当前位置:文档之家› 高数在经济学中的应用

高数在经济学中的应用

高数在经济学中的应用
高数在经济学中的应用

高数在经济学中的应用公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

《高等数学》知识在经济学中的应用举例

由于现代化生产发展的需要,经济学中定量分析有了长足的进步,数学的一些分支如数学分析、线性代数、概率统计、微分方程等等已进入经济学,出现了数理统计学、经济计量学、经济控制论等新分支,这些新分支通常成为数量经济学。数量经济学的目的在于探索客观经济过程的数量规律,以便用来知道客观经济实践。应用数量经济学研究客观经济现象的关键就是要把所考察的对象描述成能够用数学方法来解答的数学经济模型。这里我们简单介绍一下一元微积分与多元微积分在经济中的一些简单应用。

一、复利与贴现问题

1、复利公式

货币所有者(债权人)因贷出货币而从借款人(债务人)手中所得之报酬称为利息。利息以“期”,即单位时间(一般以一年或一月为期)进行结算。在这一期内利息总额与贷款额(又称本金)之比,成为利息率,简称利率,通常利率用百分数表示。

如果在贷款的全部期限内,煤气结算利息,都只用初始本金按规定利率计算,这种计息方法叫单利。在结算利息时,如果将前一期之利息于前一期之末并入前一期原有本金,并以此和为下一期计算利息的新本金,这就是所谓的复利。通俗说法就是“利滚利”。

下面推出按福利计息方法的复利公式。

现有本金A

0,年利率r=p%,若以复利计息,t年末A

将增值到A

t

,试

计算A

t

若以年为一期计算利息:

一年末的本利和为A

1=A

(1+r)

二年末的本利和为A 2=A 0(1+r )+A 0(1+r )r= A 0(1+r )2

类推,t 年末的本利和为A t = A 0(1+r )t

(1)

若把一年均分成m 期计算利息,这时,每期利率可以认为是r

m

,容易推得

0(1)

mt t r A A m

=+

(2) 公式(1)和(2)是按离散情况——计息的“期”是确定的时间间隔,因而计息次数有限——推得的计算A t 的复利公式。

若计息的“期”的时间间隔无限缩短,从而计息次数m →∞,这时,由于

000lim (1)lim[(1)]m

mt rt rt r m m r r A A A e m m

→∞→∞+=+= 所以,若以连续复利计算利息,其复利公式是

0rt t A A e =

例1 A 0=100元,r=8%,t =1,则 一年计息1期 1100(10.08)108()A =?+=元

一年计息2期 2

10.08100(1)108.16()2A =?+

=元 一年计息4期 4

10.08100(1)108.243()4

A =?+=元

一年计息12期 12

10.08100(1)108.300()12

A =?+=元

一年计息100期 100

10.08100(1)108.325()100

A =?+=元 连续复利计息 0.081100108.329()A e ==元

2、实利率与虚利率

由例1知,年利率相同,而一年计息期数不同时,一年所得之利息也不同。当年利率为8%,一年计息1期,确实按8%计算利息;一年计息2期,实际上所得利息是按%计算的结果;一年计息4期,实际上所得利息是按%计算;一年计息12期,实际上是按%计算;一年计息100次,实际所得利息是按计算利息。

这样,对于年期以下的复利,我们称年利率8%为虚利率或名义利率,而实际计算利息之利率称为实利率。如%为一年复利2期的实利率,%为一年复利12期的实利率,%为一年连续复利的实利率。

记r 为名义年利率,r m 为一年计息m 期的实利率,本金A 0,按名义利率一年计息m 期,一年末将增值到A 0(1+r m

)m

,按实利率计息,一年末将增值到A 0(1+r m )。于是,有 1+r m =(1+r m )m ,即(1)1m m r

r m

=+-是离散情况下实利率与虚利率之间的关系式。

若记r m 为连续复利的实利率,由于

lim(1)m

r m r e m

→∞

+

= 所以,实利率与虚利率之间的关系为1r m r e =-。 3、数e 的经济解释

设年利率为100%,连续复利计息,一元本金到年末的本利和为

)()11(lim 元e m

m

m =+

这就是说,按名义利率100%,连续复利计息,一元本金年末将增长到e 元。这可作为数e 的经济解释。

由于71828.2≈e ,所以,这是的实利率大约为172%。 4、贴现问题

我们已经知道,初时本金A 0,年利率r ,t 年末的本利和A t ,以年为期的复利公式是t t r A A )1(0+=,一年均分为m 期的复利公式是

mt

t m

r A A )1(0+

=,连续复利公式是rt t e A A 0=。 若称A 0为现在之,A t 为未来值,一只现在值求未来值是复利问题,与此相反,若已知未来值A t 求现在值A 0,则称贴现问题,这时利率r 称为贴现率。

由复利公式,容易推得: 离散的贴现公式为 t t r A A -+=)1(0

mt t m

r A A -+

=)1(0 连续的贴现公式为 rt t e A A -=0

例2 设年利率为%,按连续复利计算,现投资多少元,16年之末可得1200元。

这里,贴现率r=%,未来值A t =1200,t=16。所以,现在值

(元)15.4248292.21200

1200120004

.116065.00===

?==?--e

e e A A rt t 增长率

设变量y 是时间t 的函数y = f (t),则比值

)

()

()(t f t f t t f -?+

为函数f (t)在时间区间],[t t t ?+上的相对改变量;如果f (t)可微,则定义极限

)

()

()()()(lim

t f t f t f t t f t t f t '=??-?+→?

为函数f (t)在时间点t 的瞬时增长率。

对指数函数rt

e A y 0=而言,由于r e A re A y dt dy rt

rt

==00,因此,该函数在任

何时间点t 上都以常数比率r 增长。

这样,关系式rt t e A A 0= (*) 就不仅可作为复利公式,在经济学中还有广泛的应用。如企业的资金、投资、国民收入、人口、劳动力等这些变量都是时间t 的函数,若这些变量在一个较长的时间内以常数比率增长,都可以用(*)式来描述。因此,指数函数rt e A 0中的“r ”在经济学中就一般的解释为在任意时刻点t 的增长率。

如果当函数rt e A 0中的r 取负值时,也认为是瞬时增长率,这是负增长,这时也称r 为衰减率。贴现问题就是负增长。

例3 某国现有劳动力两千万,预计在今后的50年内劳动力每年增长2%,问按预计在2056年将有多少劳动力。

由于未来值A 0=2000,r=,t=50,所以,50年后将有劳动力

(万)56.543671828.2200020005002.050=?==?e A

例4 某机械设备折旧率为每年5%,问连续折旧多少年,其价值是原价值的一半。

若原价值为A 0,经t 年后,价值为021A ,这里r=。由t e A A 05.0002

1-=,若取6931.02ln =,易算出t=(年),即大约经过年,机械设备的价值是原价值的一半。

二、级数应用举例

1、银行通过存款和放款“创造”货币问题

商业银行吸收存款后,必须按照法定的比率保留规定数额的法定准备金,其余部分才能用作放款。得到一笔贷款的企业把它作为活期存款,存入另一家银行,这银行也按比率保留法定准备金,其余部分作为放款。如此继续下去,这就是银行通过存款和放款“创造”货币。

设R 表示最初存款,D 表示存款总额(即最初存款“创造”的货币总额),r 表示法定准备金占存款的比例,r<1。当n 趋于无穷大时,则有

r

R

r R

r R r R r R R D n =

--=+-++-+-+=)1(11)1()1()1(2

若记 r

K m 1=

它称为货币创造乘数。显然,若最初存款是既定的,法定准备率r 越低,银行存款和放款的总额越大。

这是一个等比级数问题。

例如 设最初存款为1000万元,法定准备率20%,求银行存款总额和贷款总额。

这里,R=1000,r=,存款总额D 1由级数 1000+1000+10002+…

决定,其和

)(50002

.01000

)2.01(110001万元==--=

D

贷款总额D 2由级数 1000+10002+… 决定,显然

D 2=4000(万元)

投资费用

这里,投资费用是指每隔一定时期重复一次的一系列服务或购进设备所需费用的现在值。将各次费用化为现值,用以比较间隔时间不同的服务项目或具有不同使用寿命的设备。

设初期投资为p ,年利率为r ,t 年重复一次投资。这样,第一次更新费用的现值为rt pe -,第二次更新费用的现值为rt pe 2-,以此类推。如此,投资费用D 为下列等比级数之和:

+++++=---nrt rt rt pe pe pe p D 2

于是 1

1-=-=-rt rt

rt

e pe e p D 例如,建造一座钢桥的费用为380000元,每隔10年需要油漆一次,每次费用为40000元,桥的期望寿命为40年;建造一座木桥的费用为200000元,每隔2年需油漆一次,每次费用为20000元,其期望寿命为15年,若年利率为10%,问建造哪一种桥较为经济

钢桥费用包括两部分:建桥的系列费用和油漆的系列费用。

对建钢桥,p=380000,r=,t=40,因440)1.0(==?t r ,则建桥费用

1

1144

44

24

1-=-=+++=-?--e pe e p pe

pe

p D

查表知598.544=e ,于是

8.3870901

598.54598

.543800001=-?=

D

同样,油漆钢桥费用

8.6327817183.27183

.2400001

4000010

1.0101.02=-?=-?=??e e D 故建钢桥总费用的现值

)(6.45036921元=+=D D D

类似的,建木桥费用

2574401482.4482.40000201

0000205

11.0511.03=-?=-?=??e e D 油漆木桥费用

8.11024311.22141.2214000201

000202

1.021.04=-?=-?=??e e D 故建木桥总费用的现值

)(8.367683435元=+=D D D

由计算知,建木桥有利。

现假设价格每年以百分率i 涨价,年利率为r ,若某种服务或项目的现在费用为p 0时,则t 年后的费用为it t e p A 0=

其现值为 ()0rt r i t t t p A e p e ---==。这表明,在通货膨胀情况下,计算总费用D 的等比级数是

()2()()()()()111

r i t r i t n r i t r i t

r i t r i t D p pe pe pe pe p e e ----------=+++++

==

--

例如,在上述建桥问题中,若每年物价上涨7%,试重新考虑建木桥还是建钢桥经济

这里,r=,i=,r-i= ,

此时,对钢桥,建桥费用和油漆费用分别为

12543780,154320D D ==

建钢桥总费用的现在值

D=D 1+D 2=698100(元)

对木桥,建桥费用和油漆费用分别为

34551926,343624D D ==

建钢桥总费用的现在值

D=D 3+D 4=895550(元)

根据以上计算,在每年通货膨胀7%的情况下,建钢桥经济。

2、库存问题

库存或存贮在生产系统,商业系统,乃至各个系统中都是一个重要的问题。需求可由库存的输出来供应和满足,库存也要由输入来维持和补充,库存起到调节供应与需求,生产与销售之间不协调的作用。

我们的问题是库存数量为多少时最适宜。控制存货数量的目的是把存货总费用降低到最小。这里,假设存货总费用包括如下三个方面的费用:

1.生产准备费或订购费:工厂生产产品成批投产,每次投产要支付生产准备费;商店向外订货,每次订货都要支付订购费。假设每次投产的准备费或每次的订购费与投产或订货数量无关。

2.货物的库存费用:货物存放仓库的保管费。假设在某一时间内单位产品的库存费不变。

3.缺货损失费:因不能及时满足需求而带来的损失。

另外,还假设需求是连续的,均匀的,即单位时间内的需求是常数,因而在一个计划期内需求的总量是已知的,简言之,需求是一致的,这是确定性库存模型。

我们讨论下列模型:

1)成批到货,不允许短缺的库存模型

2)陆续到货,不允许短缺的库存模型

3)成批到货,允许短缺的库存模型

(一)成批到货,不允许短缺的库存模型

所谓成批到货,不允许短缺,就是每批产品或每次订购的货物整批存入仓库,由仓库均匀提取(因需求是一致的)投放市场,当前一批库存提取完后,下一批货物立即补足。在这种理想情况下,库存水平变动情况如图1所示:库存量由最高水平逐渐(或线性)的减少到0,此时,库存水平又立即达到最高水平,再循环前过程。这样,在一个计划期内,平均库存量可以认为是最高库存量的一半。图中的t表示一个存贮循环延续时间。

由于在一个计划期内需求量是固定的,在这计划期内,如果每批投产或每次订购数量多,自然库存量多,自然库存量多,因而库存费多;但是,这时因投产或订购数少,因此生产准备费或订购费少。如果每批投产或每次订购量少,库存费减少,但因投产或订购次数多,自然,生产准备费或订购费增多。在这两种费用一多一少的矛盾情况下,我们的问题是,如何确定每批投产或每次订购的数量,即选择最有批量以使这两项费用之和为最小。

假设

D :一个计划期内的需求数量,即生产或订货的总量; C 1:一个计划期内每件产品所付库存费; C 2:每批生产准备费或每次订购费; Q :每批投产或每次订货的数量,即批量;

E :一个计划期内存货总费用,即生产准备费或订购费与库存费之和。

图1

这样,在一个计划期内,自始至终,按图1之分析,库存数量应认为是

2

Q ,即库存量恰是批量之半,所以库存费为12C Q

;生产次数或订购次

数,即批数应为

Q D ,因此,生产准备费或订购费为22

C Q

。于是,存货总费用E 与每批数量Q 的函数关系为

],0(,2)(21D Q Q

D

C Q C Q E E ∈+=

= 现存的问题是:决策变量Q ,使目标函数)(Q E E =取极小值。 由极值存在的必要条件:

02)(221=-=

'Q

D

C C Q E 或

D C Q C 2212= (1) 由上式解得 )(21

2

*只取正值C DC Q =

(2)

由极值的充分条件:

),,(02)(23

2均为正数因Q C D Q

D

C Q E >=

'' 所以,当批量

1

2

*2C DC Q =时,总费用最小,其值:

*2*1*2Q

D C Q C

E +=

即212

1

2121

*2222

C DC DC C

D C C DC C

E =+=

(3) 这就得到了求最优批量及最小总费用的一般表达式(2)和(3)。 表达式(2)在库存理论中称为“经济订购量”或“经济批量”公式。简称为“EOQ ”公式。

注意到(1)式:D C Q C 2212=(极值存在的必要条件)可写作:

Q

D

C Q C 212= (4) (4)式左端正式一个计划期内的库存费,而右端则是一个计划期内的生产准备费或订购费,因此,对“一致需求,成批到货,不许短缺”的库存模型有如下结论:

使库存费与生产准备费(或订购费)相等的批量,是经济批量。 这样,对上述库存问题,我们也可直接由公式(4)来经济批量。 例1 某厂生产摄影机,年产量1000台,每台成本800元,每一季度每台摄影机的库存费是成本的5%;工厂分批生产,每批生产准备费为5000元;市场对产品一致需求,不许缺货,产品整批存入仓库。试确定经济批量及一年最小存货总费用。

解 由题设知,D =1000台,C 2=5000元,每年每台库存费 C 1=800×5%×4=160(元)

存货总费用E 与每批生产台数Q 的函数关系:

160100050002E Q Q

?=

+ 由(2)式,经济批量

*250Q =

=(台)

一年最小存货总费用

*16025010005000

400002250

E ??=

+=(元)

由图2可知,库存费用曲线与生产准备费用曲线:

1216010005000

,2E Q E Q

?=

= 交点的横坐标就是经济批量,其纵坐标刚好是存货总费用的一半。

(二) 陆续到货,不允许短缺的模型

陆续到货,就是每批投产或每次订购的数量Q ,不是整批到货,立即补足库存,而是从库存为零时起,经过时间t 1才能全部到货。

在此,需补充假设

P :每单位时间内的到货量,即到货率; u :每单位时间内的需求量,即需求率。

显然,若P>u ,每单位时间内净增加存货为P-u ,到时刻t 1终了库存出现一个顶点,这时,库存量为t 1(P-u)。

由于经历时间t 1到货总量为Q ,因此1Q

t P

=

,从而最大库存量为 ()(1)Q u P u Q P P

-=- 这种库存模型的库存水平变动情况如图3所示。

图 2

这样,在一个计划期内,平均库存量应为最大库存量之半,因而库存费为

1(1)2C Q u

P

-。 本问题中,因为生产准备费或订购费与“成批到货,不许短缺”库存模型一样,因此,存货总费用E 与每批数量Q 的函数关系,即目标函数是

12()(1),(0,]

(5)2C Q u C D

E E Q x D P Q

==

-+∈

为决策变量Q ,由极值的必要条件和充分条件,容易算得,经济批量

*(6)Q =

这时,库存总费用的最小值

*(7)E =

最优批量Q *的表达式(6)也可由下式得到:

12(1)2C Q u C D

P Q

-= 例2 同例1,但产品陆续存入仓库,每月到货200台,试确定经济批量和最佳费用。

图3

解 已知条件是:

1210001605000/D C C P u =====

1000

台,台,元;200台/月,台月12

由(5)(6)(7)可得经济批量为台,这时最佳费用为30550元。

(三) 成批到货,允许短缺的模型

前面讨论的两个库存模型是不允许缺货。允许缺货是指,缺货时未能满足的需求,在下一批货物到货时要予以满足,而且缺货时的需求直接输出而不经过库存。其它情况同模型一。如果缺货带来的损失很小,且不会因暂时缺货而失去销售机会,缺货现象是允许存在的。

允许缺货情况,库存水平变动情况见图4。图中的t 是一个存贮循环延续时间,从前一批到货至库存量减少为0的时间为t 1,从库存是0至下一批货物到达的时间为t 2。

这里尚需补充假设

B :库存得到补充之前的允许缺货量;

图4

C 3:在一个计划期内,缺一件产品的损失费。

需要注意的是每批投产或每次订购的数量Q 包括了最大的允许缺货量B 。

本库存模型中,生产准备费与订购费与前面模型相同:

2C D

Q

库存费:因有货时间t 1占一个存贮循环时间的比率为1t t ,所以,在一个机会期内,有货时间所占比率也为1t

t

。有货时,最大库存量为Q-B ,从而平均库存量为

2

Q B

-,由图4中 相似三角形易知 1t Q B t Q

-= 因此,在一个计划期内,库存费为

2111()()22t C Q B C Q B t Q

--?= 缺货费:在缺货时间t 2占一个存贮循环时间的比率为2

t t

,在一个计划期内,缺货总时间所占比例也为2

t t

。最大缺货量为B ,因此,平均缺货量为

2

B

,由图4的相似三角形得知2t B t Q =。因此,在一个计划期内,缺货量

为2

32322C B t C B t Q

?=. 综上,在一个计划期内,库存总费用

22

213(),

(8)22C D C Q B C B E Q Q Q

-=++

或写作2

21131(),(8)22C D C Q C C B E C B Q Q

+'=+-+

这是该问题的目标函数。

现在的问题是决策两个变量Q 和B ,以使目标函数取极小值。

根据(8’)式,由二元函数极值存在的必要条件,有

2

211322113

()022()0

E C D C C C B Q Q Q E B C C C B

Q ??+=-+-=???

?

??=-++=??? 解该方程组,可得

*(9)Q =

**113(10)C B Q C C =

=

+

可以验证极值存在的充分条件满足:

2(*,*)

2

0Q B E Q ?>?, 2222(*,*)22

[()]0Q B E E E

Q B Q B ???-?

因此,将*,*Q Q B B == 代入(8)式,可得存货总费用的最小值:

*(11)E =

比较(9)式和(3)式,如果缺一件产品的损失费C 3为无穷大,因

313

3lim

1C C C C →∞+=,则(9)式就是(3)式,这表明:不允许缺货可视为缺货

损失为无穷大的情况。此式,又因31

13

lim 0C C C C →∞=+,由(10)式知,恰有

缺货量B *=0。

例3 某厂,一年劳动日为300天,生产率(单位时间内的产量)固定,一年可组装机床1500台;若组装一台机床的零部件价值14400元,而一年的保管费为其价值的22%,因缺零部件而停工,少装一台机床的损失费为零部件价值的50%;又每次订购零部件的手续费为7500元,为

使一年存货总费用最小,试就下列各种情况决策最优批量和允许缺货量(如果允许缺货的话)并计算最佳费用:

(1)不管每次订购数量为多少,都可立即到货,不允许停工待料; (2)若订货后,每天可到货30台机床的零部件,不允许停工待料; (3)不管每次订货多少,都可立即到货,允许停工待料,但缺料时未完成的任务,当到货后,可不占劳动日就能完成。

解 由题设知

12315001440022%316875001440050%7200/D C C C P u ==?===?===

台,元,元元1500

30台/天,=5台天300

(1)这是成批到货,不许缺货的情况。目标函数为:

316815007500

()2E E Q Q Q

?=

+=, 由(2)式得最优批量,可取Q *

=84台;由目标函数可得最佳费用E *

=266985元。

(2)这是陆续到货,不许短缺的情况。目标函数为

3168515007500

()(1),230Q E E Q Q

?==

-+ 由(6)式得最优批量,取Q *=92台;最佳费用E *=243723元。

下面,比较成批到货和陆续到货两种情况:

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 https://www.doczj.com/doc/2311683364.html,work Information Technology Company.2020YEAR

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式 最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).

数学在经济学中的应用

数学在经济学中的应用 经济学院经济系张馨月 进入大学,我选择了经济学这门学科。经过一个学期的学习,我对经济系的课程有了一个基本的了解。数学是经济系乃至经济学院的学生必修的一门课程,非常的重要。为什么数学在经济学中的作用如此重要呢?今天,我就浅论一下这个问题,谈谈数学在经济学中的应用。 要谈这个问题,首先要明确经济学是什么。经济学是研究如何配置和使用相对稀缺的资源,来满足最大化需求的社会科学,即研究社会活动中的个人、企业、政府如何进行选择,以及这些选择如何决定社会资源使用方式的一门科学。经济学是一门社会科学,但是它却与哲学、文学等社会科学有着大相径庭的区别。经济学研究的是经济问题。虽然现实里的经济问题错综复杂,使经济学的分析增加了难度,具有了一些不确定性。但是,经济学的目标是朝着物理学的方式发展的,它本质上追求精确。对于这样一门追求精确的学问,数学的作用自然非比寻常。经济学使用到了数学、统计工具,这个传统从很早的威廉.配第就有了,到魁奈的《经济表》,到边际学派的边际分析,到萨缪尔森的《经济分析基础》,到再博弈论等等,数学在经济学中的地位越来越明显。 我认为,数学在经济学中的作用主要有两方面。一是在其工具性上,数学作为经济研究的基础工具,其作用自然不可小觑;二是在其思想性方面,数学是一门严谨的学问,其严谨的思想在追求精确和理性的经济学中占据重要的地位。数学在理论上的概括和科学的实际发展中,一般给人们的印象是,与其他学科相比,数学的特点可归结为更高度的抽象性、更严密的逻辑性和更广泛的应用性。因此,说数学是一切科学的根本基础,是科学的皇后,是十分自然的。 先谈谈第一方面。首先,数学概念是抽象的典范,几乎它的所有基本概念在现实世界中是找不到的,例如,点、线、面;自然数、实数和虚数等等;它们是抽象的,又是深刻的,极其奇妙地、精确地刻画自然事物的某种基本特征。其次,数学是严密逻辑推理的象征,其方法论的核心是演绎法,即从不证自明的公理出发进行演绎推理;其实质含义是,若公理为真,则可保证其演绎的结论为真;从逻辑上看,演绎法是清晰、合理和完美的,由数学推出的显然是毋庸置疑的正确结论。最后,由上面两点,数学应用的广泛性是不言自明的。自然,在经济研究中,少不了数学这样一个工具。经济学是研究在约束的条件下的最优化选择,即在资源稀缺的条件下,如何达到收益的最大化。于是,在研究中就存在成本、收益等等的概念和运算。同时,由于经济活动的多样性,研究中存在许多变化的因素,导致了经济研究的错综复杂。而数学其用处就在于为许多复杂的思想和现象提供了简洁而明了的解释,为许多错综的数据提供了计算模型,从而使经济研究简洁条理。 但数学的有用性不仅仅体现在其工具性上,更在其思想性上。改革开放以来,西方经济学作为市场经济运行描述的基本理论,对我们经济学学习和研究的作用越来越重要。从学习和研究的角度看,似乎可以明显感觉到,西方经济学的理论体系、思维方式和推理方式的深刻特点之一表现在其数学性方面,也正是这一特征使人们常常把经济学看成是最接近自然科学的社会科学学科。西方经济学从亚当·斯密《国富论》起的二百多年来,已形成了一个庞大而较严密的理论体系。在整个社会科学中,经济学的理论形式、研究方法是公认为最接近自然

高数在经济学中的应用演示版.doc

《高等数学》知识在经济学中的应用举例 由于现代化生产发展的需要,经济学中定量分析有了长足的进步,数学的一些分支如数 学分析、线性代数、概率统计、微分方程等等已进入经济学,出现了数理统计学、经济计量学、经济控制论等新分支,这些新分支通常成为数量经济学。数量经济学的目的在于探索客观经济过程的数量规律,以便用来知道客观经济实践。应用数量经济学研究客观经济现象的关键就是要把所考察的对象描述成能够用数学方法来解答的数学经济模型。这里我们简单介绍一下一元微积分与多元微积分在经济中的一些简单应用。 一、复利与贴现问题 1、复利公式 货币所有者(债权人)因贷出货币而从借款人(债务人)手中所得之报酬称为利息。利 息以“期”,即单位时间(一般以一年或一月为期)进行结算。在这一期内利息总额与贷款额(又称本金)之比,成为利息率,简称利率,通常利率用百分数表示。 如果在贷款的全部期限内,煤气结算利息,都只用初始本金按规定利率计算,这种计息方法叫单利。在结算利息时,如果将前一期之利息于前一期之末并入前一期原有本金,并以此和为下一期计算利息的新本金,这就是所谓的复利。通俗说法就是“利滚利”。 下面推出按福利计息方法的复利公式。 现有本金A 0,年利率r=p%,若以复利计息,t 年末A 0将增值到A t ,试计算A t 。 若以年为一期计算利息: 一年末的本利和为A 1=A 0(1+r ) 二年末的本利和为A 2=A 0(1+r )+A 0(1+r )r= A 0(1+r )2 类推,t 年末的本利和为A t = A 0(1+r )t (1) 若把一年均分成m 期计算利息,这时,每期利率可以认为是 r m ,容易推得 0(1) mt t r A A m =+ (2) 公式(1)和(2)是按离散情况——计息的“期”是确定的时间间隔,因而计息次数有限——推得的计算A t 的复利公式。 若计息的“期”的时间间隔无限缩短,从而计息次数m →∞,这时,由于 000lim (1)lim[(1)]m mt rt rt r m m r r A A A e m m →∞→∞+=+= 所以,若以连续复利计算利息,其复利公式是 0rt t A A e =

高等数学在经济中的应用

高等数学在经济中的应用 专业:制药工程 姓名:XXX 指导老师:XXX 摘要:高等数学在经济研究中起着基础性作用,只有学好高等数学才能更好的理解剖析经济现象掌握经济知识。本文主要用数学分析、常微分方程、高等代数 概率与数理统计等课程的相关知识来说明高等数学在经济中的应用。 关键词:高等数学;经济;应用 Application of Advanced Mathematics in Economy Abstract:Advanced mathematics is basis of economic research.0nly learning advanced mathematics,call we get a better understanding and analyzing economic phenomenon and master economic knowledge.This paper mainly illustrates the application of advanced mathematics in the economy by using the related knowledge of mathematical analysis,ordinary differential equation,higher algebra,probability and mathematical statistics course. Key words:advanced mathematics;economy;application 0 引言 数学在经济中扮演着越来越重要的角色,经济学的许多研究方法都依赖于数学思维,许多重要的结论也来源于数学的推导,而且提高经济学理论的科学性与分析水平的重要工具也是数学。因此,研究数学方法与经济学的内在联系,研究

在经济数学中的应用

Mathematica在经济数学中的应用 一、求函数的极限 1.求 2.求 3.求 二、导数和微分 在Mathematica 中,计算函数的微分或是非常方便的,命令为D[f,x],表示 1.求函数sinx的导数 2.求函数exsinx的2阶导数 3.假设a是常数可以对sinax求导 4.如果对二元函数f(x,y)=x^2*y+y^2求对x,y 求一阶和二阶偏导 Mathematica可以求函数式未知的函数微分,通常结果使用数学上的表示法例如: 对链导法则同样可用 如果要得到函数在某一点的导数值可以把这点代入导数如: 2.全微分

在Mathematica中,D[f,x]给出f的偏导数,其中假定f中的其他变量与x 无关。当f为单变量时,D[f,x]计算f对x的导数。函数Dt[f,x]给出f的全微 可以看出第一种情况y与x没有关系,第二种情况y是x的函数。再看下列求多项式x^2+xy^3+yz的全微分并假定z保持不变是常数。 如果y是x的函数,那么,y被看成是常数 三、定积分、不定积分和数值积分 1.不定积分 在Mathematica中计算不定积分命令为Integerate[f,x],当然也可使用工具栏直接输入不定积分式,来求函数的不定积分。当然并不是所有的不定积分都能求出来。例如若求 Mathematica就无能为力。 但对于一些手工计算相当复杂的不定积分,MatheMatica还是能轻易求得,例如求 积分变量的形式也可以是一函数,例如 输入命令也可求得正确结果。对于在函数中出现的除积分变量外的函数,统统当作常数处理,请看下面例子。 2.定积分 定积分的求解主要命令也是用Integrate只是要在命令中加入积分限Integrate[f,{x,min,max}] 或者使用式具栏输入也可以。例如求 显然这条命令也可以求广义积分例如:求 求无穷积也可以例如 如果广义积发散也能给出结果,例如 如果无法判定敛散性,就用给出一个提示,例如 如果广义积分敛散性与某个符号的取值有关,它也能给出在不同情况下的积分结果例如

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

经济数学在生活中的应用

经济数学在生活中的应用 数学是科学之王。数字化时代的任何学科显然都已经离不开数学。离开数学的,比如诗歌,比如京戏,如果还摈弃数学的精细,还敢藐视数字化的传媒,则必定为时代所抛弃。唯独中国的经济学,在最需要数学扶助的时候,却在以大无畏的精神藐视着数学。不管是宏观经济学、微观经济学,还是我们曾奉为经典的政治经济学,都以极端自负的姿态不屑于带数学这个纯自然科学的小兄弟玩儿,最多在需要点缀的时候,捎上它的一点儿“概算”,就算对这小兄弟够重视的了——科学之王?在我们的经济学里公民都算不上! 中国经济,不管宏观还是微观都出了问题,这是人们无法否认的。制度上的原因人们尽可以仁者见仁智者见智。“似乎”是在制度之外,笔者却发现了一个数学上的原因。那就是中国经济学在不经意之时捎带着用一下的数学“概算”。这一“概算”,就“概算”出了中国经济的大毛病。 先看宏观经济中“概算”搞出来的漏子。 算计和筹划都离不开数学。我们的计划经济却抛弃了数学,因而它实际上根本谈不上是计划,所以它失败了。翻看一下我们那时的年度计划、十年规划,我们会看到,我们的计划体制里没有数学的位置,连初等数学的运用都是随心所欲地选取几个为我所用的要素的简单累加——我们的5年计划在计算总产值、GDP的同时,几乎从不计算投入与消耗;我们在劳动者的报酬中强制提留福利事业费,连劳动者维持生命需要几分钱的油、盐、酱、醋都计算的分文不余,却从不计算每一位劳动者在离开这个世界之前能否住上一天公有制配给的房子,也几乎不去计算老龄化社会,对养老金需求的增幅;我们的市政建设没有工程师或规划师去计算基础管道设施的铺设是一次性开沟铺设最经济,还是分八、九次开膛破肚更有利,却有人计算出八、九次开膛破肚的GDP值要大于一次性马到功成;我们的证券市场设计,能够设计出一个让体制内企业家取之不尽的再生金矿,却计算不出融资额、股票市值与上市公司实际财富产出值之间的倍数关系。 再看一看微观经济中人们又是如何应用数学。 W=C+V+M 这个简单的商品价值构成公式相信越是老一辈的革命者越是记忆犹新。然而不管是30年的纯计划经济,还是20多年的开放搞活经济,我们却从没有正确应用过这个公式。 和发达国家数千美元/月的劳动力成本相比,我国社会劳动力成本低廉确凿无疑。然而差距到了60倍到100倍,这能是两类劳动者的真实价差吗?难怪市场经济国家要抗拒我们的廉价商品为不正当倾销!静下心来计算一下两个社会里劳动者报酬的内涵,我们自己就会赧颜羞涩: ——市场经济社会,劳动力价值构成=劳动者衣+劳动者食+劳动者住+劳动者行+医疗福利+精神生活+知识更新+后代抚养+…=完整的具有社会属性的人。 ——我国现今社会,以最下层却又最广大的600元月薪的打工者为例,其价格构成=劳动者衣+劳动者食+劳动者行+1/3劳动者住=价值残缺的生物的人。 我们的劳动力价值在物质极度匮乏的时期在价值回报上无以体现,成本低廉是因为没有足够的物质财富可以和劳动力价值作等价交换。随着国民财富的高幅度增长,劳动力价值的回报早已有了充足的物质条件,这时的劳动力价值应该依靠数学得以回归。 我们的劳动力价值被严重低估了!这是劳动力供应远远大于需求造成的价格与价值的严重背离。而劳动力的超供应,源于我们失当的人口政策。当时的人口政策是数学计算的失误,今天的劳动力价值计算,显然不应该再让数学失落。 我们的劳动力价值是不完整的。这一方面是说我们的劳动薪酬体系对劳动力价值体现的不完整,另一方面是说由于在薪酬上被割去了一大部分体现劳动者社会属性的价值,我们的劳动

数学在经济中的应用2

数学在经济中的应用 数学是科学之王。数字化时代的任何学科显然都已经离不开数学。离开数学的,比如诗歌,比如京戏,如果还摈弃数学的精细,还敢藐视数字化的传媒,则必定为时代所抛弃。 唯独中国的经济学,在最需要数学扶助的时候,却在以大无畏的精神藐视着数学。不管是宏观经济学、微观经济学,还是我们曾奉为经典的政治经济学,都以极端自负的姿态不屑于带数学这个纯自然科学的小兄弟玩儿,最多在需要点缀的时候,捎上它的一点儿“概算”,就算对这小兄弟够重视的了——科学之王?在我们的经济学里公民都算不上! 中国经济,不管宏观还是微观都出了问题,这是人们无法否认的。制度上的原因人们尽可以仁者见仁智者见智。“似乎”是在制度之外,笔者却发现了一个数学上的原因。那就是中国经济学在不经意之时捎带着用一下的数学“概算”。这一“概算”,就“概算”出了中国经济的大毛病。 先看宏观经济中“概算”搞出来的漏子。 鼓励生育的人口政策可以认定是一项经济政策,其经济上的动机是建立在发展生产“人多力量大”的数学概算基础上的。其数学含义是:多一亿人口的物质财富生产≥多一亿人口的物质财富消耗。时髦的口号是:人少好吃饭,人多好干活。劳动力的物质财富生产扣除劳动力的物质财富消耗的剩余,就是鼓励人口政策的经济目的。这样的概算在今天看起来粗鄙得近于野蛮——即便科学技术高度发展对财富生产方式的改变令闭塞社会的管理者始料不及这一点可以理解,有限土地人口承载力、不可再生资源的消耗极限、社会管理成本的高比例付出、财富产出的边际收益递减等等基本数学因数都不能纳入国民经济规划视野的话,数学在经济学中的位置则肯定不如贵族豪门里的粗使丫头。 计划经济曾是我们社会为人类探索的一条大胆的经济发展模式。它失败了。但它的对手却在令人眼花缭乱的市场经济里把计划用到了极致。难道计划对于市场,对于经济真的是那么无能为力,那么荒唐吗?我们的对手都会告诉我们:不是!计划是智慧生命的生存方式。计划是对生存方式的算计和筹划。日本人对自己海岸线以内的海底资源珍藏不用是算计,美国人的“星球大战”是筹划;世界商业巨头数亿美元的广告营销投入是精心算计,跨国公司的中国攻略是跨世纪的大筹划……市场经济里几乎每一个智慧生命的每一个动作都自然地演绎着精致的数学逻辑。 算计和筹划都离不开数学。我们的计划经济却抛弃了数学,因而它实际上根本谈不上是计划,所以它失败了。翻看一下我们那时的年度计划、十年规划,我们会看到,我们的计划体制里没有数学的位置,连初等数学的运用都是随心所欲地选取几个为我所用的要素的简单累加——我们的5年计划在计算总产值、GDP的同时,几乎从不计算投入与消耗;我们在劳 1

数学统计方法在经济学中的应用

数学统计方法在经济学中的应用 数学统计方法在经济学中的应用开题报告/html/lunwenzhidao/kaitibaogao/ 数学这门理论性学科具有高度的抽象性,它作为一种应用性工具被广泛的运用于工程学、机械学、经济学等众多领域。通过在经济学中的大量实践应用可知,经济问题的中的定性分析与定量分析都可以运用数学方法来进行统计。对于现代企业来讲,任何一项运行决策的制定、实施、评价都离要使用数学统计方法对决策的经济效益中的各项指标进行评估,例如企业生产过程中所涉及到原材料的使用,产品销售过程中的价格控制,经济效益评估时的利润计算等。当代经济学家认为,经济领域一些现实的问题的解决,都要通过先将经济学中的变量提取出来,从而建立经济模型,再通过数学方法进行统计与运算,结合经济原则和理论,对决策进行预测与评估。 一、数学统计方法应用于现代经济中的意义 数学统计方法应本文由毕业论文网收集整理用于经济学中,尤其是应用于现代企业的各项经济指标预测与评估中,对企业的决策的成功与失败,决策的调整与改革都有着重要的影响。因此,将数学统计方法应用于经济学中,有着很强烈的现实意义。 1.经济学问题的解决离不开数学统计方法的运用 经济学问题的分析与解决需要精确、客观、科学,而数学统计方法的最重要特点就在于它分析过程的严谨精密,分析结果的清晰准确。数学方法应用于经济学领域中,最早可以追溯到古经济学中代数式的

应用,时至今日,数学与经济学相结合,衍生出了数理经济学、经济计量学以及产权经济学等数门专业化理论,经济学中的数学统计方法已经无处不在。将数学方法运用于经济问题的解决中,一般要经历“经济—数学——经济”的模式,既从需要解决的现实经济问题入手,建立数学模型进行,运用数学方法对数学模型进行分析,求得数学结果,再结合经济理论与经济学原理对结果进行评估,得出结论,用于指导经济活动的进行。 2.现代企业经济决策的制定离不开数学统计方法 数学在经济学中的大量运用,使人们对经济活动评估的要求由定性分析发展到定量分析,特别在现代企业在制定决策时,它们都希望通过数学方法来精确的分析决策对企业发展产生的意义。数学方法在现代企业经济决策中的运用,是为了提高经济决策的可靠性与科学性,避免企业财力、物力的损失,通过数学方法对决策执行后的结果进行预测,使企业的发展处于自身可以控制的情况下。一个简单的数学方法就可以将经济决策中的各项因子之间的关系简单的明了的表现出来,各个经济变量之间的关系也能一目了然,经济决策的制定是否可靠的结论就可以得出。作文/zuowen/ 3.数学统计方法是经济理论分析最重要工具之一 数学统计方法是经济学理论分析的最重要工具之一,从最早的代数运用,再到数理经济学中,各种深奥的数学问题中的大量的运用的运用,现代统计经济学中,繁杂数据的中指标的得出,再代现代数学与现代经济理论相结合,产生的特有的专门运用数学方法来解释经济

14224考研数学三经济学应用考点分析190402

考研数学三经济学应用考点分析 对于全国硕士研究生数学三的考试来说,经济学应用是一个高频考点,在历年的数学三真题中经常出现,如:2001年第一(1)题,2004年第18题,2007年第5题,2009年第12题,2010年第11题,2013年第18题,2014年第9题,2015年第17题,这些经济学应用问题主要涉及到两个重要概念,一个是边际概念,一个是弹性概念,下面文都网校的数学蔡老师对这两个概念及2016年的相关真题做些分析说明,供各位考研的同学和朋友参考。 一、边际概念和弹性概念 1、边际概念:边际指经济变量的变化率(导数)。若经济变量()y f x =,则称()f x '为边际函数;如:边际成本()C x '、边际收入()R x '和边际利润()L x '(x 为产量),分别表示增加一个单位产量时所增加的成本、收入和利润,其中(),(),()C x R x L x 分别为企业生产某种产品的成本、收入和利润。 2、弹性概念:弹性指一个经济变量变动1%时会使另一个经济变量变动百分之几。 变量y 对x 的弹性为y x y x y y E x y x x ∧??==???,令0x ?→,得()y x x dy x E y x y dx y '=?=.需求弹性:Q p p dQ E Q dp =-?,p 为产品价格,()Q p 为市场需求量。收入弹性:R p p dR E R dp = ?,()R p 为收入(()R pQ p =).二、真题分析设某商品的最大需求量为1200件,该商品的需求函数()Q Q p =,需求弹性为(0)120p p ηη=>-,p 为单价(万元)。(Ⅰ)求需求函数的表达式; (Ⅱ)求100p =万元时的边际收益,并说明其经济意义. 注:这是2016年考研数学(三)第(16)题(本题满分10分)

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

导数在经济学中的应用

引言 近年来,随着市场经济的不断发展、经济的不断繁荣,经济活动中的实际问题也愈加复杂,简单的分析已经不足以满足企业管理者对经济分析的需求。因此,有必要将高等数学应用于简单的数学函数所不能解决的实际经济问题中,对其进行定量分析,这使得高等数学在解决经济问题中占据重要地位。而导数作为高等数学中的重要概念,同样也是解决经济问题的一个有力工具。在高等数学中,导数通常被用于判断函数的单调性,求函数的最值、极值等。在实际经济问题中,导数可作为经济分析的工具,广泛地应用到经济研究和企业管理之中,促进经济理论朝着更加精确的方向发展。本文从边际分析,弹性分析,优化分析三个方面论述导数在经济分析方面的应用。 1、导数的概念 早在法国数学家费马探究极值问题时就将导数的思想引入了,但导数思想是在英国数学家牛顿研究力学和德国数学家莱布尼茨研究几何学的过程中正式建 2、经济分析中常用的函数 由于导数主要应用于探究经济领域中出现的一些函数关系问题,所以,我们必需对经济分析中的一些常用的函数具有一定的了解,以便更好的理解和使用它们。经济分析中常用的函数主要有以下四类: 2.1需求函数 需求函数指在特定的时间,各种可能的价格条件下,消费者愿意并且能够购买该商品的数量。(出处?)为了使问题简单化,我们一般假设需求函数的诸多

自变量中除价格外其他均为常量,则函数表示为()P f Q d =,其中,P 为商品的价格,Q d 为商品的需求量。这个函数表示一种商品的需求量与价格之间存在一 一对应的关系,并且通过观察可以知道商品(除某些抵挡商品、某些炫耀性商品、某些投资性商品除外)的需求量与价格成反方向变动关系,即商品本身价格上升,需求量随之减少,反之亦然。 例1:服装店销售某种衬衫的件数Q 与价格P 是线性关系,当价格为100元一件时,可销售120件,当价格为80元时,可销售200件,求需求函数。 解:设衬衫的件数与价格的函数关系为:b aP Q += 则b a +=100120;b a +=80200 解得4-=a ;520=b 所以需求函数为5204+-=P Q 。 2.2供给函数 一种商品的供给函数,是指单个生产者在一定时期在各种可能的价格下,愿意且能够提供出售的该种商品数量。[3]我们通常通过将除价格外的其他因素看成常量以达到化简问题的目的。所以,供给函数可以用()P f Q s =表示,其中,P 为商品的价格,Q S 为商品的供给量。可以看出,商品(除单个劳动力商品、古董商品、某些投资性商品外)的价格与供给量之间成同方向变动的关系。 例2:已知大蒜的收购价为每千克4元,每星期能收购2000千克,若收购价每千克提高0.5元,每星期可收购2500千克,求大蒜的供给函数。 解:设大蒜的线性供给函数为:b aP Q += 则b a +=42000;b a +=5.42500 得1000=a ;2000-=b 所以供给函数为为:20001000-=P Q 2.3成本函数 产品成本一般情况下是用货币的形式来表现的企业生产和出售产品的所用度支出。成本函数所表示的是企业成本总额与产出总量之间关系的公式。产品成

数学在经济生活中的应用

数学在经济生活中的应用 例1 设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润 解:总成本函数为 C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000 总收益函数为R(x)=500x 总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。所以,生产量为200单位时,利润最大。最大利润为L(200)=400×200-2002-1000=390009(元) 例2 某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q 2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。 解:每月生产Q吨产品的总收入函数为: R(Q)=20Q L(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20) =-Q2+30Q-20 L’(Q)=(-Q2+30Q-20)’=-2Q+30 则每月生产10吨、15吨、20吨的边际利润分别为 L’(10)=-2×10+30=10(千元/吨); L’(15)=-2×15+30=0(千元/吨); L’(20)=-2×20+30=-10(千元/吨); 以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1万元。 例3 设生产某产品的固定成本为60000元,变动成本为每件20元,价格函数p=60-Q1000 (Q为销售量),假设供销平衡,问产量为多少时,利润最大?最大利润是多少? 解:产品的总成本函数 收益函数R(Q)=pQ=(60-Q1000)Q=60Q- 则利润函数L(Q)=R(Q)-C(Q)=-- L’(Q)=-1500Q+40,令L’(Q)=0得 ∵L’’(Q)=-1500<0∴Q=2000时L最大,L(2000)=340000元 所以生产20000个产品时利润最大,最大利润为340000元。

微积分在经济学中的应用分析.doc

微积分在经济学中的应用分析 李博 西南大学数学与统计学院,重庆 400715 摘要:本文从经济学与数学的紧密联系出发,分析了数学,尤其是微积分在经济学研究中的地位和作用。 关键词:微积分;经济学;边际分析 Calculus’s Applied Analysis in Economics Li bo School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract: Based on the close relationship between economics and maths,this paper analyzes the role and function of maths especially calculus in economics. Key words: calculus; Economics; marginal analysis 1.数学与经济学的紧密联系 经济学与数学之间有天然的联系, 经济学从诞生之日起便与数学结下了不解之缘。 经济学应用数学有客观基础。经济学研究的对象是人与人之间的“物的交换”,是有量化规则的。经济学基本范畴如需求、供给、价格等是量化的概念。经济学所揭示的规律性往往需要数量的说明。特别是经济学的出发点是“理性经纪人”。由于经纪人在行为上是理性的,经纪人能够根据自己的市场处境判断自身利益,且在若干不同的选择场合时,总是倾向于选择能给自己带来最大利益的那一种。所以,数学中所有关于求极值和最优化的理论,都适用于分析各种各样的最优经济效果问题,而很多求极值的数学理论和概念,也只能在最优经济效果中找到原型。 数学方法本身所提供的可能性。多变量微积分的理论特别适用于研究以复杂

凸函数及其在证明不等式中的应用

本科毕业论文 题目凸函数及其在证明不等式中的应用 系别数学与信息科学学院 专业数学与应用数学 指导教师吴开腾 评阅教师 班级 2004级2班 姓名冀学本 学号 064 2008 年5月27日

目录 摘要 .............................................................. 错误!未定义书签。Abstract......................................................... 错误!未定义书签。1引言 ............................................................ 错误!未定义书签。 2 凸函数的等价定义 ........................................... 错误!未定义书签。凸函数三种定义的等价性的讨论.................................. 错误!未定义书签。 定义1?定义2................................................. 错误!未定义书签。 定义1?定义3................................................. 错误!未定义书签。判定定理与JESEN不等式.......................................... 错误!未定义书签。3.性质 .......................................................... 错误!未定义书签。4凸函数在不等式证明中的应用 .............................. 错误!未定义书签。利用凸函数定义证明不等式....................................... 错误!未定义书签。 利用凸函数性质证明不等式...................................... 错误!未定义书签。结束语............................................................ 错误!未定义书签。参考文献......................................................... 错误!未定义书签。致谢 .............................................................. 错误!未定义书签。

浅论数学建模在经济学中的应用

浅论数学建模在经济学中的应用 摘要:当代西方经济认为,经济学的基本方法是分析 经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。 关键词:经济学数学模型应用 在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。 一、数学经济模型及其重要性 数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。 数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起

来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。 二、构建经济数学模型的一般步骤 1.了解熟悉实际问题,以及与问题有关的背景知识。 2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。 3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。 4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因

相关主题
文本预览
相关文档 最新文档