电场,导致多数载流子反向漂移。达到平衡后,扩散产生的电流和漂移产生的电流相等。如果光照在p-n 结上,而且光能大于p-n 结的禁带宽度,则在p-n 结附近将产生电子一空穴对。由于内建电场的存在,产生的非平衡电子载流子将向空间电荷区两端漂移,产生光生电势(电压),破坏了原来的平衡。如果将p 一n 结和外电路相连,则电路中出现电流,称为光生伏特现象或光生伏特效应 太阳电池主要工艺步骤:绒面制备、p 一n 结制备、铝背场制备、正面和背面金属接触以及减反射层沉积。 绒面制备是利用晶体硅化学腐蚀的各向异性,在NaOH 等化学溶液中处理,形成金字塔形的结构,增加了对人射光线的吸收; p n 结制备是在掺硼的p 型硅上,通过液相、固相和气相等技术,扩散形成n 型半导体;然后沉积铝作为铝背场,再通过丝网印刷、烧结形成金属电极。绒面结构对于单晶硅而言,如果选择择优化学腐蚀剂,就可以在硅片表面形成金字塔结构,称为绒面结构,又称表面织构化,除化学腐蚀以外,还可以利用机械刻槽、激光刻槽和等离子蚀刻等技术,在硅片表面制造不同形状的绒面结构,其目的就是降低太阳光在硅片表面的反射率,增加太阳光的吸收和利用 P- n 结制备晶体硅太阳电池一般利用掺硼的p 型硅作为基底材料,在900 ℃ 左右,通过扩散五价的磷原子形成n 型半导体,组成p-n 结。 磷扩散的工艺有多种,主要包括气态磷扩散、固态磷扩散和液态磷扩散等形式。 铝背场为了改善硅太阳电池的效率,p 一n 结制备完后,在硅片的背光面,沉积一层铝膜,制备P+ 层,称为铝背场,其作用减少少数载流子在背面复合的概率,作为背面的金属电极。 制备铝背场最简便的方法是利用溅射等技术在硅片背面沉积一层铝膜,然后在800 一1000℃ 热处理,使铝膜和硅合金化并内扩散,形成一层高铝浓度掺杂的p+ 层.构成铝背场。 丝网印刷电极制备.就是利用丝网印刷的方法,把金属导体浆料按照所设计的图形,印刷在已扩散好杂质的硅片正面、背面。然后,在适当的气氛下,通过高温烧结,使浆料中的有机溶剂挥发,金属颗粒与硅片表面形成牢固的硅合金,与硅片形成良好的欧姆接褳,从而形成太阳电池的上、下电极。减反射膜的基本原理是利用光在减反射膜上、下表面反射所产生的光程差,使得两束反射光干涉相消,从而减弱反射,增加透射。 减反射层的薄膜材料通常要求有很好的透光性,对光线的吸收越少越好;同时具有良好的耐化学腐浊性良好的硅片粘接性如果可能最好还具有导电性能。化学气相沉积(CVD) 、等离子化学气相沉积(PECVD) 、喷涂热解、溅射、蒸发等技术,都可以用来沉积不同的减反射膜。减反射膜的最佳厚度为70nm 工业上和实验室一般使用等离子体增强化学气相沉积法(PECVD) 来生成氮化硅薄膜。这是因为,相对于其他制备技术,PECVD 制备薄膜的沉积温度低,对多晶硅中少数载流子的寿命影响较小,而且生产能耗较低;而且沉积速度较快,生产效率高;氮化硅薄膜的质量好,薄膜均匀且缺陷密度较低 非晶硅薄膜太阳电池与晶体硅太阳电池相比,具有重量轻、工艺简单、成本低和耗能少等优点,主要应用于电子计算器、手表、路灯等消费产品。 由于非晶硅材料具有独特的性质,所以其太阳电池结构不同于晶体单的p 一n 结结构,而是pin 结构。这是因为非晶硅材料属于短程有序、长程无序的晶体结构,对载流子有很强的散射作用,导致载流子的扩散长度很短,使得光生载流子在太阳电池中只有漂移运动而无扩散运动。 晶体硅薄膜太阳电池一般被设计成pin 结构,其中p 为人射光层,i为本征吸收层,n 为基底层。由结和i 一n 结形成的内建电场几乎跨越整个本征层。当人射光穿过p 型人射光层在本征吸收层中产生电子一空穴对很快被内建电场分开,空穴漂移到p 层,电子漂移到n 层,形成光生电流和光生电压 非晶硅的pi n 结构通常是利用气相沉积法制备的,根据不同的技术又可以分为辉光放电法、溅射法、真空蒸发法、热丝法、光化学气相沉积法和等离子气相沉积法。其中,等离子气相沉积法在工业界和研究界被广泛应用 多晶硅薄膜太阳电池制备在具有一定机械强度的低成本的衬底材料上,衬底为玻璃、晶体硅、低纯度的多品硅、s ℃等。在此基础上,利用等离子化学

光伏发电技术及应用专业介绍

光伏发电技术及应用专业介绍 一、培养目标: 面向光伏发电、供电企业,培养德、育、智、体等全面发展,具有良好的职业素质,掌握光伏发电系统所涉及的相关基本理论知识及其实际操作能力,能够从事光伏离网、并网发电系统的分析、设计、安装、调试与技术管理、电能质量管理等岗位工作的高等应用型技术人才。 二、主要课程 光伏发电系统的设计及其应用、光伏太阳能电池、PLC技术、单片机原理与应用、电力电子技术、数电、工厂供电、传感器技术应用、PLC技术实训、光伏智能控制器的设计与实践。 三、职业证书 《中级维修电工》证书、《全国CAD等级》认证、《高级电工证》、等证书。 四、就业方向 在光伏发电系统设备制造与应用企业,从事光伏材料加工、光伏产品生产、检测与质量控制,光伏发电系统的安装调试、光伏发电系统的运行维护、光伏产品的销售及售后服务、小型光伏系统集成、生产技术管理、主要是太阳能方向工作。 五、专业人才需求 伴随着太阳能投资热潮在中国的兴起,中国的太阳能产业已经成为全球瞩目的焦点。著名投资银行拉扎德资本预计,2011年前中国太阳能产业规模能达到1-1.5GW。2012年前该行业规模将达到2GW,2020年前则会达到20GW。另外,预计我国太阳能光伏有望吸引逾100亿美元的私人投资,并有助中国未来三年成为全球主要的太阳能设备市场。 作为国家的战略新兴产业已经上升到国家战略高度,新能源属于战略新兴产业的一部分,而光伏是新能源里面的重头戏。如在天津的滨海新区,刚刚确定的一项大手笔投资就是未来三年将投入18亿元助推新能源产业。温州经济技术开发区13家光伏在德国慕尼黑国际太阳能光伏史上满载而归,揽下了共计650兆瓦的意向订单,总价值约为56余亿元。杭州横滨轮胎有限公司已启动了阳光屋顶光伏发电项目,该项目总投资300万元,预计全年可减排二氧化碳约13万

光伏发电及其应用简介

光伏发电及其应用简介 03A石XX 利用太阳光发电是人类梦寐以求的愿望。从二十世纪五十年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏工业已经走过了近半个世纪的历史。90年代以来,太阳能光伏发电的发展很快,已广泛用于航天、通讯、交通,以及偏远地区居民的供电等领域,近年来又开辟了太阳能路灯、草坪灯和屋顶太阳能光伏发电等新的应用领域。太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用(光伏发电)是近些年来发展最快,也是最具经济潜力的能源开发领域。太阳能电池是光伏发电系统中的关键部分,包括硅系太阳电池(单晶硅、多晶硅、非晶硅电池)和非硅系太阳能电池等。在晶体硅太阳能电池的产业链上分布着晶硅制备、硅片生产、电池制造、组件封装四个环节。光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器构成。光伏发电系统可分为独立太阳能光伏发电系统和并网太阳能光伏发电系统:独立太阳能光伏发电是指太阳能光伏发电不与电网连接的发电方式,典型特征为需要蓄电池来存储能量,在民用范围内主要用于边远的乡村,如家庭系统、村级太阳能光伏电站;在工业范围内主要用于电讯、卫星广播电视、太阳能水泵,在具备风力发电和小水电的地区还可以组成混合发电系统等。并网太阳能光伏发电是指太阳能光伏发电连接到国家电网的发电的方式,成为电网的补充。在各国政府的扶持下,世界太阳能电池产量快速增长,1995-2005年间,全球太阳能电池产量增长了17倍。我们预计,2010年全球太阳能电池的年产量有望较2005年的年产量增长6.3倍,整个行业的销售收入有望增长3.5倍。我国太阳能资源非常丰富,开发利用的潜力非常大。我国太阳能发电产业的应用空间也非常广阔,可以应用于并网发电、与建材结合、解决边远地区用电困难问题等。我国政府对太阳能发电产业也给予了充分的扶持,先后出台了一系列法律、政策,有力的支持了产业的发展。 一套基本的太阳能发电系统是由太阳电池板、充电控制器、逆变器和蓄电池构成: (一)太阳能电池板: 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。一般根据用户需要,将若干太阳电池板按一定方式连接,组成太阳能电池方阵,再配上适当的支架及接线盒组成。 (二)太阳能控制器: 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如

《江西省民用建筑太阳能光伏系统应用技术规范》

《江西省民用建筑太阳能光伏系统应用技术规范》 评审会议纪要 2010年10月10日江西省住房和城乡建设厅组织召开了评审会,由江西省建筑设计研究总院和江西省电力院主编、中国瑞林工程有限公司、北京日佳新能源发电系统规划设计院和赛维LDK光伏科技工程有限公司参编的《江西省民用建筑太阳能光伏系统应用技术规范》(以下简称规范)进行了评审。 会议由建筑节能与科技处吴军处长主持、李永平调研员参加,根据会议安排,由中国太阳能光伏专业委员会赵玉文主任担任组长,中国建筑设计研究院张文才副总工程师、江西省建设工程安全质量监督管理局钱勇局长担任副组长,主持技术审查工作,会议邀请了工程设计,施工及光伏等有关专家组成评审组。江西省建筑设计研究总院刘小檀院长介绍了《规范》的编制背景,编制组汇报具体编制内容。 评审专家对《规范》逐条进行了认真的审查和讨论,为更好地完善该《规范》评审组经过认真的咨询和讨论,形成纪要如下: 1、《规范》编制内容基本完善,注重科学性和实用性,具有可操作性,达到了国家有关规范编制深度的要求。 2、《规范》的编制参照和综合考虑了国内外光伏建筑先进技术要求,结合江西省工程实际,总体达到了国内领先水平,可作为江西省民用建筑太阳能光伏系统应用的技术规范。 3、建议《规范》中个别术语的解释应与国家标准、行业标准一致;涉及人身安全的条款应按照国家规范实施。 与会专家同意《规范》的编制成果,编制单位应根据专家意见,抓紧修改完善,尽快上报江西省住房和城乡建设厅批准颁布,以便指导江西省民用建筑太阳能光伏系统应用工作。 评审组组长(签名):评审组副组长(签名): 2010年10月10日

2 2

光伏发电技术及应用

巩义三中专“光伏发电技术及应用”专业 一、培养规格与培养目标 培养规格:中职,初中起点三年制两年的在校学习,半年实习,半年顶岗实习,三年后完成学业发中专毕业证;高中起点一年制,主要学习专业理论和专业技能课,一年后完成规定的学业,发放专业合格证,安排就业。 培养目标:本专业面向光伏发电系统,培养德、智、体、美全面发展,适应光伏发电产业发展需要,具有光伏发电基础理论知识,系统掌握光伏发电及应用技术,具有现代企业管理意识,能在光伏发电及应用领域,包括电能检测、设备控制、发电技术管理等方面能够胜任岗位需要的中、初级技术应用性人才。 二、课程模块设置 本专业中专起点共设置4个模块,分别是:公共基础课、专业基础课、专业课、实践课。 高中起点设置3个模块,分别是:专业基础课、专业课、实践课。 三、课程设置 中专起点: 1.公共基础课。 (1)德育课:职业生涯规划、职业指导与法律、经济政治与社会、哲学与人生。 (2)文化基础课:语文、数学、英语、物理、化学、计算机应用基础、体育与健康教育。 (3)选修课:普通话口语训练、礼仪与交际、书法。

2.专业基础课。电工电子技术、光伏发电系统概论、机械制图、机械基础。 3.专业课。 (1)必修课:太阳能光伏发电技术、太阳电池原理与工艺、太阳电池材料。 (2)选修课:太阳能光伏发电系统工程、光伏检测与分析、单片机技术。 4.本专业统设必修综合实践包括电工与电子学实验、金工实习、综合实训(光伏)。 高中起点: 1.专业基础课。电工电子技术、光伏发电系统概论、机械制图。 2.专业课。 (1)必修课:太阳能光伏发电技术、太阳电池原理与工艺、太阳电池材料。 (2)选修课:太阳能光伏发电系统工程、光伏检测与分析、单片机技术。 就业面向:具有在太阳能光伏系统及相关领域从事系统安装与维护、调试、生产运行、技术管理、产品检测与质量控制等方面的工作能力。毕业生主要面向光伏企业。也可以从事光伏专业职业教育的实践教学工作。 2010年12月6日

光伏材料的发展及应用

光伏材料的发展及应用 摘要:太阳能光伏发电技术是集半导体材料、电力电子技术、现代控制技术、蓄电池技术及电力工程技术于一体的综合性技术是当今新能源发电领域的一个研究热点。本文介绍了光伏发电技术的相关概念,综述了该领域的主要研究内容和应用现状,并对光伏发电产业的未来发展趋势进行分析。 关键词:太阳能电池材料;光伏发电材料 0 引言 随着全球经济的迅速发展和人口的不断增加,以石油、天然气和煤炭等为主的化石能源正逐步消耗,能源危机成为世界各国共同面临的课题。与此同时,化石能源造成的环境污染和生态失衡等一系列问题也成为制约社会经济发展甚至威胁人类生存的严重障碍。新能源应用正成为全球的热点。太阳能资源是最丰富的可再生能源之一,它分布广泛,可再生,不污染环境,是国际上公认的理想替代能源。光伏发电是太阳能直接应用的一种形式。作为一种环境友好并能有效提高生活标准的新型发电方式,光伏发电技术正在全球范围内逐步得到应用。 1太阳能光伏发电原理及运用材料 1.1太阳能光伏发电的工作原理 “光伏发电”是将太阳光能直接转换为电能的一种发电形式。1839年,法国科学家贝克勒尔(A.E.Becqure1)首先发现了“光生伏打效应(Photovoltaic Effect)”。然而,第一个实用单晶硅光伏电池(Solar Cel1)直到一个多世纪后的1954年才在美国贝尔实验室研制成功。20世纪70年代中后期开始,光伏电池技术不断完善,成本不断降低,带动了光伏产业的蓬勃发展。光伏发电原理如图1所示。PN结两侧因多数载流子(N 区中的电子和P区中的空穴)向对方的扩散而形宽度很窄的空间电荷区w,建立自建电场E i。它对两边多数载流子是势垒,阻挡其继续向对方扩散;但它对两边的少数载流子(N 区中的空穴和P区中的电子)却有牵引作用,能把它们迅速拉到对方区域。稳定平衡时,少数载流子极少,难以构成电流和输出电能。但是,如图la、b所示,光伏电池受到太阳光子的冲击,在光伏电池内部产生大量处于非平衡状态的电子一空穴对,其中的光生非平衡少数载流子(即N 区中的非平衡空穴和P区中的非平衡电子)可以被内建电场E i牵引到对方区域,然后在光伏电池中的PN 结中产生光生电场E PV一当接通外电路时,即可流出电流,输出电能。当把众多这样小的太

相关主题
文本预览
相关文档 最新文档