当前位置:文档之家› 现代微分几何.

现代微分几何.

现代微分几何.
现代微分几何.

现代微分几何

大纲号:11040201学分:3 学时:48 执笔人:谭康海,孙和军审订人:赵培标

课程性质:专业基础课

一、课程的地位与作用

现代微分几何是以数学分析为主要工具研究空间形式的一门学科,是几何学的一个分支,也是应用性很强的一门数学专业课;它在科学技术的许多领域中有着日趋广泛的渗透和应用。

二、课程的教学目标与基本要求

1.教学目标

通过本课程的学习使学生为以后进一步学习、研究现代几何学打好基础,并培养学生理论联系实际和分析问题解决问题的能力。

2.基本要求

(1)掌握经典微分几何的基本内容:Frenet标架建立的方法及其中有关向量的关系;掌握空间曲线研究的基本内容;理解曲面的概念及其参数表示,掌握曲面研究的基本内容;)理解曲面上的测地曲率和测地线的概念,掌握测地曲率的计算公式和测地线的方程。

(2)掌握现代微分几何的基本问题:流形上的微积分。

偏导数的几何意义

偏导数的几何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数= 为例, 如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x 的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在,而在 处有增量时,相应的函数有增量 - , 如果 (1) 存在,则称此极限为函数= 在点处对的偏导数,记做 , , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为

记做, , 或 如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数= 对自变量的偏导函数,记做 , , ,或 由偏导数的概念可知, 在点处对的偏导数显然就是偏导 函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为

偏导数的几何意义教学内容

偏导数的几何意义

偏导数的几何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在,而在处有增量时,相应的函数有增量 - , 如果 (1) 存在,则称此极限为函数= 在点处对的偏导数,记做

, , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为 记做, , 或 如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数= 对自变量的偏导函数,记做 , , ,或

由偏导数的概念可知, 在点处对的偏导数显然就是偏导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在 变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求 时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为 = 其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题 例求的偏导数 解= , = 二偏导数的几何意义

偏导数的几何意义

偏导数得几何意义 ?实验目得:通过实验加深学生对偏导数定义得理解掌握偏导数得几何意义并从直观上理解二阶混合偏导数相等得条件?背景知识: 一偏导数得定义 在研究一元函数时、我们从研究函数得变化率引入了导数概念、对于多元函数同样需要讨论它得变化率、但多元函数得变化量不只一个,因变量与自变量得关系要比一元函数复杂得多、所以我们首先考虑多元函数关于其中一个自变量得变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即瞧作常量),这时它就就是得一元函数,这函数对x 得导数,就称为二元函数z对于得偏导数,即有如下定义 定义设函数z= 在点得某一邻域内有定义,当y固定在,而在处有增量时,相应得函数有增量 - , 如果(1) 存在,则称此极限为函数=在点处对得偏导数,记做 , ,,或 例如,极限(1)可以表为 = 类似得,函数z=在点处对得偏导数定义为 记做,,或 如果函数= 在区域D内每一点( )处对得偏导数都存在,那么这个偏导数就就是得函数,它就称为函数= 对自变量得偏导函数,记做 , ,,或 类似得,可以定义函数= 对自变量得偏导函数,记做 ,,,或 由偏导数得概念可知,在点处对得偏导数显然就就是偏导函数在点处得函数值,就像一元函数得导函数一样,以后在不至于混淆得地方也把偏导函数简称为偏导数、

至于求=得偏导数,并不需要用新得方法,因为这里只有一个自变量在变动,另外一个自变量瞧作就是固定得,所以仍旧就是一元函数得微分法问题,求时,只要把暂时瞧作常量而对求导;求时,则只要把暂时瞧作就是常量,而对求导数、 偏导数得概念还可以推广导二元以上得函数,例如三元函数在点()处对得偏导数定义为= 其中()就是函数得定义域得内点,它们得求法也仍旧就是一元函数得微分法问题 例求得偏导数 解= , = 二偏导数得几何意义 二元函数= 在点得偏导数得几何意义 设为曲面= 上得一点,过点作平面,截此曲面得一曲线,此曲线在平面上得方程为= ,则导数,即偏导数,就就是这曲线在点处得切线对轴得斜率、同样,偏导数得几何意义就是曲面被平面所截得得曲线在点处得切线对得斜率 三偏导数得几何意义 我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续、这就是因为各偏导数存在只能保证点P沿着平行于坐标轴得方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于、例如,函数 = ={ 在点(0,0)对得偏导数为 同样有 但就是我们在前面得学习中知道这函数在点(0,0)并不连续 四二阶混合偏导数 设函数= 在区域D内具有偏导数 =, =

偏导数的几何意义.doc

Ax 偏导数的儿何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二 阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一无函数吐我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论 它的变化率.但多元函数的变化量不只一个,因变量与自变最的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一-个自变量的变化率,以二元函数z= /(了疗)为例, 如果只有自变量工变化,而自变量y 固定(即看作常量),这时它就是X 的一元函数,这函数 对X 的导数,就称为二元函数Z 对于才的偏导数,即有如下定义 定义设函数z= *')在点的某一?邻域内有定义,当y 固定在V 。,而工在工。 处有增量? A*时,相应的函数有增量 /(x 0 4-Ax,^) _ /(x 0,^0) f(x 0 +Ax,y 0)-f(x 0,y 0) lim --------------------------------- 如果 Ax (1) 存在,则称此极限为函数z=在点”°疗°)处对汗的偏导数,记做 例如,极限(1)可以表为 f(x 0 +Ax,y 0)-f(x 0,y 0) hgy°)蚣。 类似的,函数z= ,(兀、)在点(冲疗°)处对歹的偏导数定义为 尚 栈尚九(%必) dz

lim 敏T O Rxo,Vo +Ay)?地, dz 记做分5 X■命 如果函数2= 了3疗)在区域D内每一点(&')处对工的偏导数都存在,那么这个偏导数就是工溜的函数,它就称为函数Z = /(工1)对自变量式的偏导函数,记做 & 堂 凯瓦,气或九(")类似的,可以定义函数z= /(兀力对自变量W的偏导函数,记做dz 山偏导数的概念可知,/3'力在点(如儿)处对工的偏导数九成。/)显然就是偏导函数九3',)在点成°疗°)处的函数值,就像-?元函数的导函数-?样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求z=的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外 dz 一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求欲时,只要把*暂时看 作常最而对工求导;求莎时,则只要把式智时看作是常量,而对V求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数〃 = /(兀MZ)在点(、,yz)处对式的偏导数定义为 岫Rx +Ax, y ,z)?Rx ,y ,z) 九(X'V’z) = A XT O A X 其中(X'W'Z)是函数〃 = /3,V,z)的定义域的内点,它们的求法也仍旧是一元函数的微分法问题 例求z = / sin 2y的偏导数 dz

二元函数及其偏导数的几何意义.doc

120 实验14 偏导数与方向导数 多元函数的偏导数刻画了函数沿坐标轴方向的变化率.设函数(,)z f x y =在点()00,x y 的某一邻域内有定义,该函数在点()00,x y 处关于自变量x 的偏导数 ()()00000000,,(,)lim lim x x x x f x x y f x y z f x y x x ?→?→+?-?'==??, 同样可定义函数(,)z f x y =在点()00,x y 处关于自变量y 的偏导数00(,)y f x y '.因为定义中考虑的是函数沿x 或y 方向的变化量,所以偏导数反映的是函数沿坐标轴变化的快慢程度. 方向导数作为偏导数的推广,它可以刻画函数沿不同方向变化的快慢程度.以二元函数(,)z f x y =为例,设00(,)P x y 和(cos ,cos )αβ=u 为给定点和给定方向,则称极限 000000(cos ,cos )(,)lim lim h h f x h y h f x y z h h αβ→→++-?= 为函数(,)z f x y =在点00(,)P x y 处沿方向u 的方向导数,记为0 P f u ??.我们知道,如果函数 (,)z f x y =在点00(,)P x y 处可微,则在该点处沿任何方向的方向导数存在,且沿梯度 00grad (,)P P f f f x y ??=?? 的方向导数最大,并且该点的梯度方向与经过该点的等值线:(,)l f x y C =在该点的切线方向互相垂直.假设一光滑坡面可由二元函数(,)z f x y =来描述,现在坡面某处有一物体,假设该物体沿最陡的路线向下滑落,由于最陡方向即为高度z 减少最快的方向,即函数(,)z f x y =的梯度相反方向,由此可确定物体向下滑动的路径.本实验以实验形式考虑、分析了曲面与平面的交线及在坐标平面上的投影、等值线与隐函数的图形、曲面与平面交线的切线以及最速下降曲线。

偏导数的几何意义

实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数 = 为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在 ,而在处有增量时,相应的函数有增量 - , 如果(1) 存在,则称此极限为函数 = 在点处对的偏导数,记做 , , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为 记做 , , 或 如果函数 = 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数 = 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数 = 对自变量的偏导函数,记做 , , ,或 由偏导数的概念可知, 在点处对的偏导数显然就是偏导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数.

至于求 = 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为 = 其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题 例求的偏导数 解 = , = 二偏导数的几何意义 二元函数 = 在点的偏导数的几何意义 设为曲面 = 上的一点,过点作平面 ,截此曲面得一曲线,此曲线在平面上的方程为 = ,则导数 ,即偏导数 ,就是这曲线在点处的切线对轴的斜率.同样,偏导数的几何意义是曲面被平面所截得的曲线在点处的切线对的斜率 三偏导数的几何意义 我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P 时,函数值趋于 ,但不能保证点P按任何方式趋于 P 时,函数值都趋于 .例如,函数 = ={ 在点(0,0)对的偏导数为 同样有 但是我们在前面的学习中知道这函数在点(0,0)并不连续 四二阶混合偏导数 设函数 = 在区域D内具有偏导数 = , =

微分的几何意义

微分的几何意义 1 微分的几何意义 x设函数在点处可导,如图一所示,直线MT为曲线在点 y,f(x)y,f(x) 图一微分的几何意义 dy,M处的切线,MQ,dxNQ,,y,PQ,tan,,dx,tan,dx,dx,f(x)dx。 dx 所以,dy,PQ,而PQ为曲线y,f(x)在M点处的切线MT上的纵坐标的增量。当自变量很小时,就可以用切线段上的增量来近似代替曲线段上的增量。 , 若曲线的弧长为,则有 MN,,s dy222|MP|,(dx),(dy),dx1,(),(dx,0) ……(1) dx (1) 式称为弧的微分公式,由图可知: 22ds,(dx),(dy) 当曲线上的N点无限地(想象力比知识重要~)接近M点时,即时,,x,0

, 曲线的弧长为转化为直线(切线MP)。此时,(增量等于微分)。 MN,,s,s,ds 根据导数与微分的关系、导数与积分的关系,由基本初等函数的求导公式和积分公式,可以直接推出其微分和积分公式。 2 函数的导数我们是这样定义的: 设函数在点x0处及其近旁有定义,当自变量 y,f(x) x在x0处有增量时,相应地函数y有增量。 ,x ,y,f(x,,x),f(x),, ,y 的极限存在,这个极限称为函数y=f(x)在点x0处的如果 lim ,x,0,x 导数(或称为变化率),记为: y, fx,,x,fx()(),,,lim,y, limx,x,x,00x,,x,0 ,x,y如果极限不存在,就说函数y=f(x)在点x0处不可导。 lim ,x,0,x 根据导数的定义,求函数 y=f(x) 的导数的三个步骤: ,y,f(x,,x),f(x)1.求增量: (1) ,yf(x,,x),f(x)2.算比值: , ……(2) ,x,x ,yfx,,x,fx()()3.取极限: ,y,,limlim,x,0,x,0,x,x (3) 2y,x例1 求函数的导数。 解: (1)求增量: 222,,,,,yfxxfx()(),,,,,,,,()2()xxxxxx ,y(2)算比值: ,2x,,x

相关主题
文本预览
相关文档 最新文档