当前位置:文档之家› 参考教案-蔗糖酶的提取纯化与鉴定分析

参考教案-蔗糖酶的提取纯化与鉴定分析

参考教案-蔗糖酶的提取纯化与鉴定分析
参考教案-蔗糖酶的提取纯化与鉴定分析

参考教案:酵母蔗糖酶的提取纯化与鉴定

蔗糖酶(E.C.3.2.1.26)( —D—呋喃果糖苷果糖水解酶),能催化非还原性双糖(蔗糖)的1,2-糖苷键裂解,释放出等量的果糖和葡萄糖。不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。

由于果糖甜度高 ,约为蔗糖1.36~1.60倍 ,在工业上具有较高的经济价值。可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的

软心糖,还可为果葡糖浆的工业化生产提供新的方法。

蔗糖酶以两种形式存在于酵母细胞膜的外侧和内侧,在细胞膜外细胞壁中的称之为外蔗糖酶,其活力占蔗糖酶活力的大部分,是含有50% 糖成分的糖蛋白。在细胞膜内侧细胞质中的称之为内蔗糖酶,含有少量的糖。两种酶的蛋白质部分均为双亚基,二聚体,两种形式的酶的氨基酸组成不同,外酶每个亚基比内酶多两个氨基酸,Ser和Met,它们的分子量也不同,外酶约为27万(或22万,与酵母的来源有关),内酶约为13.5万。尽管这两种酶在组成上有较大的差别,但其底物专一性和动力学性质仍十分相似,因此,本实验未区分内酶与外酶,而且由于内酶含量很少,极难提取,本实验提取纯化的主要是外酶。

每摩尔蔗糖水解产生两摩尔还原糖,蔗糖的裂解速率可以通过NeLson法测定还原糖的产生数量来测定。一个酶活力单位规定为在标准分析条件下每分钟催化底物转化的数量。比活力单位为每毫克蛋白含有酶活力单位。

(本实验以酵母为原料)

一、教学目的

通过酵母菌扩大培养及蔗糖酶的提取纯化与鉴定使学生学会生物大分子(酶)制备方案设计和开展实践研究的方法,体验从复杂细胞混合物体系中提取纯化酶的基本原理、

过程和方法。

本实验为学生提供一个较全面的科学研究实践机会,整个实验过程学生独立完成,虽然操作难度较大,所需要的实间较长(64学时),但每一步单元操作的原理清晰,技术成熟,实验结果明显,能给学生较多的设计空间和动手机会,有利于培养学生的学习兴趣和从事科学研究的能力。

二、教学内容

实验设计:包括讲课,答疑,文献综述6学时

实验一酵母细胞破碎与蔗糖酶提取条件的选择8学时

实验二蔗糖酶的盐析曲线的制作与沉淀分离8学时

实验三蔗糖酶的有机溶剂沉淀曲线的制作与沉淀分离8学时

实验四蔗糖酶的DEAE-纤维素柱层析纯化8学时

实验五蔗糖酶的Sephadex G-150柱层析纯化8学时

实验六蔗糖酶溶液的冷冻干燥2学时

实验七蔗糖酶的纯度分析:聚丙烯酰胺凝胶电泳8学时

实验八蔗糖酶的理化性质研究8学时

三、实验设计与研究

1 器材与方法

1.1主要单元操作技术与设备

1.1.2单元操作技术

细胞组织破碎术、离心分离技术、双水相萃取技术、离子交换层析技术、凝胶层析技术、超滤技术、冷冻干燥技术、分光光度技术、电泳技术等生物分离与检测技术;

1.1.2主要设备

烘箱、恒温摇床、真空干燥箱、分析天平、电子台秤、超声波细胞破碎仪、粉碎机、超滤器(500ml~5000ml)、冷冻离心机(8000-10000 r/min,50ml×6;250ml×6)、普通离心机(5000 r/min,200ml×4)、台式离心机(16000 r/min,5ml×6)冷冻干燥机、-80度冰箱、制冰机、酸度计、电热恒温水浴锅、匀浆机、蛋白质色谱分离系统(核酸蛋白检测仪、部分收集器、蠕动泵、梯度混合器、φ10-25mm,h300-700mm层析柱)电泳仪及垂直板电泳槽、脱色摇床、紫外-可见光分光光度计、荧光分光光度计、高效液相色谱、气相色谱、凝胶成像系统、250ml和500ml旋转蒸发仪、微量凯氏定氮仪、常量凯氏定氮仪、500-1000W电炉、超声波清洗器、振动混合器、移夜枪(200-5000ul)、层析缸、电吹风等。

1. 2 实验材料与试剂

1.2.1酵母菌的扩大培养:采用采用实验室经过筛选诱变获得的酵母菌,

增殖培养基:葡萄糖5.0g/L、蛋白胨0.5g/L、酵母膏0.5g/L、七水硫酸镁0.1g/L 和磷酸二氢钾0.1g/L,调节pH 为5.0。

发酵培养基:葡萄糖12%~15%、蛋白胨0.5g/L、酵母膏0.5g/L,七水硫酸镁

0.1g/L、磷酸二氢钾0.1g/L 和硫酸铵0.5g/L,调节pH为5.0。

1.2.2实验试剂

甲苯(使用前预冷到0℃以下);95%乙醇;DEAE-纤维素;Sephadex G-150;0.05mol/L Tris-HCl缓冲液,pH7.3 ;十二烷基硫酸钠(SDS);其余试剂均为国产分析纯。

1. 2 分析方法

1.2.1蛋白质浓度的测定:

采用Folin法(试剂方法参考生物化学原理和方法)。

1.2.2还原糖的测定:

采用DNS法(试剂方法参考生物化学原理和方法)。

1.2.3酶活性测定(参考:徐桦,陆珊华,孙爱民.酵母蔗糖酶Km值的测定[J ].南京医科大学学报,1999,17(4):329-330)

取适当稀释的酶液0.5mL,加入0.3 mLpH4.6、0.1mol/L的NaAc-HAc 缓冲液,0.2mL 0.1mol/L的蔗糖,37℃准确反应15min,后加0.125mL1mol/L的NaOH中止反应。用DNS法在540nm波长下测定形成的还原糖量。在测定条件下以每分钟内能水解蔗糖成还原糖,经DNS测定光吸收读数为1 mA 所需的酶量定义为1个酶活力单位(U)。

1.2.4 蔗糖酶的纯度分析:

采用聚丙烯酰胺凝胶电泳(试剂方法参考生物化学原理和方法)

2酵母蔗糖酶的提取纯化工艺

酵母蔗糖酶的提取纯化工艺流程图

2.1粗酶制备(蔗糖酶的提取)

目前关于酵母中蔗糖酶提取纯化方面的研究较多,常用方法有甲苯研磨(自溶)法、冻融研磨法、SDS 抽提法等。其中甲苯自溶法耗时长,效率低,目前很少使用。

2.1.1甲苯自溶法

称取酵母泥50g,加入20mL双蒸水使其溶解,加入5g NaAc和10m甲苯,摇床振荡

10min ,37℃恒温水浴48h。再加入10mL 4 mol/L的HAc和15mL双蒸水,调pH至4.5,于4℃、3000 r/min 离心30 min ,离心后将中层清液移出即为粗制酶液,4℃保存。

2.1.2甲苯研磨法

①取50酵母泥(准确称量),加10g石英砂,加蒸馏水20ml,研磨5min,,加20mL 甲苯,继续研磨10分钟左右,共3次,使其呈糊状。

②将研磨好的内容物转移到50mL离心管中,平衡后以10000rpm离心15分钟。

③用吸管小心将离心后的中间水层转移到干净的离心管中,勿带上层甲苯相,然后以10,000rpm离心15分钟。

④将3步离心后的上清夜取出,倒入量筒中记录其体积,留下1.5mL作为第一组分粗抽提液以备酶活力测定和蛋白浓度测定。

2.1.3冻融研磨法

称取酵母泥50g ,加入20mL双蒸水 ,置于预先冷却的研钵中,研磨25min ,冰箱中冷冻约15min(以研磨内液面上刚出现冻结为宜),取出再研磨25min ,重复以上步骤两次。后置于冰箱中冷冻3h取出,温浴融化,用1 mol/L的HAc调pH至5.0,40℃水浴30min,冷却后4℃、10000r/min 离心15min,取上清液即为粗制酶液,4℃保存。

2.1.4 SDS抽提法称取酵母泥50g,加入50mL0.3mmol/L的SDS溶解, 40℃水浴10 h后取出 ,4℃、10000 r/ min离心15 min ,取上清液即为粗制酶液,4℃保存。

2.1.5超声波细胞破碎

频率超过15~20kHz的超声波,在较高的输入功率下(100~250W)可破碎细胞。其工作原理是:超声波细胞破碎机由超声波发生器和换能器两个部分组成。超声波发生器(电源),是将220V、50Hz的单相电通过变频器件变为20~25Hz、约600V的交变电能,并以适当的阻抗与功率匹配来推动换能器工作,做纵向机械振动,振动波通过浸入在样品中

的钛合金变幅杆对破碎的各类细胞产生空化效应,从而达到破碎细胞的目的。

细胞破碎过程中,用于分析细胞破碎率的检测技术对于细胞破碎效果的评估、破碎

工艺的选择、工艺放大和工艺条件优化等起着非常重要的作用。最常用的检测细胞破碎

效果的方法是通过显微镜直接观察,如用革兰氏染色法,也可以通过测定核酸与蛋白质

的含量判断细胞破碎率。

正交试验法是研究与处理多因素试验的—种实验设计方法,它可以利用规格化的正交表通过整体设计、综合比较和统计分析,能在很多的试验条件中选出代表性强的少数条件,并能通过较少次数的试验找到较好的实验条件,即最优或较优的方案。在生产实践和科学研究中对于因素多、周期长、有误差的—类试验问题,正交试验法的效果尤其显著。关于正交实验法的书籍目前比版很多,这里不再叙述。本实验应用正交试验法选择酵母细胞超声破碎的最佳实验条件。

本实验要求考察的有三个因素即细胞浓度、超声能量和破碎时间,每个因素有四个位级(或称水平)。现综合成一张因素位级表如下:

如果每个因素各个位级的所有组合都做试验,要做43=64次。为了使试验次数减少而又能得到较好的结果,需要选用合适的正交表。

现有正交表L16(45),能安排5个4位级的因素,只需做16次试验。本实验中有3个4位级的因素,所以可以选用此表来安排试验。如果不考虑因素之间的交互作用,进行表头设计时,则把因素A、B、C分别放入正交表L16(45)的第5、2和1列上。

2.2沉淀分离

2.2.1 盐析沉淀

盐析曲线的制作:

a.取7支干净试管编号1~7,分别加入粗酶液5 ml;

b.分别向1~5号试管中加入饱和硫酸铵1 ml、2 ml、3 ml、4 ml、5 ml,然后再分别加入蒸馏水4 ml、3 ml、2 ml 、1 ml、0 ml;分别向6号、7号试管中加先入固体硫酸铵0.66g和1.37g,再加饱和硫酸铵5 ml,充分摇晃溶解完全后,每管各取5ml×2混匀的溶液装入7ml×2离心管中,对应编号1、1/~7、7/,静置1h以上,对称放入离心机中,10000 r/min ,离心10min,弃去上清液,收集沉淀。

c.向收集的沉淀加入5 ml 0.1mol/L(pH7.0)缓冲溶液溶解沉淀物;

d.采用Folin法测定各管中蛋白质的浓度,采用DNS测定还原糖。

e.以硫酸铵饱和度为横坐标,蛋白质浓度和酶活力的含量为纵坐标作图,得到蛋白质盐析曲线和酶活力盐析曲线。

盐析制备蔗糖酶

①根据盐析曲线选择硫酸铵饱和度(30~40%饱和度)去除杂质,选择硫酸铵饱和度(约60%饱和度)沉淀酶蛋白。并计算每升溶液达到30~40%饱和度和60%饱和度所需要的固体硫酸铵的量(g),根据酶蛋白粗提液的体积计算30~40%饱和度和60%饱和度时实际所需要的固体硫酸铵的量(g)。

②在酶蛋白粗提液中加入经研细的(NH

4)

2

SO

4

粉末 ,使其达到30~40%饱和度,充分溶

解后,4℃,10000r/min ,离心20 min ,除去沉淀。收集上清夜。

③继续向上清液中加入(NH

4)

2

SO

4

粉末,使其达到 60 %饱和度 ,充分溶解后,4℃,

10000 r/min ,离心 20 min ,弃去上清液,收集沉淀。

④-I将沉淀溶于少量缓冲溶液中 ,充分混均 ,4 ℃透析约12 h后,进一步纯化。(取5mL用于蛋白含量测定和纯度分析)

2.2.2乙醇沉淀

乙醇沉淀曲线的制备:方法同盐析曲线的制作

乙醇沉淀:在细胞破碎的粗制酶液中加入乙醇使其质量分数达 30%, 4℃放置过

夜,4℃,10000 r/ min 离心20min ,取上清液 ,再追加乙醇使其终质量分数达 50 %。4 ℃放置 1 h ,4℃、10000r/ min 离心 20 min ,弃上清液 ,沉淀用蒸水溶解,4℃保存,必要时透析。(pH值为7.0的0.05mol/L Tris-HCl缓冲液)。

2.3层析分离

2.3.1 DEAE-纤维素柱层析

DEAE-纤维素( DE 52) 经常规处理后,装柱( 100mm×10mm) , 用起始缓冲液

0.05MTris-HCl pH7.3缓冲液平衡, 调节流速为每2min 1mL,按照3-5%的床体积加样, 先用0.05MTris-HCl缓冲液洗脱,然后盐度梯度洗脱,由0.05MTris-HClpH7.3 缓冲液到

0.1MNaCl的0.05MTr is-HClpH7.3 缓冲液, 每管收集3mL, 约120min 流动相,在280nm处进行紫外检测,获得洗脱曲线,同时测定峰管的酶活力,将最高酶活力的若干管酶液集中,分装后低温保存,用于性质测定。留2 mL酶液测酶活和蛋白含量。

2.3.2 Sephadex G-150柱层析

选用φ15×600~800mm Sephadex G-150层析柱,加样量为 3~5mL (约含蛋白100mg)用 20mmol/L (pH为7.0 )的缓冲液进行洗脱,洗脱速度可控制为 0.5~1.0mL/min,每管收集3ml,约25~30管,各管可用 A

的紫外线进行检测,获得洗脱曲线,同时测定峰

280

管酶活力。将最高酶活力的若干管酶液集中,分装后低温保存,用于性质测定。留2 mL酶液测酶活和蛋白含量。

2.4冷冻干燥

将经过DEAE-纤维素柱层析或Q Sepharose 柱层析或Sephadex G-150柱层析收集的酶溶液放入冻存管中,至于-80℃冰箱中预冻4h以上,再置于冷冻干燥机中冷冻干燥,直至成冻干粉。

3.结果与讨论

3.1细胞产量:湿细胞、干细胞

3.2酶活力、蛋白质浓度的测定

3.3盐析曲线、乙醇沉淀曲线、层析洗脱曲线

3.4酶提取纯化进程结果汇总表

3.5酶纯度分析:聚丙烯酰胺凝胶电泳

3.6理化性质分析

参考文献:

[1] 张俊, 李云平, 王保玉. 蔗糖酶催化蔗糖水解反应[j]. 洛阳师范学院学报.2011,30(2):54-55

[2]梁敏,李楠楠,邹东恢. 蔗糖酶的提取工艺及性质研究[j]. 湖北农业科学.2010,49(9):2218-2220

[3] 赵蕾,任明.酵母蔗糖酶的纯化及其化学修饰[j].食品生物技术学报.2010,29(6):901-904

[4]邓林.酵母蔗糖酶酶学性质的研究[j].四川食品与发酵.2008. 44(2):41-42

[5]李楠,庄苏星,丁益. 酵母蔗糖酶的提取方法[j].食品与生物技术学报. 2007,26( 4):83-87

[6]孙国志,冯惠勇,徐亲民. 蔗糖酶提取方法的研究[j].食品工业科技.2002,23(4):54-55

[7]许培雅,邱乐泉. 离子交换层析纯化蔗糖酶实验方法改进研究[j].实验室研究与探索 .2002,21(3):82-84

[8]徐桦,陆珊华,孙爱民. 酵母蔗糖酶Km 值的测定[j]. 南京医科大学学报. 1999,19(4):329-330

[9]陈冰,林轩,梁诗莹等. 蔗糖酶水解蔗糖的研究[j]. 湛江师范学院学报(自然科学版).1997,18(2):57-60

[10]范荫恒,徐洋,吕莹.分光光度法测蔗糖酶米氏常数数据处理方法[j]. 牡丹江师范学院学报(自然科学版) 2007,4:24-25

啤酒酵母的蔗糖酶的提取提纯及测定

浙江工业大学药学院生物化学实验论文 2013 年12 月13日

啤酒酵母蔗糖酶的提取、提纯及测定研究论文 摘要:为了了解蔗糖酶的性质,我们用啤酒酵母做了一系列的实验,它们主要是以下内容:(1),蔗糖酶的提取与初提纯:a、先将酵母自溶,再两次离心得初提液A;b、接着调PH并加热、离心得热提取液B;c、用乙醇沉淀离心得提取液C。(2),蔗糖酶的纯化—Q Sepharose 柱沉析法:先装柱,再安装盐度梯度发生器与柱的平衡,接着加样并洗脱,最后处理结果与交换剂的再生并得到提取液D。(3),蔗糖酶活力的测定:第一人做葡萄糖标曲,第二人测定各提取液反应后的值,得各提取液的酶活力与回收率。(4),蔗糖酶蛋白质含量的测定及活力OD 540 计算:遇上一个实验相反,第二人做标曲,第一个人测与各提取液相对应的OD 660值,再对比得到各提取液的总蛋白、比活力、蛋白回收率、酶活回收率与纯化倍数。(5),微量凯氏定氮法(以B为样品):先将样品B消化得消化液,洗涤定氮仪,再将消化液蒸馏,用HCl滴定馏出液,计算蛋白质含量。(6),SDS-PAGE测定蛋白质的相对分子质量:首先制备分离胶并使之凝固,再制备浓缩胶使之在分离胶之上凝固,加处理后的样品和标准液,接着电泳,最后染色和脱色,确定样品相对分子质量。 关键词:蔗糖酶;蛋白质;提取;纯化;酶活力测定;Folin-酚试剂;微量凯式定氮;SDS-聚丙烯胺凝胶;标曲;电泳; 正文: 文献综述 蔗糖酶(Sucrase,EC 3.2.1.26)又称转化酶(Invertase),可作用于β21,2糖苷键,将蔗糖水解为D2葡萄糖和D2果糖,广泛存在于动植物和微生物中,主要从酵母中得到。蔗糖酶的最适温度为45℃-50℃,最适ph为4.0-4.5. 实验原理、试剂与器材、操作方法、结果与分析、注意事项、认识与体会 1 蔗糖酶的提取及初步提纯 1.1实验原理 酵母中含有蔗糖酶,而蔗糖酶属于胞内酶,所以常将细胞壁破碎后进行提取。酶的生产方法有生物提取法、微生物发酵法及化学合成法,细胞破碎又有化学裂解法、低渗溶液法等,本法属于生物提取法、菌体自溶的方法。经破碎提取的蔗糖酶液再经热提取、乙醇沉淀提取,使蔗糖酶得到初步的提纯。 1.2 试剂与器材 1.2.1试剂

环境系统分析教案word文档良心出品

第一章环境系统分析概论 一、系统及其特征系统是由两个或两个以上相互独立又相互制约的、执行特定功能的元素组成的有机整体。系统的元素又称为子系统,每一个系统又是—个比它更大的系统的子系统。 任何一个系统都具有整体性、相关性、目的性、阶层性和环境适应性的特 征。 二、系统的结构化系统结构化旨在研究系统内部各个子系统之间的分布规律和分布秩序,为系统模型化奠定基础。结构模型解析法是研究系统结构化的有效工具。 结构模型解析法是系统结构化的常用方法。结构模型解析法从一堆杂乱的元素人手,通过构建有向连接图、相邻矩阵、可达性矩阵以及对矩阵的区域分解和级间分解,确定各子系统在系统中的位置,建立系统的递阶结构模型。 、系统分析方法系统分析是对研究对象进行有目的、有步骤的探索和研究过程,它运用科 学的方法和工具,确定一个系统所应具备的功能和相应的环境条件,以确定实现系统目标的最佳方案。 系统分析的基本过程是对系统的分解和综合,通常可以分为下述六个阶段:明确问题的范围和性质、设立目标、收集资料、建立模型、制定评价标准和进行综合分析。 系统分析的基本内容是系统的模型化、最优化和决策分析。四、环境系统与环境系统分析 在研究人与环境这个矛盾统一体时,把由两个或两个以上的和环境保护、污染与控制有关的要素组成的有机整体称为环境系统。 环境系统分析的两大任务是:研究环境系统内部各组成部分之间的对立统一关系,寻求最佳的污染防治体系;研究环境质量和社会经济发展的对立统一关系,寻求经济与环境协调发展的途径。应用系统分析方法解决上述环境问题的显著特点是通过模型化和最优化来协调环境系统中各要素之间的关系,实现经济效益、环境效益和社会效益的统 [ 习题及题解] 1.什么是系统?一个系统应具备哪些特征? 2.系统的各种特征在模型化和最优化过程中各起什么作用3.简述系统分析的研究对象与研究内容。4.简述系统分析的基本原理和方法。5.系统结构化的目的和意义何在?

酵母蔗糖酶的提取工艺

酵母蔗糖酶的提取工艺 摘要 蔗糖酶是一种水解酶, 广泛存在于动物、植物、微生物等各种生物体内。它可以不可逆的催化蔗糖水解为D-葡萄糖和D-果糖,为微生物的生长提供碳源和能源。 采用甲苯自溶法、冻融法、SDS抽提法3种方法从酵母中提取蔗糖酶[1],冻融法和SDS 抽提法的提取效率远高于传统的甲苯自溶法。其中冻融法的效率最高(纯化倍数比活力与总活力),加之其操作简便,更适合于酵母蔗糖酶大规模的制备提取。 比较了乙醇分级沉淀、硫酸铵分级沉淀对于冻融法得到的粗提物的沉淀效果,结果表明:50%(w/w)乙醇分级沉淀效果较好(比活力与总活力),乙醇分级沉淀所得蔗糖酶经DEAE-Sepharose 离子交换层析纯化后,制得高纯度的酵母蔗糖酶(比活力与总活力)。纯化倍数为16.14倍,比活性为947.805U/mg,回收率为51.6%。 蔗糖酶的酶促动力学性质表明,蔗糖酶的最适PH值为4.5,最适温度为50℃,酶的特征米氏常数Km值为13.8mmol/L,最大反应速度Vmax为5.98ug/min。 关键词:酵母;蔗糖酶;提取;纯化 Study on Purification of Invertase from Yeast Abstract Sucrase is widespread in prokaryotes and eukaryotes .Sucrase catalyzes the irreversible hydrolysis of sucrose into glucose and fructose.the mainfroms of carbon and energy supplies in microorganism growth and development. This paper used three methods to extract invertase from yeast,which included in this manuscript, three different extraction method breaking cells by adding methylbenzene,frost grinding,and adding SDS for extracting invertase from yeast were investigated.Then the purified invertase was obtained by precipitatation with 50% ethyl alcohol、sequential ammonium sulpate precipitation and DEAE-Sepharose lon-exchange chromatography.The purified sucrase was characterized by SDS-PAGE.The results showed all three methods had both advantages and disadvantages.The invertase extracted by adding SDS and frost grinding had much more total activity than that of extracted by adding methylbenzene.A highest total invertase activity was found in the forst grinding,and it was a convent and economical method for commercial production of invertase from yeast. The results of our study were followed: 1、Purification of invertase from yeast The specific activity was 947.805U/mg,purification fold was 32.28.The activity recovery of sucrase was 51.6%. 2、Properties of sucrase The kinetic characters of the enzyme have been studied.The optimum PH and optimum temperature for the enzyme are PH4.5 and 50℃.Km is 21mmol/Land Vmax is 6.57ug/min. Key words : yeast;invertase;extraction;purification 第一部分文献综述

第四章 酶的提取与分离纯化

第四章酶的提取与分离纯化 1、细胞破碎的目的、方法。 ?大多数酶都存在于细胞内部,为了获得细胞内的酶,首先要收集细胞并进行细胞破碎,使细胞的外层结构破坏,然后进行酶的提取与分离纯化。 ?机械法 ?物理法 ?化学法 ?酶促破碎法(酶解) 2 选择细胞破碎方法的依据。 ?(1)细胞的处理量:大规模用机械法,小规模用非机械法。 ?(2)细胞壁的强度与结构 ?(3)目标产物对破碎条件的影响。机械法考虑剪切力,酶法考虑对目标产物是否具有降解作用。 ?(4)破碎程度:高压匀浆法,细胞碎片细小,固液分离困难。 ?(5)提取分离的难易 3. 酶抽提的目标及方法。 提取目标: ? a. 将目的酶最大限度地溶解出来。 ? b. 保持生物活性。 提取原则 ? a. 相似相溶。 ? b. 远离等电点的pH值,溶解度增加。 4.三种离心方法(差速离心、密度梯度离心和等密度梯度离心)的特点。 (1)差速离心特点:用于分离大小和密度差异较大的颗粒。 (2)密度梯度离心特点:: ?区带内的液相介质密度小于样品物质 ?颗粒的密度。 ?适宜分离密度相近而大小不同的固相 ?物质。 (3)等密度梯度离心特点: ?介质的密度梯度范围包括所有待分离物质的密度。 ?适于分离沉降系数相近,但密度不同的物质。 5. 酶的分离纯化过程中常用沉淀法的种类及原理。 种类: ⑴中性盐沉淀(盐析法) 基本原理(盐溶和盐析) 向蛋白质或酶的水溶液中加入中性盐,可产生两种现象: 1) 盐溶(salting in): 低浓度的中性盐增加蛋白质的溶解度。 2) 盐析(salting out): 高浓度的中性盐降低蛋白质的溶解度。 ⑵有机溶剂沉淀 利用酶等蛋白质在有机溶剂中的溶解度不同而使之分离的方法。

【免费下载】生物化学实验示范报告 蔗糖酶的提取与纯化正确

生物化学实验示范报告: 实验名称:蔗糖酶的分离提取与纯化 实验目的: 1.掌握蔗糖酶分离提纯的原理与实验操作方法; 2.掌握有机溶剂分级纯化蔗糖酶的原理和操作方法,了解蔗糖酶的离子交换层析法纯化原理; 3.掌握酶活、酶比活等基本概念及测定原理、计算和操作方法; 4.巩固并熟练掌握Folin法测定牛血清蛋白和3、5 -二硝基水杨酸法测定葡萄糖标准曲线制作方法,并能通过回归方程测定还原糖及蛋白质的含量。 实验原理: 蔗糖酶分离提纯原理:酵母中的蔗糖酶含量很丰富,实验以安琪酵母粉为原料,首先采用自溶法破碎细胞壁、再用乙醇分级和DEAE—纤维素柱层析两步分离提纯,制备纯度较高的蔗糖酶制剂。酶分离 提纯的原理与蛋白质的相同。但酶是有催化活性的蛋白质,在分离提纯过程中必须注意:防止酶变性失活;随时测定酶的比活力,并跟踪酶的去向、衡量酶提纯的程度及得率。 有机溶剂分级纯化蔗糖酶原理:利用不同蛋白质在不同浓度的有机溶剂—乙醇中溶解度的差异将蔗糖酶蛋白与其它蛋白质杂质进行有机溶剂分级沉淀,而使提取的蔗糖酶得以纯化(32%的乙醇饱和度沉 淀分离杂蛋白,47.5%的乙醇饱和度沉淀分离酶蛋白)。操作必须在低温下进行且避免有机溶剂局部过浓;分离后应立刻除去有机溶剂并用水或缓冲溶液溶解沉淀的酶蛋白(复溶),确保酶的活性;pH多选在酶 蛋白的等电点附近;有机溶剂在中性盐存在时能增加蛋白质的溶解度减少变性,提高分离效果。 蔗糖酶的离子交换层析法纯化原理:本实验采用DEAE-纤维素(DEAE-C11)微粒状的、弱碱性的阴离子纤维素为柱料,进行蔗糖酶的进一步纯化。它具有分辨率高、化学性质稳定、有开放性的长链结构、有较大的表面积、对蛋白质的吸附容量大等优点;纤维素上离子基团的数量不多,排列疏散,对蛋白质 的吸附不是太牢固,用缓和的洗脱条件即可达到分离的目的,不致引起蛋白质的变性。 蔗糖酶活力与比活的测定:在蔗糖酶的纯化过程中,通过3、5-二硝基水杨酸法测定蔗糖酶催化蔗糖生成还原糖的量,测定酶活力大小,跟踪酶的活力。在本实验条件下,每3min释放lmg还原糖所需的酶量定义为一个活力单位;通过Folin法测定酶蛋白的含量,计算蔗糖酶的比活。单位质量的酶蛋白中所含酶的活力称为酶的比活。 主要实验器材: 1. 试管、血糖管; 2. 秒表; 3. 冰盐浴; 4. 恒温水浴; 5.离心机; 6. 721- 型分光光度计; 7. 柱层析装置; 8. 梯度洗脱装置; 9. 部分收集器;10. 电磁搅拌器;11. 冰箱;12. DEAE—纤维素。

《系统的分析》教学设计

《系统的分析》教学设计 单击此处下载系统的分析ppt 课题 3.2系统的分析 课时 1 教学 方法 讲授、任务驱动 教学目标 知识目标:初步掌握系统分析的基本方法。 技能目标:理解系统优化的意义,能结合实例分析影响系统优化的因素。 情感目标:树立系统分析问题的观念,培养系统分析的观点。 教学重点 解决对策 理解系统优化的意义,能结合实例分析影响系统优化的因素通过分析案例,充分让学生参与讨论,精讲精练来解决 教学难点 解决对策 理解系统优化的意义,能结合实例分析影响系统优化的因素

通过分析案例,充分让学生参与讨论,精讲精练来解决 教学过程 实施内容 设计说明 时间 引入 系统的基本特性有那些? 整体性、相关性、目的性、动态性、环境适应性 复习所学内容 2分钟 新课教学 一、系统分析的含义 过渡:在日常生活中,每个人都会面临选择、面临决策,那么决策方法有那些呢? 1.决策的方法 决策方法有经验决策和科学决策; 系统分析是一种科学决策的方法。 通过公交路线的设置说明两种决策方法的优劣,进一步说明科学决策对系统分析的重要性。 2.系统分析的含义 为了发挥系统的功能,实现系统的目标,运用科学的方法对系统加以周详的考察、分析、比较、试验,并在此基础

上拟定一套有效处理步骤和程序,或对原来的系统提出改进方案的过程,就是系统分析。1.车闸的橡皮松了 刹车不灵 案例分析:汉字激光照排系统系统 讲解本案例主要是让学生明白到汉字激光照排对我国印刷、出版、传媒等众多部门的重要性,同时也让学生知道本项技术是我国的技术水平已经达到国际先进水平。 二、系统分析的一般步骤 系统分析的出发点为了发挥系统的整体功能,目的是寻求解决问题的最佳决策,而生产和生活中的一些问题,往往存在着许多相互关联和一些不确定的因素,所以最佳决策只是在若干方案中寻求的相对令人满意的方案。 系统分析的一般步骤可以描述为: 明确问题,设立目标 收集资料,制定方案 分析计算,评价比较 检验核实,作出决策 案例分析:田忌赛马 通过案例,给学生亲自感受系统分析过程的机会。 三、系统分析的主要原则 1.整体性原则

酵母蔗糖酶提取方法的研究

酵母蔗糖酶提取方法的研究 生命科学学院 10级生物科学类李倩 10197022 指导老师:陶芳 摘要:采用自溶法从酵母中提取蔗糖酶,通过抽提、30﹪乙醇分级、50﹪乙醇分级和透析,同时测定各步的蛋白质浓度和酶活,并据此计算比活、回收率和纯化倍数。 关键词:蔗糖酶提取自溶法 Research on the Extraction Method of Yeast Sucrose School of Life Sciences,Biological Sciences of grade 2, li Qian, 10197022 Abstract:The autolysis extract from yeast invertase,through extraction,30 ethanol fractionation and dialysis,simultaneous determination of each step of concertration of protein and enzyme avtivity,and then calculate the radio of live,recovery and purification. Key words:yeast;extraction;autolysis method 前言:蔗糖酶(Sucrase,EC 3.2.1.26)又称转化酶(Invertase),1928年Dumas等首先指出酵母菌发酵蔗糖时必须有这种酶的存在,蔗糖在蔗糖酶的作用下,水解为葡萄糖和果糖,还原力增加,又由于生成果糖,甜度增加。 按水解蔗糖的方式,蔗糖酶可分为从果糖末端切开蔗糖的β-D-呋喃果糖苷酶(β-D-frutofuranosidases,EC 3.2.1.26)和从葡萄糖末端切开蔗糖的α-D-葡萄糖苷酶(α-D-glucosidases,EC 3.2.1.20)。前者存在于酵母中,后者存在于霉菌中。工业上多从酵

高二下册《系统的分析》教案分析

高二下册《系统的分析》教案分析 本资料为woRD文档,请点击下载地址下载全文下载地址第二课时系统的分析 一、教学目标 .知识与技能目标 能结合生产生活中的实例,理解系统优化的意义,并能结合实例分析影响系统优化的因素。 2.过程与方法目标 能运用系统分析的基本方法对生活、学习、工作中遇到的问题进行科学合理的分析,并提出优化的方案。 3.情感态度和价值观目标 树立系统分析问题的观念,培养系统分析的观点。 增强学生面对技术世界的信心以及个人、社会、环境的责任心。 二、教学重点:系统优化的方法和一般步骤。 三、教学难点:系统优化的方法和一般步骤。 四、教学方法:讲授法、案例分析教学法、探究式教学法、小组学习法。 五、设计思想 .教材分析 系统优化是系统分析的深入,也是系统的结构和系统分析的综合,又是系统设计的基础,更是系统设计过程中的重

要环节,它是是本书的重要内容之一。本内容是让学生“理解系统优化的意义,能结合实例分析影响系统优化的因素”。 2.设计理念 本内容是要求学生通过“观察、分析、比较、核实”等方法做出正确的决策,从而理解系统分析的含义,学会系统分析的方法,体会系统分析在生活中的作用,形成初步的系统观。 3.教学策略设计 (1)通过搭建模具引导学生自己进行研究探讨性学习。 (2)通过案例分析,使学生明白系统分析的一般步骤及其原则性。 (3)运用马上行动让学生做出决策,学以致用。 4.学情分析 进入系统的内容,学生的兴趣明显比前期活跃,显然系统分析的深入符合高二学生的智力发展需求。但是,学生在对某个系统的分析容易陷入原有的逻辑思维,而不能很好地应用系统的思想和方法分析和解决问题,不能很好理解系统优化的约束条件和影响系统优化的因素。因此,系统优化的约束条件和影响系统优化的因素成了本节教学内容上的难点。 六、教学准备:旋转木马的搭建模具、多媒体 七、教学过程

酶的分离纯化方法介绍

酶的分离纯化方法介绍 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。 关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀 生物细胞产生的酶有两类: 一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到; 另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。 因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。 由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。 酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍: 一、预处理及固液分离技术 1.细胞破碎(cell disruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。

蔗糖酶的提取分离

蔗糖酶的发酵生产及酶学性质研究 摘要:本实验酵母中蔗糖酶进行分离纯化并对酶学性质进行了初步的研究。结果表明:酵母蔗糖酶的最适pH为5.0, 最适温度为45℃。 关键词:蔗糖酶、酶学性质 1前言 蔗糖酶(Sucrase, EC3.2.1.26) 又称转化酶(Invertase)。可作用于β-1,2糖苷键,将蔗糖水解为D-葡萄糖和D-果糖。由于果糖甜度高,可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的软心糖,还可为果葡糖浆的工业化生产提供新的方法。 本实验对酶的动力学性质分析, 是酶学研究的重要方面。本研究通过一系列实验对酵母蔗糖酶的动力学性质如最适温度、最适pH、酶的固定化等进行了初步研究,更好的了解了没得性质。 2材料与方法 2.1 材料与设备 2.1.1 实验材料 酵母、活性干酵母、壳聚糖 2.1.2 试剂及配制方法 葡萄糖、蔗糖、豆芽汁浸汁、Na 2HPO 4 、KH 2 PO 4 、MgSO 4 、NaCl、NaOH、Na 2 CO 3 、盐 酸、氨水、琼脂、酒精均为国产分析纯。 95%乙醇溶液、DEAE-Sepharose Fast Flow、1 mol/L醋酸溶液、0.05 mol/L Tris-HCl缓冲液(pH值7.3)0.05 mol/L Tris-HCl缓冲液(内含0.5 mol/L NaCl溶液,pH值7.3) 葡萄糖标准液配制(1mg/ml):预先将分析纯葡萄糖置80℃烘箱内约12小时。准确称取500mg葡萄糖于烧杯中,用蒸馏水溶解后,移至500ml容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。 1% 3,5-二硝基水杨酸(DNS)试剂:酒石酸钾钠100 g溶于400 mL蒸馏水,加热中依次加入NaOH 5 g,3,5-二硝基水杨酸5 g,苯酚1 g,亚硫酸钠0.25 g,搅拌至溶。冷却后定容至500 mL,储于棕色瓶室温保存。 10%蔗糖溶液:10g蔗糖溶解于蒸馏水中,定容至100ml 0.1 mol/L pH 7.8 Tris-HCl缓冲液

蔗糖酶的分离提纯讲解

蔗糖酶的分离提纯 【实验目的】 1.了解蔗糖酶分离提纯的方法。 2.掌握离心技术、电泳技术、层析技术、膜分离技术和分光光度法。 【实验原理】 蔗糖酶[Ec 3.2.1.26]习惯命名β--D--Fructofuranosidase 系统命名:β--D —Fructofuranosideffructonydrolase 。 蔗糖酶是一种水解酶,能使蔗糖水解为果糖和葡萄糖。它所催化的反应是: H OH OH H 蔗糖 + H OH OH H 葡萄糖 果糖 蔗糖酶的分布相当广,在微生物、植物及动物中都有它的存在。在微生物中,酵母中的含量很丰富。在研究中用的最多的是面包酵母和啤酒酵母。 研究表明采用菌体自溶法破碎酵母细胞,采用乙醇分级和DEAE--纤维素柱层析两步分离提纯步骤,就可制备纯度较高的蔗糖酶制剂,而且收率也较好。从酵母中制备蔗糖酶,材料来源十分方便,而且以自己提纯的酶制剂进行蔗糖酶的性质、动力学研究也十分方便。 【实验材料、仪器和试剂】 1.实验材料和试剂 (1)0.2%葡萄糖标准液;(2)3,5-二硝基水杨酸试剂;(3)新鲜啤酒酵母; (4)甲苯;(5)乙酸钠;(6)稀乙酸溶液;(7)95%乙醇;(8)DEAE--纤维素;(9)0.5mol /L NaOH ;(10)0.5mol /L HCl ;(11)0.005mol /L ,pH6.0的磷酸钠缓冲液;(12)含O.15mol /L NaCl 的O.005mol /L ,pH6.0的磷酸钠缓冲液; CH 2OH H OH H H OH CH 20H

(13)5%蔗糖;(14)测定蛋白质浓度试剂;(15)聚丙烯酰胺凝胶电泳试剂2.仪器 (1)恒温水浴;(2)烧杯、量筒、移液管、容量瓶、玻棒;(3)冰盐浴; (4)离心机;(5)721型分光光度计;(6)柱层析装置;(7)天平;(8)pH计; (9)滴管、试管和血糖管;(10)秒表 【方法】 一、葡萄糖浓度标准曲线的制作 1.取10支血糖管,按下表加入0.2%葡萄糖溶液、水及3,5一二硝基水杨 上述试剂混匀后,在沸水浴中加热5min,取出立即冷却,以蒸馏水稀释至25mL,摇匀,于540nm测光密度。 2.以葡萄糖含量(mg)为横坐标,以光密度值为纵坐标绘制标准曲线。 二、蔗糖酶的分离提纯 1.蔗糖酶粗品的制备 (1)自溶 称取10克干酵母,放在200mL的烧杯中,加30mL蒸馏水搅成糊状,再加入 1.5克乙酸钠。然后在35℃水浴中搅拌30min,此时会观察到菌体自溶的现象。 (2)提取及粗酶的制备 往上述自溶液中加60mL蒸馏水,将烧杯用表面皿或玻璃纸盖好,于35℃保温过夜。第二天,将自溶液于4500r/min离心20min。取出离心管,小心将上清液倒入烧杯中,弃沉淀。得到的上清液就是无细胞抽提液,即粗酶液(E1)。 量出粗酶液体积,记录。取2mL作为待测活力和蛋白浓度的样品(4℃保存)。2.乙醇分级 将粗酶液用稀醋酸调pH至4.5。 (1)32%乙醇饱和度 按下面的公式算出使粗酶液的乙醇浓度达32%时所需乙醇体积。

环境系统分析教案

第一章环境系统分析概论 一、系统及其特征 系统是由两个或两个以上相互独立又相互制约的、执行特定功能的元素组成的有机整体。系统的元素又称为子系统,每一个系统又是—个比它更大的系统的子系统。 任何一个系统都具有整体性、相关性、目的性、阶层性和环境适应性的特征。 二、系统的结构化 系统结构化旨在研究系统内部各个子系统之间的分布规律和分布秩序,为系统模型化奠定基础。结构模型解析法是研究系统结构化的有效工具。 结构模型解析法是系统结构化的常用方法。结构模型解析法从一堆杂乱的元素人手,通过构建有向连接图、相邻矩阵、可达性矩阵以及对矩阵的区域分解和级间分解,确定各子系统在系统中的位置,建立系统的递阶结构模型。 三、系统分析方法 系统分析是对研究对象进行有目的、有步骤的探索和研究过程,它运用科学的方法和工具,确定一个系统所应具备的功能和相应的环境条件,以确定实现系统目标的最佳方案。 系统分析的基本过程是对系统的分解和综合,通常可以分为下述六个阶段:明确问题的范围和性质、设立目标、收集资料、建立模型、制定评价标准和进行综合分析。 系统分析的基本内容是系统的模型化、最优化和决策分析。 四、环境系统与环境系统分析 在研究人与环境这个矛盾统一体时,把由两个或两个以上的和环境保护、污染与控制有关的要素组成的有机整体称为环境系统。 环境系统分析的两大任务是:研究环境系统内部各组成部分之间的对立统一关系,寻求最佳的污染防治体系;研究环境质量和社会经济发展的对立统一关系,寻求经济与环境协调发展的途径。应用系统分析方法解决上述环境问题的显著特点是通过模型化和最优化来协调环境系统中各要素之间的关系,实现经济效益、环境效益和社会效益的统——。 [习题及题解] 1.什么是系统?一个系统应具备哪些特征? 2.系统的各种特征在模型化和最优化过程中各起什么作用? 3.简述系统分析的研究对象与研究内容。 4.简述系统分析的基本原理和方法。 5.系统结构化的目的和意义何在?

参考教案-蔗糖酶的提取纯化与鉴定分析

参考教案:酵母蔗糖酶的提取纯化与鉴定 蔗糖酶(E.C.3.2.1.26)( —D—呋喃果糖苷果糖水解酶),能催化非还原性双糖(蔗糖)的1,2-糖苷键裂解,释放出等量的果糖和葡萄糖。不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。 由于果糖甜度高 ,约为蔗糖1.36~1.60倍 ,在工业上具有较高的经济价值。可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的 软心糖,还可为果葡糖浆的工业化生产提供新的方法。 蔗糖酶以两种形式存在于酵母细胞膜的外侧和内侧,在细胞膜外细胞壁中的称之为外蔗糖酶,其活力占蔗糖酶活力的大部分,是含有50% 糖成分的糖蛋白。在细胞膜内侧细胞质中的称之为内蔗糖酶,含有少量的糖。两种酶的蛋白质部分均为双亚基,二聚体,两种形式的酶的氨基酸组成不同,外酶每个亚基比内酶多两个氨基酸,Ser和Met,它们的分子量也不同,外酶约为27万(或22万,与酵母的来源有关),内酶约为13.5万。尽管这两种酶在组成上有较大的差别,但其底物专一性和动力学性质仍十分相似,因此,本实验未区分内酶与外酶,而且由于内酶含量很少,极难提取,本实验提取纯化的主要是外酶。 每摩尔蔗糖水解产生两摩尔还原糖,蔗糖的裂解速率可以通过NeLson法测定还原糖的产生数量来测定。一个酶活力单位规定为在标准分析条件下每分钟催化底物转化的数量。比活力单位为每毫克蛋白含有酶活力单位。 (本实验以酵母为原料) 一、教学目的 通过酵母菌扩大培养及蔗糖酶的提取纯化与鉴定使学生学会生物大分子(酶)制备方案设计和开展实践研究的方法,体验从复杂细胞混合物体系中提取纯化酶的基本原理、 过程和方法。 本实验为学生提供一个较全面的科学研究实践机会,整个实验过程学生独立完成,虽然操作难度较大,所需要的实间较长(64学时),但每一步单元操作的原理清晰,技术成熟,实验结果明显,能给学生较多的设计空间和动手机会,有利于培养学生的学习兴趣和从事科学研究的能力。 二、教学内容

《系统的分析》参考教案1

系统的分析参考教案 教学目标:1、初步掌握系统分析的基本方法; 2、知道系统分析的主要原则。 3、了解系统优化的目的 教学过程: 复习引入:1、构成系统需要满足什么条件? 2、系统具有哪些性质? 3、系统优化对生产生活产生的影响 系统具有的整体性、相关性、目的性、动态性、环境适应性等既是系统的属性,也是系统的基本思想,今天我们要学习的系统分析就是运用系统的思想和定性定量相结合的方法分析解决问题。 板书:第二节系统的分析 情景设置:FLASH小游戏,三个商人和三个仆人准备过河,但是船只每次最多允许两人乘坐,且河岸的任意一侧若仆人数量多于商人数量,商人就会被打劫。请你考虑怎样才能使六个人顺利过河? 学生思考,演示。 教师:在刚在的游戏环节,该同学在经历了两次“打劫”(这就是经验决策产生的结果)之后,重新分析思考(科学分析),选取了合适的方案帮助商人和仆人解决了过河问题。可见系统分析不仅是对系统观点的应用,也是解决问题的科学方案是一种科学决策。 再回过头看看这个问题是怎么解决的?首先确定目标:商人和仆人过河;接着收集信息:船一次最多乘两人,河两侧仆人数都不能多于商人数;有了这些信息我们进行分析,选取其中合适的方案进行实施验证。这就是我们系统分析的一般过程。 学生活动:请大家用流程图表示系统分析的一般过程。(1人板演,其他写在笔记本上。) 板书:1、系统分析的一般过程。

2、系统分析时需要注意的问题:要整体、全面地思考和解决问题。 例1:汉字激光照排系统 问题:在汉字照排方案的决策中,系统的整体目标是什么?要收集哪些资料?【案例分析2】:田忌赛马 问题:1、田忌与齐王的三局赛马可以有哪些方案?孙膑所出的主意为什么能使田忌赢了齐王? 学生答略。 教师:对于一件事情或者一项活动往往都有若干解决方案,大家在日程生活和学习过程中也会碰到选择问题,这个时候就需要我们运用系统分析的方法综合考虑各种因素分析评价,最终找出对策从而实施。可见系统分析是一种科学决策,可以很好的帮助我们解决问题。 过渡:那我们在运用系统分析的方法解决问题的时候需要注意哪些原则呢?阅读课文P79、P80,同时思考在自己学习、生活过程中有没有遇到类似的问题。 学生1:需要遵循整体性原则、科学性原则、综合性原则。 学生2:案例“丁谓修复皇宫”和“赵明家所在街道的人行横道一年内的三次施工”出现不同结果,是因为没有考虑整体性。 评:材料分析题,注意把材料同知识点相互结合,注意回答问题的完整性。前一个案例把烧砖、运输材料和处理废墟看成了一个整体,进行了协调;而后一个案例中三个部们没有相互协商,各自为政,缺少整体统筹观念,所以会出现不同的结果。 二、系统分析的主要原则 1、整体性原则:先分析整体,再考虑局部;先长远,在当前。 2、科学性原则:运用数学方法定量分析。 学生3:举例,在比较种稻是一年三季合算还是两季合算,有人提出的“三三进九不如二五一十”。 师:运用科学性原则在我们生活和学习中有很多实例,比如化学试验中的定量计算问题,再如拟建的杭州东站方案的制定等。希望大家学会观察生活,同时注意总结。我们再来看看【案例:孝襄高速公路】,这个案例中该公路的设计需要综合考虑哪些目标?

酵母蔗糖酶的提取及性质测定

酵母蔗糖酶的提取及性质测定 引论及原理 酶的分离制备在酶学以及生物大分子的结构功能研究中有重要意义。本实验属综合性实验,接近研究性实验,包括八个连续的实验内容,通过对蔗糖酶的提纯和性质测定,了解酶的基本研究过程;同时掌握各种生化技术的实验原理、基本操作方法。本实验技术多样化,并且多个知识点互相联系,实验内容逐步加深,构成了一个综合性整体,为学生提供一个较全面的实践机会,学习如何提取纯化、分析鉴定一种酶,并对这种酶的性质,尤其是动力学性质作初步的研究。 蔗糖酶(invertase )(β—D —呋喃果糖苷果糖水解酶)(fructofuranoside fructohydrolase )(EC.3.2.1.26)特异地催化非还原糖中的α—呋喃果糖苷键水解,具有相对专一性。不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。每水解1mol 蔗糖,就生成2mol 还原糖。还原糖的测定有多种方法,本实验采用Nelson 比色法测定还原糖量,由此可得知蔗糖水解的速度。 在研究酶的性质、作用、反应动力学等问题时都需要使用高度纯化的酶制剂以避免干扰。酶的提纯工作往往要求多种分离方法交替应用,才能得到较为满足的效果。常用的提纯方法有盐析、有机溶剂沉淀、选择性变性、离子交换层析、凝胶过滤、亲和层析等。酶蛋白在分离提纯过程中易变性失活,为能获得尽可能高的产率和纯度,在提纯操作中要始终注意保持酶的活性如在低温下操作等,这样才能收到较好的分离效果。啤酒酵母中,蔗糖酶含量丰富。本实验用新鲜啤酒酵母为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶,并对其性质进行测定。 一、蔗糖酶的提取与部分纯化 (一)实验目的 学习酶的提取和纯化方法,掌握各步骤的实验原理,并为后续实验提供一定量的蔗糖酶。 (二)实验原理(略) (三)实验仪器、材料及试剂 仪器 1. 高速冷冻离心机、恒温水浴箱、-20℃冰箱 2. 电子天平、研钵(>200ml )、制冰机、50ml 烧杯 3. 离心管(2ml ,10ml ,30ml 或50ml )、移液器(1000ul )或滴管、量筒 材料及试剂 1. 市售鲜啤酒酵母(低温保存) + H 2O 蔗糖酶 O H H O

系统及其特性-教案

《系统及其特性》 教学目标: 1.从应用的角度理解系统的含义。 2.通过简单的系统的案例分析,理解系统的基本特性。 教材分析: 本节教材由“1.什么是系统”、“2.系统的类型”、“3.系统的基本特性”等3小节组成。 本节的重要概念是:系统、子系统、整体性。 理解系统必须从理解系统的结构开始。系统的结构是与系统的功能相对应的,系统本身的组成具有一定的结构,其结构是功能的基础,前者决定了后者,结构的变化必然引起功能的变化。 教学重点与难点: 重点:系统的构成;系统的基本特性。 难点:系统的特性。 教学过程: 任务一:拆分打火机并思考下列四个问题 打火机有几个主要组成部件? 各部件的功能是什么? 各部件之间有没有联系? 打火机的功能是什么? (引出系统的概念) 1.什么是系统 系统是由相互联系、相互作用、相互依赖和相互制约的若干要素或部分组成的具有特定功能的有机整体。 构成系统必须具备三个条件 第一、至少要有两个或者两个以上的要素(部分)才能组成系统

第二、要素(部分)之间相互联系、相互作用、按照一定方式形成一个整体 第三、这个整体具有的功能是各个要素(部分)的功能中所没有的 提问:请验证打火机是否符合以上三个条件? 任务二:组装打火机并分析下列情况 (引出系统的基本特性) 2.系统的基本特性 (1)整体性 系统是一个整体,它不是各个要素(部分)的简单相加,系统的整体功能是各个要素(部分)在孤立状态下所没有的。 系统的任何一个要素(部分)发生变化或出现故障时,都会影响其他要素(部分)或整体的功能的发挥。 系统的整体功能大于组成系统的各部分的功能之和,这就是我们常说的“1+1>2”。 不能离开整体去分析系统中的任何一个组成部分。一个系统组织得好不好,就看它的整体功能即系统功能实现得怎样。 提问:请根据系统的整体性特征,分别解释之。 “一着不慎,全盘皆输” “三个臭皮匠顶个诸葛亮” “头痛医头脚痛医脚”

《系统的设计方案》参考教案

系统的设计参考教案 一、教案内容分析: 系统设计是研究和认识系统的目的,本节教案内容应围绕系统设计展开。根据系统的目的和要求、各子系统之间的相互关系,对系统进行整体设计、评价和优化,就是系统设计。通过分析系统设计应考虑的主要问题,根据系统设计的一般步骤,应能进行简单的系统工程设计。可结合具体实例让学生分析系统设计应考虑哪些主要的问题,并组织讨论活动。 本节由“1.系统的设计”、“2.简单系统的设计的实现”等2小节组成。 本部分教材编写突出连个特点:首先,突出技术的思想方法。教案内容体现了科技发展的先进成果和先进文化,是当代技术思想和方法重要的基础组成部分,具有丰富的思想内涵和方法论意义,对所有学生的发展都具有教育价值,是技术的学习真正超越技能主义的局限,使技术成为“有思想的技术”,拓展学生对技术的认识,促使学生认识上的迁移和共通能力的发展。其次,强调运用理论和方法解决实际问题。这里更多的是注重学生从理论到实践的第二次认识飞跃,在编写安排上是从理论入手,最后回到设计的实践。 二、教案对象分析: 通过上节课的学习,学生对系统的优化已经有了初步的了解,通过简单系统的设计案例的分析,初步学会简单系统设计的基本方法。 三、目标: 1.知识与技能: <1)通过简单系统的设计案例的分析,初步学会简单系统设计的基本方法。 <2)确定一个生活或生产中的简单对象,根据设计要求完成系统的方案设计。 2.过程与方法: 通过案例进行系统设计,在设计中将系统的基本特性考虑到设计中去,考虑到系统各要素之间的作用和联系, 进行系统分析和优化.

通过手电筒进行系统设计,在设计中将系统的基本特性考虑到设计中去,考虑到系统各要素之间的作用和联系, 进行系统分析和优化. 3.情感态度价值观: <1)学会把系统思想和方法运用到自己的生活、工作和学习中去进行设计<2)培养学生动手动脑实践能力。 四、教案重难点: 1.教案重点: (1>系统设计中要考虑的主要问题;系统设计的一般过程及思想方法。 (2>系统设计中要考虑的主要问题分析。 2.教案难点: 简单系统的设计的实现。 五、教案概述: 在教案实践中让学生分成学习小组进行设计并给出设计方案,让学生在技术实践中学会系统设计的方法,教师引导学生进行总结和提升。通过案例简单系统进行设计,把系统的思想贯穿于整个设计当中,初步学会简单的系统设计的基本方法,学习如何进行系统设计。 2课时。 六、教案器材: 玩具电动机、灯泡、齿轮、手摇柄、导线等 七、教案过程: 一)引入:我们每个人都会在日常生活中遇到系统设计,系统设计运用的案例比比皆是。 例如: 家庭室内装修设计 假期旅游行程设计 个人形象设计 班级管理系统设计 学校田径运动会竞赛日程表设计等等 第三节系统的设计

蔗糖酶的提取纯化及蛋白质含量测定研究

论文 论文题目:蔗糖酶的提取纯化及蛋白质含量测定研究 作者姓名周柱林 指导教师钟莉 学科专业食品科学与工程1102 所在学院生物与环境工程学院 提交日期 2013年12月

蔗糖酶的提取纯化及蛋白质含量测定研究 周柱林 生物与环境工程学院食品科学与工程1102班 摘要:对啤酒酵母蔗糖酶的相关性质进行研究讨论,实验采用酵母自溶法初步得到粗蔗糖酶,离心除杂质法得到初提取液A,接着制备热提取液B,接着制备乙醇沉淀提取液C,接着采用Q Sepharose-柱层析法得到纯度较高的D液,然后用DNS法、标准曲线法和分光光度法测定蔗糖酶的活力,用Folin-酚法测定蔗糖酶蛋白质含量及计算比活力,用微量凯氏定氮法测定总蛋白含量,最后用SDS-PAGE法测定蛋白质的相对分子质量,并对其基本性质进行了研究。实验测定结果A、B、C提取液的酶回收率(%)分别为100、128.5、56.6,蛋白回收率(%)分别为100、98.15、4.29,比活力分别为17.4、22.8、230.1,纯化倍数分别为1、1.31、13.22,SDS-PAGE测定酵母蔗糖酶相对分子质量为A:99150、45000;B:10140;C:92200、65660. 关键词:蔗糖酶、提取、纯化、酶活力、蛋白质含量、比活力、相对分子质量 1.前言(文献综述): 啤酒酵母也叫营养酵母,可以从其中提取蔗糖酶,蔗糖酶又称为转化酶,属于水解酶类,蔗糖在蔗糖酶的催化下,水解为两种还原糖D一葡萄糖和D一果糖。蔗糖酶在植物的运输贮藏、碳水化合物代谢中发挥主要作用,并在渗透调节、抗逆性生长繁殖、以及信号传导方面也发挥着重要的作用。按水解蔗糖的方式,蔗糖酶可分为从果糖末端切开蔗糖的β-D-呋喃果糖苷酶(β -D-frutofuranosidases,EC 3.2.1.26)和从葡萄糖末端切开蔗糖的α-D-葡萄糖苷酶(α-D-glucosidases,EC 3.2.1.20)。前者存在于酵母中,后者存在于霉菌中。工业上多从酵母中提取。 目前关于酵母中蔗糖酶提取纯化方面的研究较多 , 有SDS抽提法,正交法等等,其中以甲苯自溶法最为常见。本实验采用此自溶法从啤酒酵母中提取蔗糖酶,利用有机溶剂将胞内蔗糖酶释放,经过初提取的离心去杂和等电位沉淀,制得的粗酶经醇沉后,采用Q Sepharose-柱层析法纯化,利用DNS法测定其酶活力,利用Folin-酚法测定蛋白质的含量及比活力,利用微量凯氏定氮法测总蛋白氮,以及用SDS-PAGE测定蛋白质的相对分子质量,并对其基本性质进行了研究,也为酵母蔗糖酶在食品工业中的应用和蔗糖酶基因工程产品的技术开发提供了实验依据。

相关主题
文本预览
相关文档 最新文档