当前位置:文档之家› 线性代数 与计算机

线性代数 与计算机

线性代数 与计算机
线性代数 与计算机

线性代数是一门应用性很强,而且理论非常抽象的数学学科,它主要讨论了矩阵理论、与矩阵结合的有限维向量空间及其线性变换的理论.在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、经济学、网络技术等无不以线性代数为基础.但是在线性代数中,大部分的计算太过繁琐.例如当把方程的阶次提高到了三元以上时,不但要求较高的抽象思维能力,而且也要求用十分繁琐的计算步骤才能解决问题,这使得大多数的工科学生对线性代数感到乏味枯燥[1]

当前学生在学习线性代数上也存在众多问题:学习没有计划,学习环节不完整,读书不求甚解,懒于动脑思考线性代数与实际的联系,学习过程中不善于查找相关资料等.这些普遍问题使得学生的学习与现实产生了严重的脱节.大学的学习内容、方法和要求,比起中学的学习发生了很大的变化,没有老师像在高中一样督促你学习,所以大部分的学生一进大学便放松了自己,就是认真学习的学生也是毫无计划,整天忙于被动的应付听课、完成作业和考试,缺乏主动自觉的学习,干什么都心中无数. 不但对线性代数的学习如此,线性代数本身的特点也使得大部分学生对线性代数生而畏之.例如,线性代数中多项式部分定义的繁琐难懂,最大公因式、不可约多项式、二次型等与实际应用的相脱离,向量的线性相关、线性空间、线性变换、欧式空间等问题概念的抽象性,行列式的求法、矩阵的相关计算容易出错,线性代数中有些知识需要进行大量的、机械的数值运算,在学生套用公式时,耗费了大量的时间和精力,又往往出错.例如:在求解行列式问题上,如果矩阵A为高阶方阵,且不具备特殊条件(比如为三角矩阵等),那么在求解矩阵A的行列式时,需要将矩阵A依次按行展开,将其化为多个三阶矩阵的和才可套用公式求出,期间过程繁琐,费时且容易出错,长期下来学生学习线性代数时搞不懂、弄不清,即使经过长期理论熏陶并经过复杂的计算过程将题目解答出来,也无法判断题目的对错,更不要说学生对线性代数的研究.所以使得很多同学对线性代数失去了兴趣.但是,以上问题若用计算机求解则可几步便求出答案,达到事半功倍的效果. 大部分学生不懂也不善于运用计算机解决线性代数问题,可能存在有如下几点原因: (1)喜欢文科类课程,对线性代数等数学学科没有兴趣,所以不愿去研究其解题方法,或者由于需要长期进行大量的计算,而对线性代数没有了兴趣;(2)对计算机软件不感兴趣,以至于运用软件求解计算生疏不懂;(3)不肯动脑研究计算机软件,懒于记忆软件中的常用函数;(4)想锻炼自己的动笔能力,喜欢用稿纸演算.

4.1中的例子只是根据经济学中投入产出模型简化了实际应用中的大量数据,意在说明运用计算机可以解决现实生活中普遍的问题.计算机不仅可以把复杂的运算过程变成简单的函数(如求矩阵的逆),既节省了大量的演算时间,又体会到了开动脑筋,运用自己的方法编写程序而得来的对数学的兴趣,还可以解决现实生活中比如经济、金融等方面的问题. 计算机已经成为我们生活中不可缺少的一部分,我们可以充分利用计算机为我们的学习、生活提供帮助.当然,前提是我们必须动脑,动手,勤于思考才行.

在计算机出现之前, 要解线性微分方程组是非常难的事情, 通常是要努力地找各种函数的原函数, 将一些积分算出来. 因此, 找原函数的技术得到广泛研究. 因为, 一旦找到了原函数, 积分的运算量就没有那么大了. 这就是到今天为止的高等数学教育还残留有过去的传统, 即对各种原函数的求解技巧津津乐道的重要原因. 但是, 实际情况中, 原函数并不总是存在的, 因此总需要数值解. 而在计算机出现之前, 数值解通过人工计算, 是相当耗时费力的. 而在计算机被大量使用之后, 情况就出现了改观, 计算机在极短的时间内, 比如在0.1秒的时间,

就可以做成千上万的乘法和加法. 因此, 通过程序来求解线性微分方程组就是常见的事.

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

浅谈线性代数与计算机的关系

浅谈高等数学,线性代数与计算机的关系 以下是OIer们的各种观点,仅供参考. 1、如果程序中要使用算法,高等数学可能用得上。不过一般的程序,还是很难用得上高等数学的。 2、高等数学只是基础,一旦你进入数据结构、数据库或其它比较专业的东东,它的基础作用就很明显了! 3、其实关键是看你干什么,计算机编程也有很多方面,比如说你要搞图形图象处理建模,就肯定要线形代数方面的知识,但你如果是一般的编程,就不是那么明显。 4、思想,逻辑思维对一个程序员太重要了,多少时候,我们都需要在头脑里面把程序运行上几遍,这凭什么?因为程序员有出色的逻辑思维,而这种出色的逻辑思维从何处而来??数学数学还是数学.基础学科锻炼人的基础,没有地基何来高楼大厦,所以,我认为,不管是数学还是离散数学等等的相关东西都要好好学习?5、高数的作用:一是培养思维,二是算法分析,三是程序可能本身与高数有关。 6、如果你做图象处理的话 7、高等数学是一门基础学科,如果没有学过高数,那么看计算方法就可能象看天书似的了。如果你要做一名编程熟练工,可以不学它,否则好好学学吧! 8、高数就象是武林高手的内功,虽然不能用来击败对手,但是可以让你的招式更有杀伤力。当然必要的招式还是很重要的,至于象令狐冲那样的只用招式打天下的天才比较少。?9、思想,逻辑思维对一个程序员是很重要的,你不能只是学会click,click,click. 那样你是没有什么前途的。?10、说白了,高等数学是训练你的思维的。如果你是数学系的本科生,考研你可以考除了文学系和新闻系的任何一个科系,为什么?因为你的思维比较能跟得上拍。1?1、高等数学在一些常用数值计算算法上能用的上, 不过在一般的程序上是用不上的。不过小弟我听说高数在解密方面有用,如果你想当黑客就要好好学了, 呵呵~~~~~ 12、我希望你知道编程只是为了表现你的思维、你的创造力, 仅仅是一种表达方式,而数学是你能不断创新的基石。 13、数学是所有学科的基础,数学不好,什么都不可能学好,我看过一个报道,有的软件公司根本不要计算机专业的程序员,而是到数学系去找,经过短期的培训他们的编程能力肯定比不注重数学基础的程序员强,现在知道它的利害性了吧,好好学数学吧! 14、我认为那得看你是将来拿编程来干什么如果用与科学计算比如火箭发射那种计算 那数学和物理差一点都不行如果你是一个应用程序开发者那对数学的要求就不一定高 我在系里数学最差但编程最好这也是中国教育制度的缺陷不能尽展所长我学校里的计算机教学计划还是5年以前制定的学的都是理论没有实际的东西 15、高等数学对编程有何作用??数学是计算机的鼻祖,等你到商业的开发环境,比如做游戏开发,就需要数学基础很深的人工智能了,很多公司就找那些数学系的来做开发,对他们来

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

校车安排问题答案 最新改良

校车安排中的最优化问题 摘要:本文以让教师和工作人员满意度最高为目标对校车安排中的问题进行了探究。 在求解建立n个乘车点时,先利用Floyd算法求出了最短路距离矩阵,然后以各区域到最近乘车点的距离和最小为目标函数对50个区域进行遍历分析,建立模型,求出n个最优乘车点。并利用模型求出了设立2个乘车点时,区号为18区和31区,其最短总距离为24492米;若设立3个乘车个点,则分别为15区、21区和31区,其最短总距离为19660米。 考虑到每个区的乘车人数,首先建立满意度函数表示满意度随距离的增大而减小,然后以所有区域人员平均满意度最大为目标函数建立模型,并依据模型求出当建立2个乘车点时最优解为区域24和32,总满意度为0.7239;当建立3个乘车点时的最优解为区域16、23和32,平均满意度为0.7811。 关于乘车点位置的确定,设立满意度最低标准,添加满意度的约束条件:H h ,建立车辆数模型,得出在满意度最大的情况下的3个乘车点车辆使用K 情况,确定车辆最少需要54辆,三个站点所在的区域分别为2、26、31,对应的车辆数分别为12、19、23。 我们结合本模型对校车的安排问题提供了建议。 关键词:Floyd算法最短距离满意度函数

一、问题的重述 许多学校都建有新校区,常常需要将老校区的教师和工作人员用校车送到新校区。由于每天到新校区的教师和工作人员很多,往往需要安排许多车辆。有效的安排车辆并让教师和工作人员尽量满意是个十分重要的问题。现有如下四个问题需要设计解决。 假设老校区的教室和工作人员分布在50个区,各区的距离见附录中表1。各区人员分布见附录中表2。 问题1:如果建立n个乘车点,为使各区人员到最近乘车点的距离最小,建立模n2,3时的结果。 型,并分别给出 问题2:考虑每个区的乘车人数,使工作人员和教室的满意度最大,建立模型,并分别建立两个和三个乘车点的校车安排方案。(假定车只在起始点载人) 问题3:若建立3个乘车点,为使教师和工作人员尽量满意,至少需要安排多少辆车。假设每辆车最多载客47人(假设车只在起始站点载人)。 问题4:关于校车安排问题,你还有什么好的建议和考虑。可以提高乘车人员的满意度,又可节省运行成本。 二、模型假设与符号说明 2.1、模型假设 1、假设每位教师及工作人员之间无相互影响。 2、每位教师及工作人员均选择最短路径乘车。 3、乘车点均建在各区内,不考虑区与区之间。 4、教师及工作人员到各站点乘车的满意度与到该站点的距离有关系,距离近则满意度高,距离远则满意度低。 5.、假设任意时刻任意站点均有车,不考虑教师及工作人员的等车时间。 6、在乘车点区内的人员乘车距离为零。 7、假设所设置的乘车点数不大于50。 8、假设所有人员均乘车。 2.2、符号说明

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

线性代数小论文

线性代数小论文 在学习了线性代数两个多月后,也算是对它有了一些了解。在此,我就从老师教学和我自身的学习方面谈谈我的体会,对教学改革提一些自己的意见。 首先,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。我使用的线性代数教材是科学出版社出版李小刚主编的《线性代数及其应用》。我比较了一下这本书和其他线代教材的区别,它有个很大的特点就是,别的教材第一章讲的是行列式,而它却直接通过介绍高斯消元法引入了矩阵的概念,在学习了矩阵后才介绍行列式的计算。这是这本教材的优越之处,它包含了一个循序渐进的过程。但是,它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。 其次,老师在教学中,也应该以一些具体的实例入手来教学,就像开尔文说的,数学只不过是常识的升华而已,所以如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。 然后,自己在学习的过程中,也应该能够整体把握老师的意思,注意各个章节的联系,R.斯根普说过个别的概念一定要融入与其它概念合成的概念结构中才有效用。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更

(完整word版)同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

线性代数 与计算机

线性代数是一门应用性很强,而且理论非常抽象的数学学科,它主要讨论了矩阵理论、与矩阵结合的有限维向量空间及其线性变换的理论.在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、经济学、网络技术等无不以线性代数为基础.但是在线性代数中,大部分的计算太过繁琐.例如当把方程的阶次提高到了三元以上时,不但要求较高的抽象思维能力,而且也要求用十分繁琐的计算步骤才能解决问题,这使得大多数的工科学生对线性代数感到乏味枯燥[1] 当前学生在学习线性代数上也存在众多问题:学习没有计划,学习环节不完整,读书不求甚解,懒于动脑思考线性代数与实际的联系,学习过程中不善于查找相关资料等.这些普遍问题使得学生的学习与现实产生了严重的脱节.大学的学习内容、方法和要求,比起中学的学习发生了很大的变化,没有老师像在高中一样督促你学习,所以大部分的学生一进大学便放松了自己,就是认真学习的学生也是毫无计划,整天忙于被动的应付听课、完成作业和考试,缺乏主动自觉的学习,干什么都心中无数. 不但对线性代数的学习如此,线性代数本身的特点也使得大部分学生对线性代数生而畏之.例如,线性代数中多项式部分定义的繁琐难懂,最大公因式、不可约多项式、二次型等与实际应用的相脱离,向量的线性相关、线性空间、线性变换、欧式空间等问题概念的抽象性,行列式的求法、矩阵的相关计算容易出错,线性代数中有些知识需要进行大量的、机械的数值运算,在学生套用公式时,耗费了大量的时间和精力,又往往出错.例如:在求解行列式问题上,如果矩阵A为高阶方阵,且不具备特殊条件(比如为三角矩阵等),那么在求解矩阵A的行列式时,需要将矩阵A依次按行展开,将其化为多个三阶矩阵的和才可套用公式求出,期间过程繁琐,费时且容易出错,长期下来学生学习线性代数时搞不懂、弄不清,即使经过长期理论熏陶并经过复杂的计算过程将题目解答出来,也无法判断题目的对错,更不要说学生对线性代数的研究.所以使得很多同学对线性代数失去了兴趣.但是,以上问题若用计算机求解则可几步便求出答案,达到事半功倍的效果. 大部分学生不懂也不善于运用计算机解决线性代数问题,可能存在有如下几点原因: (1)喜欢文科类课程,对线性代数等数学学科没有兴趣,所以不愿去研究其解题方法,或者由于需要长期进行大量的计算,而对线性代数没有了兴趣;(2)对计算机软件不感兴趣,以至于运用软件求解计算生疏不懂;(3)不肯动脑研究计算机软件,懒于记忆软件中的常用函数;(4)想锻炼自己的动笔能力,喜欢用稿纸演算. 4.1中的例子只是根据经济学中投入产出模型简化了实际应用中的大量数据,意在说明运用计算机可以解决现实生活中普遍的问题.计算机不仅可以把复杂的运算过程变成简单的函数(如求矩阵的逆),既节省了大量的演算时间,又体会到了开动脑筋,运用自己的方法编写程序而得来的对数学的兴趣,还可以解决现实生活中比如经济、金融等方面的问题. 计算机已经成为我们生活中不可缺少的一部分,我们可以充分利用计算机为我们的学习、生活提供帮助.当然,前提是我们必须动脑,动手,勤于思考才行. 在计算机出现之前, 要解线性微分方程组是非常难的事情, 通常是要努力地找各种函数的原函数, 将一些积分算出来. 因此, 找原函数的技术得到广泛研究. 因为, 一旦找到了原函数, 积分的运算量就没有那么大了. 这就是到今天为止的高等数学教育还残留有过去的传统, 即对各种原函数的求解技巧津津乐道的重要原因. 但是, 实际情况中, 原函数并不总是存在的, 因此总需要数值解. 而在计算机出现之前, 数值解通过人工计算, 是相当耗时费力的. 而在计算机被大量使用之后, 情况就出现了改观, 计算机在极短的时间内, 比如在0.1秒的时间,

线代2005。12。A答案

2005-2006学年第1学期《线性代数Ⅱ》A 卷试题 答案及评分标准 一、填空题(每小题3分,共18分) 1.43512132a a a a a k i 是5阶行列式中带负号的项,则i = , k = . 2.设 i A A A A i 的第为设阶方阵为,4,3-=个列向量, ) ,,(321A A A A =,则行列式 =+12135,2,3A A A A . 3.设 A n A A 阶方阵分别为1,-*的伴随阵和逆矩阵,则=-*1A A . 4.矩阵????? ?? ?? ???---=30 3 00000301 2100 210A 对应的实二次型 =),,,(4321x x x x f . 5.设???? ? ?????---=53 3 4 2 111 a A ,且2,6321===λλλ的特征值为A , 如果 A 有三个线性无关的特征向量,则=a . 6、n 阶方阵 A 具有n 个不同的特征值是A 与对角阵相似的 条件. 1. i = 5 , k = 4 ; 2.40 ;3. 2 -n A ;4.2 442222136x x x x x x --+ ; 5. 2-; 6. 充分。 二、简答题(每小题4分,12分) 1.举出任何反例皆可(2分)。当BA AB =时,等式2 222)(B AB A B A ++=+成立 (2分)。 2.一定不为零(2分)。若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ 即方程0 =x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾(2分)。 3.不相似(2分)。否则有可逆阵C 使C -1AC=B,即A=B,矛盾(2分)。

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

线性代数试题及答案

第一部分选择题单项选择题 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于(D) A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于(B) A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是(B) A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有(D ) A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于(C) A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则(D) A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中(C ) A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是(A) A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有(A) A.秩(A)

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

重庆大学线性代数答案

习题一解答 1、 填空 (3)设有行列式 2 31118700123456 4021103152----=D 含因子453112a a a 的项 为 答:144038625) 1(54453123123 -=????-=-a a a a a 或018605)1(53453124124=????=-a a a a a (5)设 3 2 8814 4 1 2211111)(x x x x f --= ,0)(=x f 的根为 解:根据课本第23页例8得到)2)(2)(1)(22)(12)(12()(+-------=x x x x f 0)(=x f 的根为2,2,1- (6)设321,,x x x 是方程03 =++q px x 的三个根,则行列式1 3 2 213321x x x x x x x x x = 解:根据条件) )()((3213x x x x x x q px x ---=++,比较系数得到 0321=++x x x , q x x x -=321;再根据条件q px x --=131,q px x --=232,q px x --=333; 原行列式=-++33323 1 x x x =3213x x x 033)(321=+-++-q q x x x p (7)设 )(32142 1 4 3 1 4324321iJ a D ?== ,则44342414432A A A A +++= 解:44342414432A A A A +++相当于)(iJ a ?中第一列四个元素分别乘以第四列的代数余子式,其值为0. (8)设)(iJ a c d b a a c b d a d b c d c b a D ?== ,则44342414A A A A +++= 解 将D 按第四列展开得到44342414cA aA aA dA +++=c d b a a c b d a d b c d c b a ,第四列的元素全变成1,此时第四列与第二列对应成比例,所以44342414A A A A +++=0.

相关主题
文本预览
相关文档 最新文档