当前位置:文档之家› 基于贝叶斯网络的动态信任模型研究

基于贝叶斯网络的动态信任模型研究

基于贝叶斯网络的动态信任模型研究
基于贝叶斯网络的动态信任模型研究

河南大学

硕士学位论文

基于贝叶斯网络的动态信任模型研究

姓名:谢苑

申请学位级别:硕士

专业:计算机应用技术

指导教师:申石磊;何欣

20100501

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.doczj.com/doc/2313184582.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

贝叶斯网络应用

目录 一、贝叶斯概率基础 (2) 1先验概率、后验概率和条件概率 (2) 2条件概率公式 (2) 3全概率公式 (2) 4贝叶斯公式 (2) 二、贝叶斯网络概述 (3) 三、Sql server 2008中的贝叶斯网络应用 (4) 1在SQL Server 2005中建一个新的数据库BayesDatabase,如图所示。 (4) 2创建新的商业智能项目BayesProject (5) 3建立BayesA中的数据连接,连接到数据库BayesDatabase (6) 4建立BayesA中的数据源视图,在建立视图的过程中选择数据库中的表格Table_2 . 7 5创建挖掘结构 (8) 6数据挖掘向导 (9) 7挖掘模型 (10) 8部署 (11) 9贝叶斯网络结构图 (11) 10数据挖掘预测 (12) 11第一次挖掘模型预测 (13) 12第二次挖掘模型预测 (13) 13第三次挖掘模型预测 (14)

贝叶斯网络 一、贝叶斯概率基础 1先验概率、后验概率和条件概率 先验概率:根据历史的资料或主观判断所确定的各种时间发生的概率后验概率:通过贝叶斯公式,结合调查等方式获取了新的附加信息,对先验概率修正后得到的更符合实际的概率 条件概率:某事件发生后该事件的发生概率 2条件概率公式 条件概率公式: 3全概率公式 4贝叶斯公式

独立互斥且完备的先验事件概率可以由后验事件的概率和相应条件概率决定 二、贝叶斯网络概述 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayesian network)是为了解决不定性和不完整性问题而提出的,它对于解决复杂设备不确定性和关联性引起的故障有很的优势,在多个领域中获得广泛应用。 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayesian network)是为了解决不定性和不完整性问题而提出的,它对于解决复杂设备不确定性和关联性引起的故障有很的优势,在多个领域中获得广泛应用。

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

贝叶斯网络工具箱使用

matlab贝叶斯网络工具箱使用 2010-12-18 02:16:44| 分类:默认分类| 标签:bnet 节点叶斯matlab cpd |字号大中小订阅 生成上面的简单贝叶斯网络,需要设定以下几个指标:节点,有向边和CPT表。 给定节点序,则只需给定无向边,节点序自然给出方向。 以下是matlab命令: N = 4; %给出节点数 dag = false(N,N); %初始化邻接矩阵为全假,表示无边图C = 1; S = 2; R = 3; W = 4; %给出节点序 dag(C,[R,S])=true; %给出有向边C-R,C-S dag([R,S],W)=true; %给出有向边R-W,S-W discrete_nodes = 1:N; %给各节点标号 node_sizes = 2*ones(1,N); %设定每个节点只有两个值 bnet = mk_bnet(dag, node_sizes); %定义贝叶斯网络bnet %bnet结构定义之后,接下来需要设定其参数。 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); 至此完成了手工输入一个简单的贝叶斯网络的全过程。 要画结构图的话可以输入如下命令: G=bnet.dag; draw_graph(G); 得到:

贝叶斯网络(基础知识)

贝叶斯网络(基础知识) 1基本概率公理 1)命题 我们已经学过用命题逻辑和一阶谓词逻辑表达命题。在概率论中我们采用另外一种新的表达能力强于命题逻辑的命题表达方式,其基本元素是随机变量。 如:Weather=snow; Temperature=high, etc。 在概率论中,每个命题赋予一个信度,即概率 2)在随机现象中,表示事件发生可能性大小的一个实数称为事件的概率用P(A)表示。 如P(硬币=正面)=0.5。 3)在抛硬币这个随机现象中,落地后硬币的所有可能结果的集合构成样本空间。 4)P(A)具有以下性质: 0 ≤P(A) ≤1, P(A)+P(-A)=1 P(true) = 1 and P(false) = 0 P(A∨B) = P(A) + P(B) - P(A∧B) (or, P(A∨B)=P(A)+P(B), if A∩B=Φ,即A,B互斥) 2随机变量 随机变量是构成语言的基本元素:如本书提到的天气、骰子、花粉量、产品、Mary,公共汽车,火车等等。 1)典型情况下,随机变量根据定义域的类型分成3类: 布尔随机变量:如:牙洞Cavity的定义域是 离散随机变量:如:天气Weather的定义域是 连续随机变量:如:温度Temperature的定义域是[0, 100]。 这里我们主要侧重于离散随机变量。 2)随机变量的性质 ?每个随机变量都有有限个状态,(即状态有限的定义域),且定义域中的值必须互斥。如天气变量的状态有:<晴朗、多云、雨、雪>, ?并且每个状态都同一个实数相联系,该实数表明变量处于该状态时的概率。 如今天的天气情况:P(天气=晴)=0.8 P(天气=多云)=0.1 P(天气=雨)=0.1 P(天气=雪)=0。 或简单的写作:P(Weather)=<0.8,0.1,0.1,0> ?变量的所有状态的概率取值构成这些状态的概率分布:

贝叶斯网络构建算法

3.1 贝叶斯网络构建算法 算法3.1:构建完全连接图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。 输出:一个完全连接图S 算法: 1、 连接任意两个节点,即连接边 L ij=1,i ≠j 。 2、 为任一节点V i 邻接点集合赋值,B i= V\{V i }。 算法3.2:构建最小无向图算法 输入:样本数据D ;一组n 个变量V={V l ,V 2,…,V n }变量。及算法3.1中得到的邻接点集B i ,连接边集 L ij 先验知识:节点V i ,V j 间连接边是否存在 变量说明:L 为连接边,|L|=n(n –1)/2为连接边的数量,B i 表示变量V i 的直接邻近集,|B i |表示与变量B i 相邻的变量数。(V i ⊥V j |Z)表示V i 和V j 在Z 条件下条件独立,设∧(X ,Y)表示变量X 和Y 的最小d-分离集。 输出:最小无向图S 1、根据先验知识,如果V i 和V j 不相连接,则L ij =0 . 2、对任一相连接边,即L ij ≠0,根据式(3-12)计算互信息I (V i ,V j ) ),(Y X I =))()(|),((y p x P y x p D =????? ?)()(),(log ),(Y p X p Y X p E y x P (3-12) if I (V i ,V j )ε≤ then { L ij =0 //V i 和V j 不相连接 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 } else I ij = I (V i ,V j ) //节点V i 和V j 互信息值 3、对所有连接边,并按I ij 升序排序 4、如果连接边集L ij 不为空,那么按序选取连接边L ij ,否则 goto 10 if |B i |≥ |B j |,令Z= B i else Z= B j //为后面叙述方便,这里先假设|B i |≥ |B j | 5、逐一计算L ij 的一阶条件互信息I(V i ,V j |Z 1),Z 1={Y k }, Y k ∈Z, if I(V i ,V j |Z 1)ε≤ then { L ij =0 //V i 和V j 关于Z 1条件独立 B i= V\{V j }, B j= V\{V i } //调整V i 和V j 邻接集 d ij = Z 1 //L ij 最小d 分离集为Z 1 goto 4

复杂网络理论及其研究现状

复杂网络理论及其研究现状 复杂网络理论及其研究现状 【摘要】简单介绍了蓬勃发展的复杂网络研究新领域,特别是其中最具代表性的是随机网络、小世界网络和无尺度网络模型;从复杂网络的统计特性、复杂网络的演化模型及复杂网络在社会关系研究中的应用三个方面对其研究现状进行了阐述。 【关键词】复杂网络无标度小世界统计特性演化模型 一、引言 20世纪末,以互联网为代表的信息技术的迅速发展使人类社会步入了网络时代。从大型的电力网络到全球交通网络,从Internet 到WWW,从人类大脑神经到各种新陈代谢网络,从科研合作网络到国际贸易网络等,可以说,人类生活在一个充满着各种各样的复杂网络世界中。 在现实社会中,许多真实的系统都可以用网络的来表示。如万维网(WWW网路)可以看作是网页之间通过超级链接构成的网络;网络可以看成由不同的PC通过光缆或双绞线连接构成的网络;基因调控网络可以看作是不同的基因通过调控与被调控关系构成的网络;科学家合作网络可以看成是由不同科学家的合作关系构成的网络。复杂网络研究正渗透到数理科学、生物科学和工程科学等不同的领域,对复杂网络的定性与定量特征的科学理解,已成为网络时代研究中一个极其重要的挑战性课题,甚至被称为“网络的新科学”。 二、复杂网络的研究现状 复杂网络是近年来国内外学者研究的一个热点问题。传统的对网络的研究最早可以追溯到18世纪伟大数学家欧拉提出的著名的“Konigsberg七桥问题”。随后两百多年中,各国的数学家们一直致力于对简单的规则网络和随机网络进行抽象的数学研究。规则网络过于理想化而无法表示现实中网络的复杂性,在20世纪60年代由Erdos和Renyi(1960)提出了随机网络。进入20世纪90年代,人们发现现实世界中绝大多数的网络既不是完全规则,也不是完全随机

贝叶斯公式论文

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (3) 第一章贝叶斯公式及全概率公式的推广概述..................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

贝叶斯网络结构学习及其应用研究_黄解军

收稿日期:2004-01-23。 项目来源:国家自然科学基金资助项目(60175022)。 第29卷第4期2004年4月武汉大学学报#信息科学版 Geomatics and Information Science of Wuhan U niversity V ol.29No.4Apr.2004 文章编号:1671-8860(2004)04-0315-04文献标识码:A 贝叶斯网络结构学习及其应用研究 黄解军1 万幼川1 潘和平 1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:阐述了贝叶斯网络结构学习的内容与方法,提出一种基于条件独立性(CI)测试的启发式算法。从完全潜在图出发,融入专家知识和先验常识,有效地减少网络结构的搜索空间,通过变量之间的CI 测试,将全连接无向图修剪成最优的潜在图,近似于有向无环图的无向版。通过汽车故障诊断实例,验证了该算法的可行性与有效性。 关键词:贝叶斯网络;结构学习;条件独立性;概率推理;图论中图法分类号:T P18;T P311 贝叶斯网络学习是贝叶斯网络的重要研究内容,也是贝叶斯网络构建中的关键环节,大体分为结构学习和参数学习两个部分。由于网络结构的空间分布随着变量的数目和每个变量的状态数量呈指数级增长,因此,结构学习是一个NP 难题。为了克服在构建网络结构中计算和搜索的复杂性,许多学者进行了大量的探索性工作[1~5]。至今虽然出现了许多成熟的学习算法,但由于网络结构空间的不连续性、结构搜索和参数学习的复杂性、数据的不完备性等特点,每种算法都存在一定的局限性。本文提出了一种新算法,不仅可以有效地减少网络结构的搜索空间,提高结构学习的效率,而且可避免收敛到次优网络模型的问题。 1 贝叶斯网络结构学习的基本理论 1.1 贝叶斯网络结构学习的内容 贝叶斯网络又称为信念网络、概率网络或因果网络[6] 。它主要由两部分构成:1有向无环图(directed acyclic graph,DAG),即网络结构,包括节点集和节点之间的有向边,每个节点代表一个变量,有向边代表变量之间的依赖关系;o反映变量之间关联性的局部概率分布集,即概率参数,通常称为条件概率表(conditional probability table,CPT),概率值表示变量之间的关联强度或置信度。贝叶斯网络结构是对变量之间的关系描 述,在具体问题领域,内部的变量关系形成相对稳定的结构和状态。这种结构的固有属性确保了结构学习的可行性,也为结构学习提供了基本思路。贝叶斯网络结构学习是一个网络优化的过程,其目标是寻找一种最简约的网络结构来表达数据集中变量之间的关系。对于一个给定问题,学习贝叶斯网络结构首先要定义变量及其构成,确定变量所有可能存在的状态或权植。同时,要考虑先验知识的融合、评估函数的选择和不完备数据的影响等因素。 1.2 贝叶斯网络结构学习的方法 近10年来,贝叶斯网络的学习理论和应用取得了较大的进展。目前,贝叶斯网络结构学习的方法通常分为两大类:1基于搜索与评分的方法,运用评分函数对网络模型进行评价。通常是给定一个初始结构(或空结构),逐步增加或删减连接边,改进网络模型,从而搜索和选择出一个与样本数据拟合得最好的结构。根据不同的评分准则,学习算法可分为基于贝叶斯方法的算法[3,7]、基于最大熵的算法[8]和基于最小描述长度的算法[1,2]。o基于依赖关系分析的方法,节点之间依赖关系的判断通过条件独立性(CI )测试来实现,文献[9,10]描述的算法属于该类算法。前者在DAG 复杂的情况下,学习效率更高,但不能得到一个最优的模型;后者在数据集的概率分布与DAG 同构的条件下,通常获得近似最优的模型[11],

贝叶斯网络模型代码

addpath(genpathKPM(pwd)) N = 4; dag = zeros(N,N); C = 1; S = 2; R = 3; W = 4; dag(C,[R S]) = 1; dag(R,W) = 1; dag(S,W)=1; discrete_nodes = 1:N; node_sizes = 2*ones(1,N); bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes); onodes = []; bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes, 'observed', onodes); bnet = mk_bnet(dag, node_sizes, 'names', {'cloudy','S','R','W'}, 'discrete', 1:4); C = https://www.doczj.com/doc/2313184582.html,s('cloudy'); % https://www.doczj.com/doc/2313184582.html,s是一个关联数组; bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); CPT = zeros(2,2,2); CPT(1,1,1) = 1.0; CPT(2,1,1) = 0.1; CPT = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], [2 2 2]); bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]); bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]); bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]); bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); figure draw_graph(dag)

小世界复杂网络模型研究

小世界复杂网络模型研究 摘要:复杂网络在工程技术、社会、政治、医药、经济、管理领域都有着潜在、广泛的应用。通过高级计算机网络课程学习,本文介绍了复杂网络研究历史应用,理论描述方法及阐述对几种网络模型的理解。 1复杂网络的发展及研究意义 1.1复杂网络的发展历程 现实世界中的许多系统都可以用复杂网络来描述,如社会网络中的科研合作网、信息网络中的万维网、电力网、航空网,生物网络中的代谢网与蛋白质网络。 由于现实世界网络的规模大,节点间相互作用复杂,其拓扑结构基本上未知或未曾探索。两百多年来,人们对描述真实系统拓扑结构的研究经历了三个阶段。在最初的一百多年里,科学家们认为真实系统要素之间的关系可以用一些规则的结构表示,例如二维平面上的欧几里德格网;从20世纪50年代末到90年代末,无明确设计原则的大规模网络主要用简单而易于被多数人接受的随机网络来描述,随机图的思想主宰复杂网络研究达四十年之久;直到最近几年,科学家们发现大量的真实网络既不是规则网络,也不是随机网络,而是具有与前两者皆不同的统计特性的网络,其中最有影响的是小世界网络和无尺度网络。这两种网络的发现,掀起了复杂网络的研究热潮。 2复杂网络的基本概念 2.1网络的定义 自随机图理论提出至今,在复杂网络领域提出了许多概念和术语。网络(Network)在数学上以图(Graph)来表示,图的研究最早起源于18世纪瑞士著名数学家Euler的哥尼斯堡七桥问题。复杂网络可以用图论的语言和符号精确简洁地加以描述。图论不仅为数学家和物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。 网络的节点和边组成的集合。节点为系统元素,边为元素间的互相作用(关系)。若用图的方式表示网络,则可以将一个具体网络可抽象为一个由点集V和

贝叶斯网络

贝叶斯网络 2007-12-27 15:13 贝叶斯网络 贝叶斯网络亦称信念网络(Belief Network),于1985 年由Judea Pearl 首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。它的节点用随机变量或命题来标识,认为有直接关系的命题或变量则用弧来连接。例如,假设结点E 直接影响到结点H,即E→H,则建立结点E 到结点H 的有向弧(E,H),权值(即连接强度)用条件概率P(H/E)来表示,如图所示: 一般来说,有 n 个命题 x1,x2,,xn 之间相互关系的一般知识可用联合概率分布来描述。但是,这样处理使得问题过于复杂。Pearl 认为人类在推理过程中,知识并不是以联合概率分布形表现的,而是以变量之间的相关性和条件相关性表现的,即可以用条件概率表示。如 例如,对如图所示的 6 个节点的贝叶斯网络,有 一旦命题之间的相关性由有向弧表示,条件概率由弧的权值来表示,则命题之间静态结构关系的有关知识就表示出来了。当获取某个新的证据事实时,要对每个命题的可能取值加以综合考查,进而对每个结点定义一个信任度,记作 Bel(x)。可规定 Bel(x) = P(x=xi / D) 来表示当前所具有的所有事实和证据 D 条件下,命题 x 取值为 xi 的可信任程度,然后再基于 Bel 计算的证据和事实下各命题

的可信任程度。 团队作战目标选择 在 Robocode 中,特别在团队作战中。战场上同时存在很多机器人,在你附近的机器人有可能是队友,也有可能是敌人。如何从这些复杂的信息中选择目标机器人,是团队作战的一大问题,当然我们可以人工做一些简单的判断,但是战场的信息是变化的,人工假定的条件并不是都能成立,所以让机器人能自我选择,自我推理出最优目标才是可行之首。而贝叶斯网络在处理概率问题上面有很大的优势。首先,贝叶斯网络在联合概率方面有一个紧凑的表示法,这样比较容易根据一些事例搜索到可能的目标。另一方面,目标选择很容易通过贝叶斯网络建立起模型,而这种模型能依据每个输入变量直接影响到目标选择。 贝叶斯网络是一个具有概率分布的有向弧段(DAG)。它是由节点和有向弧段组成的。节点代表事件或变量,弧段代表节点之间的因果关系或概率关系,而弧段是有向的,不构成回路。下图所示为一个简单的贝叶斯网络模型。它有 5 个节 点和 5 个弧段组成。图中没有输入的 A1 节 点称为根节点,一段弧的起始节点称为其末节点的母节点,而后者称为前者的子节点。 简单的贝叶斯网络模型 贝叶斯网络能够利用简明的图形方式定性地表示事件之间复杂的因果关系或概率关系,在给定某些先验信息后,还可以定量地表示这些关系。网络的拓扑结构通常是根据具体的研究对象和问题来确定的。目前贝叶斯网络的研究热点之一就是如何通过学习自动确定和优化网络的拓扑结构。 变量 由上面贝叶斯网络模型要想得到理想的目标机器人,我们就必须知道需要哪些输入变量。如果想得到最好的结果,就要求我们在 Robocode 中每一个可知的数据块都要模拟为变量。但是如果这样做,在贝叶斯网络结束计算时,我们会得到一个很庞大的完整概率表,而维护如此庞大的概率表将会花费我们很多的系统资源和计算时间。所以在开始之前我们必须要选择最重要的变量输入。这样从比赛中得到的关于敌人的一些有用信息有可能不会出现在贝叶斯网络之内,比如速

基于贝叶斯网络的各种抽样方法比较

摘要: 本文主要介绍了贝叶斯网的基本概念以及重要性抽样方法的基本理论和概率推理, 重点介绍了两种重要的抽样方法, 即逻辑抽样方法和似然加权法, 并且比较了它们的优缺点 关键词: 贝叶斯网 抽样法 无偏估计 1.引言 英国学者T.贝叶斯1763年在《论有关机遇问题的求解》中提出一种归纳推理的理论, 后被一些统计学者发展为一种系统的统计推断方法, 称为贝叶斯方法.采用这种方法作统计推断所得的全部结果, 构成贝叶斯统计的内容.认为贝叶斯方法是唯一合理的统计推断方法的统计学者, 组成数理统计学中的贝叶斯学派, 其形成可追溯到 20世纪 30 年代.到50~60年代, 已发展为一个有影响的学派.Zhang 和Poole 首先提出了变量消元法, 其原理自关于不定序动态规划的研究(Bertele and Brioschi,1972).相近的工作包括D`Ambrosio (1991)、Shachter (1994)、Shenoy (1992)等人的研究.近期关于变量消元法的研究可参见有关文献【1】由于变量消元法不考虑步骤共享, 故引进了团树传播法, 如Hugin 方法.在实际应用中, 网络节点往往是众多的, 精确推理算法是不适用的, 因而近似推理有了进一步的发展. 重要性抽样法(Rubinstein, 1981)是蒙特尔洛积分中降低方差的一种手段, Henrion (1988)提出了逻辑抽样, 它是最简单也是最先被用于贝叶斯网近似推理的重要性抽样算法. Fung 和Chang (1989)、Shachter 和Peot (1989)同时提出了似然加权算法. Shachter 和Peot (1989)还提出了自重要性抽样和启发式重要性抽样算法. Fung 和Favero (1994)提出了逆序抽样(backward sam-pling ), 它也是重要性抽样的一个特例. Cheng 和Druzdzel (2000)提出了自适应重要性抽样算法, 同时也给出了重要性抽样算法的通用框架, 这就是各种抽样方法的发展状况. 本文就近似推理阐述了两种重要的抽样方法即逻辑抽样方法和似然加权法, 并比较了它们的优缺点. 2. 基本概念 2.1 贝叶斯网络的基本概念 贝叶斯网络是一种概率网络, 用来表示变量之间的依赖关系, 是带有概率分布标注的有向无环图, 能够图形化地表示一组变量间的联合概率分布函数. 贝叶斯网络模型结构由随机变量(可以是离散或连续)集组成的网络节点, 具有因果关系的网络节点对的有向边集合和用条件概率分布表示节点之间的影响等组成.其中节点表示了随机变量, 是对过程、事件、状态等实体的某些特征的描述; 边则表示变量间的概率依赖关系.起因的假设和结果的数据均用节点表示, 各变量之间的因果关系由节点之间的有向边表示, 一个变量影响到另一个变量的程度用数字编码形式描述.因此贝叶斯网络可以将现实世界的各种状态或变量画成各种比例, 进行建模. 2.2重要性抽样法基本理论 设()f X 是一组变量X 在其定义域n X R Ω?上的可积函数.考虑积分 ()()X I f X d X Ω= ? (2.2.1)

贝叶斯网络的建造训练和特性

贝叶斯网络建造 贝叶斯网络的建造是一个复杂的任务,需要知识工程师和领域专家的参与。在实际中可能是反复交叉进行而不断完善的。面向设备故障诊断应用的贝叶斯网络的建造所需要的信息来自多种渠道,如设备手册,生产过程,测试过程,维修资料以及专家经验等。首先将设备故障分为各个相互独立且完全包含的类别(各故障类别至少应该具有可以区分的界限),然后对各个故障类别分别建造贝叶斯网络模型,需要注意的是诊断模型只在发生故障时启动,因此无需对设备正常状态建模。通常设备故障由一个或几个原因造成的,这些原因又可能由一个或几个更低层次的原因造成。建立起网络的节点关系后,还需要进行概率估计。具体方法是假设在某故障原因出现的情况下,估计该故障原因的各个节点的条件概率,这种局部化概率估计的方法可以大大提高效率。 贝叶斯网络训练 使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。 贝叶斯网络具有如下特性:

1。贝叶斯网络本身是一种不定性因果关联模型。贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化的一种概率知识表达与推理模型,更为贴切地蕴含了网络节点变量之间的因果关系及条件相关关系。 2。贝叶斯网络具有强大的不确定性问题处理能力。贝叶斯网络用条件概率表达各个信息要素之间的相关关系,能在有限的,不完整的,不确定的信息条件下进行学习和推理。 3。贝叶斯网络能有效地进行多源信息表达与融合。贝叶斯网络可将故障诊断与维修决策相关的各种信息纳入网络结构中,按节点的方式统一进行处理,能有效地按信息的相关关系进行融合。 目前对于贝叶斯网络推理研究中提出了多种近似推理算法,主要分为两大类:基于仿真方法和基于搜索的方法。在故障诊断领域里就我们水电仿真而言,往往故障概率很小,所以一般采用搜索推理算法较适合。就一个实例而言,首先要分析使用那种算法模型: a.)如果该实例节点信度网络是简单的有向图结构,它的节点数目少的情况下,采用贝叶斯网络的精确推理,它包含多树传播算法,团树传播算法,图约减算法,针对实例事件进行选择恰当的算法; b.)如果是该实例所画出节点图形结构复杂且节点数目多,我们可采用近似推理算法去研究,具体实施起来最好能把复杂庞大的网络进行化简,然后在与精确推理相结合来考虑。 在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你可能会认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你可能会认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络(Bayesian Network)实质上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。 贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于

开源软件的复杂网络分析及建模

第4卷第3期 复杂系统与复杂性科学 Vol.4No.3 2007年9月 C OMP LEX SYSTE M S AND COM P LEX I TY SC I E NCE Sep.2007 文章编号:1672-3813(2007)03-0001-09 开源软件的复杂网络分析及建模 郑晓龙,曾大军,李慧倩,毛文吉,王飞跃,戴汝为 (中国科学院自动化研究所复杂系统与智能科学重点实验室,北京100080) 摘要:开源软件现在变得越来越复杂。把开源软件看作复杂网络并进行研究,有助 于更好地理解软件系统。同时,开源软件是一种较为复杂的人工系统,通过对它们 的研究也可以推动复杂网络理论的应用。以一种基于源代码包的L inux操作系 统———Gent oo L inux操作系统为研究对象,我们把该系统中的软件包抽象成节点, 软件包之间的依赖关系抽象成边,以此建立复杂网络,并对其进行了分析。发现已 有模型不能很好地描述与预测Gent oo网的演化过程,因此,提出了一种新的演化模型。在该模型中,网络现有节点连接新节点的概率不但与现有节点的度有关系,而且也受到现有节点“年龄”的影响。还通过计算机仿真实验把仿真数据与Gent oo真实数据进行了比较,结果显示,新模型更为适合Gent oo网。 关键词:复杂网络;Gent oo;聚集系数;度分布;模型 中图分类号:N94;TP393;TP31文献标识码:A Ana lyz i n g and M odeli n g O pen Source Software a s Co m plex Networks ZHENG Xiao2l ong,ZENG Da2jun,L I Hui2qian,MAO W en2ji,WANG Fei2yue,DA I Ru2wei (The Key Laborat ory of Comp lex Syste m s and I ntelligence Science,I nstitute of Aut omati on, Chinese Academy of Sciences,Beijing100080,China) Abstract:Soft w are syste m s including those based on open2s ource code are becom ing increasingly com2 p lex.Studying the m as comp lex net w orks can p r ovide quantifiable measures and useful insights fr om the point of vie w of s oft w are engineering.I n the mean while,as one of the most comp lex man2made artifacts, they p r ovide a fruitful app licati on domain of comp lex syste m s theory.I n this paper,we analyze one of the most popular L inux meta packages/distributi ons called the Gent oo syste m.I n our analysis,we model s oft2 ware packages as nodes and dependencies a mong the m as arcs.Our e mp irical study shows that the resul2 ting Gent oo net w ork can not be exp lained by existing random graph models.This motivates our work in devel op ing a ne w model in which ne w nodes are connected t o old nodes with p r obabilities that depend not only on the degrees of the old nodes but als o the“ages”of these nodes.Thr ough si m ulati on,we de mon2 strate that our model has better exp lanat ory power than the existing models. Key words:comp lex net w orks;Gent oo;cluster coefficient;degree distributi on;model 收稿日期:2007-08-23 基金项目:国家自然科学基金委基金(60621001,60573078);科技部973项目(2006CB705500,2004CB318103);中国科学院、国家外国专家局,创新团队国际合作伙伴计划(2F05N01) 作者简介:郑晓龙(1982-),男,安徽人,博士研究生,研究方向为复杂网络与数据挖掘。

贝叶斯公式公式在数学模型中的应用

学院本科毕业论文(设计) 题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (2) 第一章贝叶斯公式及全概率公式的推广概述........................................ 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ......................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................... 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

贝叶斯网络

摘要 常用的数据挖掘方法有很多,贝叶斯网络方法在数据挖掘中的应用是当前研究的热点问题,具有广阔的应用前景。数据挖掘的主要任务就是对数据进行分析处理,从而获得其中隐含的、实现未知的而又有用的知识。他的最终目的就是发现隐藏在数据内部的规律和数据之间的特征,从而服务于管理和决策。贝叶斯网络作为在上个世纪末提出的一种崭新的数据处理工具,在进行不确定性推理和知识表示等方面已经表现出来它的独到之处,特别是当它与统计方法结合使用时,显示出许多关于数据处理优势。 本文致力于贝叶斯网络在数据挖掘中的应用研究,首先介绍了贝叶斯网络相关理论,贝叶斯网络的学习是数据挖掘中非常重要的一个环节,本文比较详细的讨论了网络图结构问题,为利用贝叶斯网络解决实际问题,建立样本数据结构和依赖关系奠定了基础。其次介绍了数据挖掘的相关问题以及主流的数据挖掘算法,并分析了各类算法的优缺点。针对目前还没有一种完整的在数据挖掘中构建贝叶斯网络的算法步骤,本文探讨性的提出了一种启发式的在数据挖掘中利用样本数据构建贝叶斯网络的算法思想。最后进行了实验分析,利用本文提出的算法,建立了大学生考研模型和农户信用等级评定模型,进行了较为详细的实验,并分别与决策树方法和传统的信用评分方法进行了比较,实验结果表明文本提出的算法设计简单、方法实用、应用有效,与其他算法相比还有精度比较高的特点,同时也表现出了该算法在数据挖掘方面的优势,利于实际中的管理、分析、预测和决策等。 贝叶斯网络的相关理论 本章对贝叶斯网络的相关理论进行了系统的论述与分析,并用一个简单的疾病诊断模型对贝叶斯网络的定义以及网络构成进行了介绍。结合信息论的有关知识,讨论了贝叶斯网络中重要的条件独立研究,并学习和研究了贝叶斯网络在完备数据和不完备数据两种情况下的结构学习和参数学习方法。结构学习是利用训练样本集,尽可能的结合先验知识,确定贝叶斯网络的拓扑结构;参数学习是在给定的网络结构的情况下,确定贝叶斯网络中各变量的条件概率表。其中结构学习是贝叶斯网络学习的核心,有效的结构学习方法是构建最优贝叶斯网络结构的前提。 预备知识 贝叶斯网络是一种关于变量集合中概率性联系的图解模型,接近于概率和统计,它的理论依据是概率统计,并以图论的形式来表达和描述数据实例中的关联和因果关系。 条件概率:条件概率是概率论中一个重要而实用的概念。所考虑的是事件A已经发生的条件下事件B发生的概率。 定义:设A、B是两个事件,且P(A)>0,称: 为在事件A发生的条件下事件B发生的概率。 显然条件概率符合概率定义中的三个条件,即:

相关主题
文本预览
相关文档 最新文档