当前位置:文档之家› 四大波谱

四大波谱

四大波谱
四大波谱

红外光谱

原理:用一定频率的红外光聚焦照射被分析的样品时,如果分子中某个基团的振动频率与照射红外线频率相同便会产生共振,从而吸收一定频率的红外线,把分子吸收红外线的这种情况用仪器记录下来,便能得到全面反映样品成分特征的光谱,进而推测化合物的类型和结构。应用:1高分子材料的分析与鉴别2高分子材料反应研究3高分子材料共混相容性研究

紫外光谱

原理:用一定频率的红外光聚焦照射被分析的样品时,如果分子中某个基团的振动频率与照射红外线频率相同便会产生共振,从而吸收一定频率的红外线,把分子吸收红外线的这种情况用仪器记录下来,便能得到全面反映样品成分特征的光谱,进而推测化合物的类型和结构。应用:1高分子定性分析2高分子定量分析3聚合物组成分析

质谱

原理:使待测样品分子汽化,用具有一定能量的电子轰击气态分子,使失去一个电子而成为带正电的分子离子,分子离子还可能断裂成各种碎片离子,所有的离子在电场和磁场的综合作用下按质荷比依次排列而得到质谱图。

应用:1高分子材料中间体和添加剂的分析2聚合物结构表征3热解机理的研究

核磁共振

原理:核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系

应用:1分子量测定2端基分析3支华度分析4聚合物构象分析

DSC在高分子材料的应用:

1熔点、沸点测定2物质鉴定(借助标准物的预先测定或标准数据);3各种热效应(蒸发、升华、熔融、结晶、相变、生成等)焓变值测定和物质鉴定;4 比热的DSC测定;5玻璃化转变、热容转变;

DMA在高分子材料的应用

1研究高聚物的玻璃化转变

2高分子材料的相容性表征

3表征高分子材料的阻尼性能

4研究热固性材料的固化过程

扫描电镜

观察

制样

影响DSC测试的因素

1,样品量,样品量少分辨率就高,但是灵敏度下降,一般根据热效应大小调节样品量。最好3~5mg

2,升温速率,升温速率越快,灵敏度提高,分辨率下降。一般5~20度每分钟

3,气体,一般使用惰性气体,如氮气,氨气,氩气等等,这样不会产生氧化反应峰

应用:

1测定玻璃化转变

2测定结晶温度与结晶焓变

3测试材料的氧化稳定性

4测定聚合物的结晶度

影响DTA测试的因素

1、升温速率对热分析实验结果的影响

2、试样用量与粒度对热分析实验的影响

3、气氛对热分析实验结果的影响

4、浮力,对流和湍流对TG曲线的影响

5、装样的紧密程度对实验结果的影响

哪些方法测玻璃化温度:DSC.DMA.DTA.静态热机械分析

影响核磁共振的因素:诱导效应,氢键作用,范德华力

影响红外的因素:诱导效应,共轭效应,偶极场效应,振动耦合

影响紫外的因素:位阻影响,跨环反应,溶剂效应,体系pH值影响。

影响质谱的因素:轰击有机分子的角度,速率等因素

《波谱分析》教案

《波谱分析》教案 一、前言 《波谱分析》是应用四种谱学方法(紫外光谱、红外光谱、核磁共振波谱和质谱)研究和鉴定有机化合物结构相关知识的一门课 程。 1. (3).1H-NMR、13C-NMR的解析方法。 2.教学难点 (1).四种谱学的原理和规律。 (2).四种光谱学的综合解析。 四、教学方法与手段

1.教学方法 能采用启发式,谈话式、讨论式等一些先进教学方法。并能采取灵活多样的方式教学,注重创新能力培养。全部课程实现了多媒 体教学。 2.教学手段 一. (1 概念 (2 二. 紫外-可见光谱是一种电子吸收光谱,它测量的是分子中电子从基态向激发态跃迁的能量和概率。一般有机药物分子中典型的电子跃迁都是从最高占用轨道或非键轨道向最低未占轨道的跃迁,尤其对一些共轭体系,可获得相关的结构信息。

红外光谱源于分子内基团的振动吸收,可以提供有机分子结构以及对称性的大量信息。一些功能基的振动吸收总在确定的波数区间出现其特征吸收,而不会因含该功能基的分子变化而变化(如:羰基红外吸收总在1715cm-1左右出现)。所以红外光谱特别适用于 分子中功能基的鉴定。 分辨质谱则可免做元素分析)方法外,还要有目前国内外普遍使用的红外、紫外、核磁和质谱,必要时还应增加其他方法,如圆二色散(CD)、X光衍射(粉末、单晶)、热分析等。 3.《波谱解析》课程基本要求? 了解波谱分析与经典有机结构分析的区别;

了解四大波谱的基本原理,会初步应用四大谱学技术解析典型有 机化合物的分子结构; 熟悉常见基团的特征频率和不同环境下氢和碳的化学位移与偶合 规律等; 熟悉常见有机化合物的质谱裂解规律; 第二章紫外光谱(4学时) 原子或分子的能量组成与分子轨道、紫外光谱与电子跃迁、紫外光谱的λmax及其主要影响因素以及芳香化合物的紫外光谱特征、推测不饱和化合物λmax峰位的经验规则、共轭系统的λmax

波谱解析

光谱分析基本定律——Lambert-Beer定律: 电磁波的波粒二象性——Planck方程: 电磁辐射按波长顺序排列称为电磁波谱(光波谱)。分区依次(短→长)为: γ射线区→X射线区→紫外光区(UV)→可见光区→红外光区(IR)→微波区→射频区(NMR)Franck-Condon原理:①电子跃迁时认为核间距r不变,发生垂直跃迁;②电子能级跃迁时必然同时伴有多种振动能级和转动能级的变化,同理振动能级跃迁时必然同时伴有多种转动能级的变化。 有机波谱的三要素:谱峰的①位臵(定性指标)、②强度(定量指标)和③形状。 【提请注意】对《天然药物化学成分波谱解析》(以下简称“教材”)P.5图1-8不理解的同学,应注意到轨道其中的“+”“-”表示的是波函数的位相,而不是电性!

E总=E0+E平+E转+E振+E电 电子跃迁类型: ①σ→σ*、②n→σ*、③π→π*、④n→π*,其中,后两者对紫外光谱有意义。此外,还包括主要存在于无机物的⑤电荷迁移跃迁和⑥配位场跃迁。 分子和原子与电磁波相互作用,从一个能级跃迁到另一个能级要遵循一定的规律,这些规律称为光谱选律。紫外光谱所遵循的选律包括:①自选旋律和②对称性选律。 影响紫外光谱最大吸收波长(λmax)的主要因素: ①电子跃迁类型; ②发色团(生色团)和助色团; ③π-π共轭、p-π共轭和σ-π超共轭(弱); ④溶剂和介质; 〃规律:溶剂极性增大,n→π*跃迁发生篮移(紫移),π→π*跃迁发生红移。 〃总结:溶剂的选择原则即紫外透明、溶解度好、化学惰性。 〃例子:甲醇、95%乙醇、环己烷、1,4-二氧六环。 【相关概念】等色点:同一化合物在不同pH条件下测得的紫外光谱曲线相交于一点,此即~。 ⑤顺反异构、空间位阻和跨环效应。 影响紫外光谱吸收强度(εmax)的主要因素: εmax=0.87×1020×P(跃迁几率)×α(发色团的靶面积) 【提请注意】严格地说,跃迁的强度最好是用吸收峰下的面积来测量(如果是以ε对ν作图)! 吸收带:跃迁类型相同的吸收峰称为~。包括:①R带(基团型谱带)、②K带(共轭型谱带)、③B带(苯型谱带)、④乙烯型谱带(E1带、E2带)。 【学习交流】不同文献对苯的吸收带命名不甚一致,有时也把E1带、E2带和B带分别叫做180带、200带和256带。为什么? 紫外光谱中计算λmax的四大经验规则: 基 ①Woodward-Fieser规则Ⅰ(适用于共轭二烯、共轭三烯和共轭四烯); ②Fieser-Kuhns规则(适用于共轭多烯); λmax=114+5M+n(48-1.7n)-16.5R endo-10R exo ③Woodward-Fieser规则Ⅱ(适用于α , β不饱和羰基化合物);

波谱法

波谱法:物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收、散射或转动某种波长的光,将入射光在经过样品后强度的变化或散射及转动光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度及强度的关系图,用于物质结构、组成及化学变化的分析,这称为波谱法 生色基:是指分子中某一基团或体系,能在一定的波段范围内产生吸收而出现谱带,这一基团或体系即为生色基 红移和蓝移:由于存在取代基作用或溶剂效应生色基的吸收峰向长波移动称为红移;相反,向短波方向移动称为蓝移 R带:R带为n—π﹡跃迁引起的吸收带,产生该吸收带的发色团是分子中的p—π共轭体系。R带的特征是强度弱,?<100,吸收峰一般在270纳米以上 K带:k带是有π—π﹡跃迁引起的吸收带,产生该吸收带的发色基团是分子中的共轭系统而孤立的不饱和键的π—π﹡吸收带一般在真空紫外区难以看到。K带的特点是吸收峰强?》1000 分子结构对基团吸收带位置的影响 1、诱导效应 2、共轭效应 3、偶极场效应 4、张力效应 5、氢键的影响 6、位阻效应 7、偶合效应 8、互变异构的影响 自旋—晶格弛豫:核(自旋体系)与环境(又称晶格)进行能量交换,高能级的核把能量以热运动的形式传递出去这个弛豫过程需要时间其半衰期用T1表示,T1越小表示弛豫过程效率越高 化学位移;不同的质子,由于在分子中所处的化学环境不同,因此在不同的磁场强度下共振的现象称为化学位移 影响化学位移的因素 1、诱导效应 2、共轭效应 3、各向异性效应 4、范德华效应 2、5、氢键的效应6、溶剂效应7、位移试剂的影响8、温度的影响 化学等价:有相同化学位移值的核是化学等价的 磁等价:若分子中化学等价的核对任何其他一个原子核都有相同的耦合作用,则这些化学位移等价的核称为磁等价 磁等价一定化学等价化学等价不一定磁等价 各向异性效应:化学键尤其是π键将产生一个小磁场,并通过空间作用影响临近的氢核。其特征是有方向性,其作用的大小及正负是距离与方向的函数,所以称为各向异性效应 屏蔽效应:有些区域的小磁场方向和外加磁场方向相反,消弱了外加磁场,受影响的氢核的共振移向高场?值减小是屏蔽效应 单键的各向异性

波谱分析

光谱在木素结构上的应用 摘要 介绍了木质素的结构以及利用现状,详细综述了木质素结构在研究中主要的分析方法: 紫外光谱、红外光谱、质谱、核磁共振技术等,并指出了木素结构研究今后的发展方向。 关键词:木质素;分析方法;核磁共振技术 The Application of spectrum in the Lignin Structure ABSTRACT Introduces the structure of lignin and utilization status, detailedly review of the main analysis method in the study of lignin structure: UV, IR, MS, NMR, and points out the future development direction of the structure of lignin. Keywords:lignin; analysis method; magnetic resonance imaging

木素是造纸植物纤维原料中三大主要成分之一[1],其含量、化学结构对制浆造纸性能有着重大影响,不同植物的木素其结构有所不同,不同处理方法所得同一植物木素其结构也常有差异。由于木素结构的多样性、复杂性和易变性,使其结构研究成为科学工作者长期探索的课题。 为了了解木素结构特征, 通常采用化学降解的方法[2]。例如,利用碱性硝基苯氧化降解可以测定愈疮木基、紫丁香基和对羟基苯基的比例;用酸解法生成希伯尔酮;高锰酸钾氧化法生成甲基化的苯甲酸。这些方法只能测定非缩聚结构的木素, 不能反映木素结构的全部情况。近年来, 也有一些新方法[3], 如: 硫代酸解结合脱硫化反应( Thioacidolysis/desulfuration) 技术可以测定包括缩聚结构的木素组成;利用芳核交换与高碘酸和硝基苯氧化结合的技术可以分析纸浆中的残余木素等。所有这些方法都需要对木素结构进行破坏, 且费时多。故人们的视线更多的转移到了非破坏性的光谱分析方法。 1 木素的结构 一般认为木素的结构是由醚键连接的甲氧化的苯酚环构成的,用放射性碳元素标记进行的大量研究证实木素有3种苯丙烯醇结构: 对羟基苯丙烯醇( p-hydroxycinnamylalcohol),也叫对香豆醇; 松柏醇( Coniferylalcohol) ; 芥子醇( Sinapylalcohol)。它们是所有木质素的基本前体和构造单元。3 种苯丙烯醇结构之间的连接即构成了木素的结构。 2 木素的分析方法[4] 近几十年来,各种分析技术已被用于木素结构研究中,目前所获得的所有关于木素结构的信息都来源于对木素降解产物或是直接对分离出的木素本身进行的各种分析方法的研究。目前,用于木素结构分析的分析方法主要有紫外光谱、红外光谱、高效液相色谱、质谱、核磁共振技术等,而且更新的分析技术也将进一步应用于木素的结构分析中。 2.1 紫外吸收光谱[5] 木素作为一芳香族化合物(苯基丙烷结构)和它的各种发色基团,对紫外光有强烈吸收,而碳水化合物则几乎没有吸收,所以可以在碳水化合物存在的情况下

波谱分析教学大纲

教学大纲 课程名称现代波谱分析课程负责人刘博静 开课系部化学与化工学院教研室第一基础教研室 二0一五年九月一日

《现代波谱分析》教学大纲 一、课程基本信息 课程编号: 中文名称:现代波谱分析 英文名称:Modern Spectrum Analysis 适用专业:应用化学专业 课程性质:专业方向选修课 总学时:36 (其中理论教学28学时,实验教学8学时) 总学分:2 二、课程简介 《现代波谱分析》是应用本科专业学生在掌握《无机化学》、《分析化学》和仪器分析》等课程知识后开设的一门专业选修课,该课程内容主要包括:有机质谱、核磁共振氢谱、核磁共振碳谱、红外和拉曼光谱、紫外和荧光光谱的基本原理、仪器简介与实验技术、基本规律与影响因素、谱图解析的基本程序与应用,以及谱图的综合解析。通过本课程的学习使学生了解波谱分析法的概念、作用以及各波谱之间的互相联系;掌握各分析法的基本原理和谱图特征;掌握应用四大波谱进行结构解析的基本程序;了解有关的实验技术;培养并提高学生的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生后续课程学习、毕业论文(设计)和研发工作奠定良好的理论基础。 三、相关课程的衔接 已修课程:有机化学、仪器分析、分析化学 并修课程:工业分析食品分析 四、教学的目的、要求与方法 (一)教学目的 本课程的教学环节包括课题讲授,学生自学,习题讲解和期末考试,通过以上学习,要求学生掌握和了解四大谱图的基本理论及分析方法,培养并提高学生

的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生今后毕业论文和工作奠定良好的理论基础。 (二)教学要求 通过本课程的学习,使学生了解有机化合物结构鉴定的现代波谱分析手段、方法;掌握结构解析的原理、规律和过程;掌握波谱的特征数据和化合物结构的关系以及在有机化合物结构鉴定中的应用;培养学生单独或综合利用波谱学技术解决实际问题的能力。 (三)教学方法 以讲授式为主,其它教学方法为辅。 五、教学内容(实验内容)及学时分配 第一章紫外光谱(4学时) 教学内容: 1、紫外光谱基本原理 2、紫外光谱仪 3、各类化合物紫外吸收光谱 4、紫外光谱的应用 本章重点:紫外光谱在结构解析中的应用 本章难点:紫外吸收与分子结构的关系、影响因素;紫外光谱在结构解析中的应用 第二章红外光谱(6学时) 教学内容: 1、红外光谱的基本原理 2、影响红外吸收频率的因素 3、红外光谱仪及样品制备技术 4、各类化合物的红外特征光谱 5、红外图谱解析 6、拉曼光谱简介 7、红外光谱技术的进期及应用 本章重点:利用红外光谱判断常见简单化合物的官能团及结构。

波谱图的分析原理,方法和典型实例分析

波谱图的分析原理,方法和典型实例分析 (荆州市神舟纺织有限公司)欧怀林 一·波谱图分析的基本原理与方法: 1.机械波和牵伸波的概念与计算方法: ⑴.机械波在波谱图中,呈现“烟囱”柱形状,在一个或多个频道上出现。当宽度占据二个频道时称为双柱机械波;超过二个频道以上时称为多柱机械波。 ⑵.机械波长计算公式: a.牵伸倍数法:λ=πDxE。λ-产生机械波的回转部件的波长;Dx-产生机械波的回转部件的直径;E-输出罗拉(前罗拉)到产生机械波的回转部件的牵伸倍数。 b.传动比法:λ=πD1i。λ-产生机械波的回转部件的波长;D1-输出罗拉(前罗拉)的直径;i-产生机械波的回转部件到输出罗拉(前罗拉)之间的传动比。 c.速度法:λ=V/n。λ-产生机械波的回转部件的波长;V-出条速度;n-产生机械波的回转部件的转速。 下图为典型的机械波波谱图: 下面几张图例为前道工序产生的机械波,随后道工序牵伸后其波长变化情况: 上图为并条胶辊产生的机械波波谱图。

上图为对应的粗纱波谱图。 上图为对应的细纱波谱图。 ⑶.机械波危害程度的评价:当基本波谱上的峰高超过该峰所在波长处基本波谱高度的50%时,会对织物造成不良影响。对于连续两个或者多个机械波,其波峰必须叠加后来评价。机械波产生的疵点绝大多数呈现为规律性,机械波波峰越高,曲线图上的振幅就越大,疵点在布面体现越明显。 ⑷.牵伸波在波谱图中,跨越三个或三个以上频道,形成像小山形隆起状的波形。 ⑸.牵伸波计算公式:λ=KEL W。E-输出罗拉到产生牵伸波部位的牵伸倍数;L W-纤维的平均长度;K-常数,细纱2.75;粗纱3.5;并条4.0;精梳条4.0;气流纺5.0。 ⑹.牵伸波危害程度的评价:牵伸波波峰越高,曲线图上的振幅就越大,疵点在布面的体现越明显。牵伸波波长不像机械波波长那样基本固定,而在一定范围内波动,故触发多个频道,形成小山包状的波形。典型的牵伸波波谱图如下: 2.波谱仪及各种波形分解的基本原理及特点: 基于经济性的考虑,波谱仪对波谱的识别分析是建立在正弦波的基础上的。而纺纱过程中产生的机械波大多数是不完全遵循正弦规律波动的。遵照“傅里叶”公式,任何一个非正弦波都可以分解为多个正弦波,因此,波谱仪可以对这些非

有机波谱分析考试题库及答案

第二章:紫外吸收光谱法 一、选择 1. 频率(MHz)为4.47×108的辐射,其波长数值为 (1)670.7nm (2)670.7μ(3)670.7cm (4)670.7m 2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了 (1)吸收峰的强度(2)吸收峰的数目(3)吸收峰的位置(4)吸收峰的形状 3. 紫外光谱是带状光谱的原因是由于 (1)紫外光能量大(2)波长短(3)电子能级差大 (4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 4. 化合物中,下面哪一种跃迁所需的能量最高 (1)ζ→ζ*(2)π→π*(3)n→ζ*(4)n→π* 5. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大 (1)水(2)甲醇(3)乙醇(4)正己烷 6. 下列化合物中,在近紫外区(200~400nm)无吸收的是 (1)(2)(3)(4) 值最大的是 7. 下列化合物,紫外吸收λ max (1)(2)(3)(4) 二、解答及解析题 1.吸收光谱是怎样产生的?吸收带波长与吸收强度主要由什么因素决定? 2.紫外吸收光谱有哪些基本特征? 3.为什么紫外吸收光谱是带状光谱? 4.紫外吸收光谱能提供哪些分子结构信息?紫外光谱在结构分析中有什么用途又有何局限性? 5.分子的价电子跃迁有哪些类型?哪几种类型的跃迁能在紫外吸收光谱中反映出来?

6.影响紫外光谱吸收带的主要因素有哪些? 7.有机化合物的紫外吸收带有几种类型?它们与分子结构有什么关系? 8.溶剂对紫外吸收光谱有什么影响?选择溶剂时应考虑哪些因素? 9.什么是发色基团?什么是助色基团?它们具有什么样结构或特征? 10.为什么助色基团取代基能使烯双键的n→π*跃迁波长红移?而使羰基n→π*跃迁波长蓝移? 11.为什么共轭双键分子中双键数目愈多其π→π*跃迁吸收带波长愈长?请解释其因。 12.芳环化合物都有B吸收带,但当化合物处于气态或在极性溶剂、非极性溶剂中时,B吸收带的形状有明显的差别,解释其原因。 13.pH对某些化合物的吸收带有一定的影响,例如苯胺在酸性介质中它的K吸收带和B吸收带发生蓝移,而苯酚在碱性介质中其K吸收带和B吸收带发生红移,为什么?羟酸在碱性介质中它的吸收带和形状会发生什么变化? 14.某些有机化合物,如稠环化合物大多数都呈棕色或棕黄色,许多天然有机化合物也具有颜色,为什么? 15.六元杂环化合物与芳环化合物具有相似的紫外吸收光谱,请举几个例子比较之,并解释其原因。 16.紫外光谱定量分析方法主要有哪几种?各有什么特点? 17.摩尔吸光系数有什么物理意义?其值的大小与哪些因素有关?试举出有机化合物各种吸收带的摩尔吸光系数的数值范围。 18.如果化合物在紫外光区有K吸收带、B吸收带和R吸收带,能否用同一浓度的溶液测量此三种吸收带? 19.紫外分光光度计主要由哪几部分所组成?它是怎样工作的? 20.计算波长为250nm、400nm的紫外光频率、波数及其所具有的能量(以eV和kJ·mol-1为单位表示)。 21.计算具有1.50eV和6.23eV能量光束的波长及波数。 22.已知丙酮的正己烷溶液有两吸收带,其波长分别为189nm 和280nm,分别属π→π*跃迁和n→π*跃迁,计算π,n,π* 轨道之间的能量差。 23.画出酮羰基的电子轨道(π,n,π*)能级图,如将酮溶于乙醇中,其能级和跃迁波长将发生什么变化?请在图上画出变化情况。 24.化合物A在紫外区有两个吸收带,用A的乙醇溶液测得吸收带波长λ 1=256nm,λ 2 =305nm,而用A的己烷 溶液测得吸收带波长为λ 1=248nm、λ 2 =323nm,这两吸收带分别是何种电子跃迁所产生?A属哪一类化合物? 25.异丙叉丙酮可能存在两种异构体,它的紫外吸收光谱显示 (a)在λ=235nm有强吸收,ε=1.20×104,(b)在λ>220nm区域无强吸收,请根据两吸收带数据写出异丙丙酮两种异构体的结构式。

波谱分析

一、概述 元素分析:C.H.N.X.S.P ℅含量,经典分析:m.p ,b.p ,折光率 官能团特征反应:生成衍生物 缺点:繁琐,费时,不准确,有干扰 现代有机分析的两大支柱 1.色谱分析:GC, HPLC, TLC 裂解色谱成分分析2.波谱分析:UV,IR,NMR,MS (有机)结构分析 色谱分析:具有高效分离能力可以把复杂有机混合物分离成单一的纯组分。为有机结构分析服务 波谱分析:纯样品进行结构分析 微量化 测量快 结果准确 重复性好 除MS 之外,可回收样品 1.灵敏度:MS >UV >IR >1HNMR >13CNMR MS:微克级 UV: ppb 级 IR :毫克级(可微克级,FTIR )( 1HNMR :0.5mg 13CNMR : 0.5mg )可回收 质谱(MS )—分子量及部分结构信息、红外光谱(IR )—官能团种类、紫外—可见光谱(UV / Vis )—共轭结构、核磁共振谱(NMR )—C-H 骨架及所处化学环境 第二章 紫外-可见吸收光谱 有机化合物的UV 吸收位于200-400nm 之间(近紫外),V 吸收位于400-800nm 之间(可见),真空(远)U V :< 200 n m σ→ σ*跃迁吸收,石英器皿应用范围 :2 0 0 – 3 0 0 n m 、玻璃器皿应用范围 :> 3 0 0 n m 郎伯-比耳(Beer-Lambert)定理 A = l o g I 0 / I = l o g 1 / T = εc L 四种主要跃迁所需能量ΔΕ大小顺序:n →π*<π→π*< n →σ*< σ→σ* π→π* K 带(跃迁允许)ε 10 4~5 n →σ* R 带(跃迁禁阻) ε≯2 0 0 0 溶剂效应 溶剂极性增大,π—π*跃迁向红移,ΔE = h ν=h/λ、n —π*跃迁向蓝移,精细结构消失 有机化合物的电子吸收光谱:饱和烃 仅有σ→σ* 跃迁 吸收光谱 λ<200nm 含杂原子饱和烃 含O 、S 、 N 和卤素等的 饱和烃衍生物则有σ→σ* 及n →σ* 跃迁需能量大。 150~250nm 发(生)色团:能吸收紫外或可见光而跃迁的基团,主要为含有π键的不饱和基团。如-C=C-、-C=O 、-NO 2、—N =N —、乙炔基、腈基等。 增(助)色团: 含杂原子的饱和基团。如-OH 、-OR 、-NH 2、-NHR 、-X 、-SH,本身无增色功能,不能吸收λ>200nm 光,但当它们与发色团相连时, 会发生n-π*共轭,E π→π*降低,使发色团的吸收波长移向长波,吸收强度(ε)增加 不饱和烃:有σ→σ*, π→π* 跃迁 单个双键,λ在远紫外,含两个双键,但不共轭,则与单个双键类似 共轭双键,λ红移,共轭体系越大红移越明显。当双键与杂原子相联则π→π* 红移,吸收增强 当双键上含杂原子又与杂原子相联,则 n →π* 蓝移 醛、酮、羧酸、酯有σ→σ*,n →π*,λmax =270~300nm,ε10~20, R 带,醛酮的特征 n →σ*, λmax ~180nm,ε10~20, π→π* , λmax ~150nm,ε10~20 Woodward-Fieser 经验规律:(π-π* K 带) 5.α,β—不饱和醛、酮 C C C C C O αβγδ δC C C O αββ

波谱分析期末试卷

波谱解析法期末综合试卷 班级:姓名:学号:得分: 一、判断题(1*10=10分) 1、分子离子可以是奇电子离子,也可以是偶电子离子。………………………(F ) 2、在紫外光谱分析谱图中,溶剂效应会影响谱带位置,增加溶剂极性将导致K带紫移,R带红 移。... ……. …………………………………………………………….............(R) 3、苯环中有三个吸收带,都是由σ→σ*跃迁引起的。…………………….......…( F ) 4、指纹区吸收峰多而复杂,没有强的特征峰,分子结构的微小变化不会引起这一区域吸收峰的变 化。..........................................................................................................….. (F) 5、离子带有的正电荷或不成对电子是它发生碎裂的原因和动力之一。..................(R ) 6、在紫外光谱中,π→π*跃迁是四种跃迁中所需能量最小的。…………………..(F) 7、当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要释放能量,从原来的基态振动能级跃迁到 能量较高的振动能级。………………………….…(F) 8、红外吸收光谱的条件之一是红外光与分子之间有偶合作用,即分子振动时,其偶极矩必须发生变 化。……………………………………..………………………….(R) 9、在核磁共振中,凡是自旋量子数不为零的原子核都没有核磁共振现象。..........(F) 10、核的旋磁比越大,核的磁性越强,在核磁共振中越容易被发现。……….......(R ) 二、选择题(2*14=28分) 1、含O、N、S、卤素等杂原子的饱和有机物,其杂原子均含有未成键的(B )电子。由于其所占据的非键轨道能级较高,所以其到σ*跃迁能(A )。 1 . A. π B. n C. σ 2. A.小 B. 大C.100nm左右 D. 300nm左右 2、在下列化合物中,分子离子峰的质荷比为偶数的是…………………………(A ) A.C9H12N2 B.C9H12NO C.C9H10O2 D.C10H12O 3、质谱中分子离子能被进一步裂解成多种碎片离子,其原因是……………………..(D ) A.加速电场的作用。 B.电子流的能量大。 C.分子之间相 互碰撞。 D.碎片离子均比分子离子稳定。 4、在化合物的紫外吸收光谱中,哪些情况可以使化合物的π→π*跃迁吸收波长蓝移。..................................................................................................................................(B ) A.苯环上有助色团 B. 苯环上有生色团 C.助色团与共轭体系中的芳环相连 D. 助色团与共轭体系中的烯相连 5、用紫外可见光谱法可用来测定化合物构型,在几何构型中,顺式异构体的波长一般都比反式的对应值短,并且强度也较小,造成此现象最主要的原因是............…................( B ) A.溶剂效应 B.立体障碍C.共轭效应 D. 都不对

孟令芝-有机波谱分析-第三版课后习题及答案

孟令芝-有机波谱分析-第三版课后习题及答案

第二章 质谱习题及答案 解:A 、C 2H 3Cl ,B 、C 2H 6S 分子离子峰为偶数表明含有偶数个氮或不含氮。 C x H y N z O w S S 不含氮 含氮 2 2 RI(M+1) 100 1.10.370.8RI(M) RI(M+2)(1.1 ) 1000.2 4.4RI(M)200 x z s x w s ?=++?=++ 2 2 RI(M+1) 100 1.10.370.8RI(M) RI(M+2)(1.1) 1000.2 4.4RI(M)200 x z s x w s ?=++?=++ A 、RI(M+1) 4.8 100 1.10.37100RI(M)100 x z ?=+=?,设z=1,则x=4.02,C 4N 分子量>62,不合理。所以无氮元素。 同理B ,设z=1,则x=3.11,C 3N 分子量>62,不合理。所以无氮元素。 同位素相对丰度表,p26表2.3。 对于A ,RI 相对丰度,M :(M+2)=3:1,则A 中有氯原子,推断其分子式为CH 2=CHCl 对于A ,RI 相对丰度,M :(M+2)=25:1,则A 中有硫原子,推断其分子式CH 3CH 2SH 解:C 2H 2Cl 2,ClCH=CHCl

m/z=98分子离子峰,M :(M+2)=6:1,有两个氯。同位素相对丰度表,p26表2.3。 M-35=98-Cl ,M-36=98-HCl ,M-37=98-HCl-H 解:m/z 142=M -43(?C 3H 7),m/z 142=C 9H 20N ,(n-C 4H 9)3N, 分子离子峰为奇数表明含有奇数个氮。 C x H y N z O w S S RI(M+1)10 100 1.10.37100RI(M)100x z ?=+=?,设z=1,则x=8.75,若z=3,则x=8.08,不合理。M :(M+1)=10:1,表明不含有卤素和氧硫。 m/z 44=CH 2=N +HCH 3,m/z 100=142-42(C 3H 6) m/z 57=M -43(?C 3H 7), m/z 44=57-13(CH 3),CH 2=N +HCH 3, 第四章 红外课后习题及答案

波谱分析习题解析

核磁共振波谱分析法习题 二、选择题 1.自旋核7Li、11B、75As, 它们有相同的自旋量子数Ι=3/2, 磁矩μ单位为核磁子,μLi=3.2560, μB=2.6880, μAs =1.4349 相同频率射频照射,所需的磁场强度H大小顺序为 ( ) A B Li>B B>B As B B As>B B>B Li C B B>B Li>B As D B Li>B As>B Li 2.在 O-H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) A 2 B 1 C 4 D 3 3.下列化合物的1H NMR谱,各组峰全是单峰的是 ( ) A CH3-OOC-CH2CH3 B (CH3)2CH-O-CH(CH3)2 C CH3-OOC-CH2-COO-CH3 D CH3CH2-OOC-CH2CH2-COO-CH2CH3 4.一种纯净的硝基甲苯的NMR图谱中出现了3组峰, 其中一个是单峰, 一组是二重峰,一组是三重峰。该化合物是下列结构中的 ( ) 5.自旋核7Li、11B、75As, 它们有相同的自旋量子数Ι=3/2, 磁矩μ单位为核磁子,μLi=3.2560, μB=2.6880, μAs =1.4349 相同频率射频照射, 所需的磁场强度H大小顺序为( )

A B Li>B B>B As B B As>B B>B Li C B B>B Li>B As D B Li>B As>B Li 6.化合物CH3COCH2COOCH2CH3的1H NMR谱的特点是 ( ) A 4个单峰 B 3个单峰,1个三重峰 C 2个单峰 D 2个单峰,1个三重峰和1 个四重峰 7.核磁共振波谱法中乙烯、乙炔、苯分子中质子化学位移值序是 ( ) A 苯 > 乙烯 > 乙炔 B 乙炔 > 乙烯 > 苯 C 乙烯 > 苯 > 乙炔 D 三者相等 8.在下列因素中,不会使NMR谱线变宽的因素是 ( ) A 磁场不均匀 B 增大射频辐射的功率 C 试样的粘度增大 D 种种原因使自旋-自旋弛豫(横向弛豫)的速率显著增大 9.将(其自旋量子数I=3/2)放在外磁场中,它有几个能态 ( ) A 2 B 4 C 6 D 8 10.在下面四个结构式中 哪个画有圈的质子有最大的屏蔽常 数?() 11.下图四种分子中,带圈质子受的屏蔽作用最大的是( )

《波谱分析》课后练习

第一章绪论 1、指出下列电磁辐射所在的光谱区(光速3.0×1010cm/s) (1)波长588.9nm(2)波数400cm-1 (3)频率2.5×1013Hz(4)波长300nm 2、阐述波谱的产生 第二章:紫外吸收光谱法 一、选择 1. 频率(MHz)为4.47×108的辐射,其波长数值为 (1)670.7nm (2)670.7μ(3)670.7cm (4)670.7m 2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了 (1)吸收峰的强度(2)吸收峰的数目 (3)吸收峰的位置(4)吸收峰的形状 3. 紫外光谱是带状光谱的原因是由于 (1)紫外光能量大(2)波长短(3)电子能级差大 (4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 4. 化合物中,下面哪一种跃迁所需的能量最高 (1)σ→σ*(2)π→π*(3)n→σ*(4)n→π* 5. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大 (1)水(2)甲醇(3)乙醇(4)正己烷 6. 下列化合物中,在近紫外区(200~400nm)无吸收的是 (1)(2)(3)(4) 7. 下列化合物,紫外吸收λmax值最大的是 (1)(2)(3)(4)

二、解答及解析题 1.吸收光谱是怎样产生的?吸收带波长与吸收强度主要由什么因素决定? 2.紫外吸收光谱有哪些基本特征? 3.为什么紫外吸收光谱是带状光谱? 4.紫外吸收光谱能提供哪些分子结构信息?紫外光谱在结构分析中有什么用途又有何局限性? 5.分子的价电子跃迁有哪些类型?哪几种类型的跃迁能在紫外吸收光谱中反映出来? 6.影响紫外光谱吸收带的主要因素有哪些? 7.有机化合物的紫外吸收带有几种类型?它们与分子结构有什么关系? 8.溶剂对紫外吸收光谱有什么影响?选择溶剂时应考虑哪些因素? 9.什么是发色基团?什么是助色基团?它们具有什么样结构或特征? 10.为什么助色基团取代基能使烯双键的n→π*跃迁波长红移?而使羰基n→π*跃迁波长蓝移? 11.为什么共轭双键分子中双键数目愈多其π→π*跃迁吸收带波长愈长?请解释其因。 12.芳环化合物都有B吸收带,但当化合物处于气态或在极性溶剂、非极性溶剂中时,B吸收带的形状有明显的差别,解释其原因。文档收集自网络,仅用于个人学习 13.pH对某些化合物的吸收带有一定的影响,例如苯胺在酸性介质中它的K吸收带和B吸收带发生蓝移,而苯酚在碱性介质中其K吸收带和B吸收带发生红移,为什么?羟酸在碱性介质中它的吸收带和形状会发生什么变化?文档收集自网络,仅用于个人学习 14.某些有机化合物,如稠环化合物大多数都呈棕色或棕黄色,许多天然有机化合物也具有颜色,为什么?文档收集自网络,仅用于个人学习 15.六元杂环化合物与芳环化合物具有相似的紫外吸收光谱,请举几个例子比较之,并解释其原因。 16.紫外光谱定量分析方法主要有哪几种?各有什么特点? 17.摩尔吸光系数有什么物理意义?其值的大小与哪些因素有关?试举出有机化合物各种吸收带的摩尔吸光系数的数值范围。文档收集自网络,仅用于个人学习 18.如果化合物在紫外光区有K吸收带、B吸收带和R吸收带,能否用同一浓度的溶液测量此三种吸收带?文档收集自网络,仅用于个人学习 19.紫外分光光度计主要由哪几部分所组成?它是怎样工作的?

各种光波谱分析方法的原理及谱图的表示方法

各种光波谱分析方法的原理及谱图的表示方法 分析方法缩写分析原理波谱图的特征结构信息 紫外光谱UV 吸收紫外辐射的 能量,引起分子中电 子能级的跃迁 相对吸收紫 外辐射的能量 随吸收光波长 的变化 吸收峰的位置、强度 和形状,提供分子中不 同电子结构的信息 红外光谱IR 吸收红外辐射的 能量,引起偶极矩净 变化产生的分子振动 和转动能级的跃迁 相对透射红 外辐射的能量 随透射光波长 的变化 谱峰的位置、强度和 形状,提供官能团或化 学键的特征振动频率 核磁共振NMR 在外磁场中,具有核 磁矩的原子核,吸收射 频能量,产生核自旋能 级的跃迁 吸收射频能 量随化学位移 (共振频率)的 变化 谱峰的化学位移、强 度、耦合裂分和耦合常 数,提供H核和C核的 数目、所处的化学环境、 连接方式和几何构型的 信息 有机质谱MS 分子在离子源中被 电离,形成各种离子, 通过质量分析器按不 同m/z分离 以棒图形式 表示离子的相 对峰度随核质 比m/z的变化 分子离子及碎片离子 的质量数及其相对峰 度,提供分子量、元素 组成及结构的信息 拉曼光谱Ram 采用激光照射物 质,引起具有极化率 变化的拉曼活性振 动,产生拉曼散射 散射光能量 随拉曼位移的 变化 谱峰的位置、强度和 形状,提供官能团或化 学键的特征振动频率 电子自旋ESR 在外磁场中,分子 中未成对电子吸收射 频能量,产生电子自 旋能级跃迁 吸收光能量 或微分能量随 磁场强度变化 谱线位置、强度、裂分 数目和超精细分裂常 数,提供未成对电子密 度、分子键特征及几何 构型信息 荧光光谱FS 被电磁辐射激发 后,从最低单数线激 发态回到单线基态, 发射荧光 发射的荧光 能量随光波长 的变化 荧光效率和寿命,提 供分子中不同电子结构 及不同物质之间的相互 作用 X射线电子能谱XPS X射线照射物质表 面,使表面原子中不 同能级的电子激发成 自由电子 XPS测定的 是分子中原子 芯层电子的结 合能(或电离 能)。谱带位置 与原子种类、分 子结构有关 利用物质表面外层价 电子产生的光电子来研 究物质的价态、电子结 构及不同物质之间的相 互作用 X射线多 晶(粉末)衍射光谱XRD 利用X射线作用于 晶体粉末样品产生的 衍射现象 不同衍射角 度(2θ)衍射 线的强度 通过测定晶面间距或 晶体结构参数分析物相 组成、化学组成和晶体 结构

波谱分析知识全书总结

波谱分析(spectra analysis) 波谱分析的内涵与外延: 定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等) 特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等 化合物:一般为纯的有机化合物 分子结构:分子中原子的连接顺序、位置;构象,空间结构 仪器分析(定量),波谱分析(定性) 综合性、交叉科学(化学、物理、数学、自动化、计算机) 作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。 课程要求:本课将在学生学习有机化学、分析化学、物理化学等课程的基础上,系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力。为学习中药化学有效成分的结构鉴定打下基础。 第一章紫外光谱(ultraviolet spectra,UV) 一、电磁波的基本性质和分类 1、波粒二象性 光的三要素:波长(λ),速度(c),频率(v) 电磁波的波动性 光速c:c=3.0 x 1010 cm/s 波长λ :电磁波相邻波峰间的距离。用nm,μm,cm,m 等表示 频率v:v=c/ λ,用Hz 表示。 电磁波的粒子性 光子具有能量,其能量大小由下式决定: E = hν = hc/λ(式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s ) 电磁波的分类

有机化合物的波谱分析方法

五、有机化合物的波谱分析方法 仪器分析技术的发展,特别是波谱技术的发展,能为鉴定有机化合物和确定其结构提供非常有价值的信息。波谱方法具有分析速度快,用量少等优点,已在国内外获得了广泛的应用。本部分简要介绍了紫外、红外、核磁、质谱这四大谱图的原理和应用。 实验二十一紫外-可见光光谱 一、实验目的 了解紫外-可见光光谱。 二、基本原理 1. 基本概念 有机化合物的紫外-可见光光谱是由于分子中价电子的跃迁所形成的。紫外-可见光是电磁波中波长为100~800nm范围的波段。 分子在入射光的作用下,其电子从一个能级(E′)跃迁到另一个能级(E″),就要吸收光子的能量,所吸收光的频率ν决定于两个能级间的能量差,即 E″-E′=hν h为普朗克常数(h = 6.626×10-34J·s)。可见,产生跃迁的两个能级间隔愈小,吸收光的频率愈小,波长愈长;反之,两个能级间的间隔愈大,吸收光的频率愈大,波长愈短。实际上,分子吸收能量是相当复杂的过程。分子的内部运动包括有转动、振动、和电子的运动。分子的能级近似地就由转动能级、振动能级和电子能级所构成。一般分子的转动能级间隔约在0.05eV以下,振动能级间隔约为0.05~1eV,电子能级间隔约为1~20eV。当电子能级改变时,转动能级和振动能级都要发生改变,也要吸收光子能量。所以,由于电子跃迁所形成的电子光谱是相当复杂的,如果仪器的分辨力不够,许多谱线密集在一起就形成谱带。电子光谱一般包括一系列谱带系;不同的谱带系相当于不同的电子跃迁,每个谱带是由于振动能级的改变所形成,谱带内所包含的谱线是由于转动能级的改变所形成的。 如果吸收光谱是以吸收曲线(以吸收强度对波长作图所得到的曲线)表示,吸收曲线将呈现一些峰和谷。每个峰峦相当于谱带,在某些情况下,这些谱带或多或少地表现出明显的齿状结构,这就是所谓振动结构。 关于吸收光谱的吸收强度,在实验上可用Lambet-Beer定律来描述。定律指出:被吸收的入射光的分数正比于光程中分子数目;对于溶液,如果溶剂不吸收,则被溶液所吸收光的分数正比于溶液的浓度。这个定律可用下式表示: D= log (I0 / I) =εcL D称为光密度(或A,吸光度),L吸收层的厚度(cm),c是摩尔浓度,ε是摩尔消光系数,它用来描述分子吸收光的能力,通常以吸收峰位置的波长的消光系数ε或logεmax 来表示。 2. 典型有机化合物电子吸收光谱简介 前面已指出分子的紫外-可见光光谱是分子价电子的跃迁而产生的。 依据分子中化学键的特性和不同电子跃迁的类型,可以帮助我们了解有机化合物电子吸收光谱。有机化合物在远紫外都有强的吸收带。这大多是与分子中σ电子的跃迁有关;而紫外-可见区的吸收带,则几乎都是由于n→π*和π→π*跃迁所产生的。 (1) 若分子中只含有σ单键,则只能有σ→σ*跃迁,吸收带大多在200nm以下。 (2) 若分子中只含有单个的π键,则有π→π*跃迁。几乎所有含隔离双键的化合物,在190nm附近都有强吸收,ε≈10000,这是π键的特性。当分子中引入助色基后,吸收带移向长波,移动情况与取代基的特性有关。但由于有n→π*和π→π*跃迁,而产生两个吸收带。 (3) 若取代基的原子还含有孤对电子时,例如N=O,>C=O,>C=S,-N=N-,-N≡N-,NO2等,则呈现三个吸收带,分别是π→π*、n→π*和n→σ*跃迁。其中n→π*在较长的波长

波谱分析教学大纲

教学大纲 课程名称现代波谱分析 课程负责人刘博静 开课系部化学与化工学院 教研室第一基础教研室 二0一五年九月一日 《现代波谱分析》教学大纲 一、课程基本信息 课程编号: 中文名称:现代波谱分析 英文名称:Modern Spectrum Analysis 适用专业:应用化学专业 课程性质:专业方向选修课 总学时:36 (其中理论教学28学时,实验教学8学时) 总学分:2 二、课程简介 《现代波谱分析》是应用本科专业学生在掌握《无机化学》、《分析化学》和仪器分析》等课程知识后开设的一门专业选修课,该课程内容主要包括:有机质谱、核磁共振氢谱、核磁共振碳谱、红外和拉曼光谱、紫外和荧光光谱的基本原理、仪器简介与实验技术、基本规律与影响因素、谱图解析的基本程序与应用,以及谱图的综合解析。通过本课程的学习使学生了解波谱分析法的概念、作用以及各波谱之间的互相联系;掌握各分析法的基本原理和谱图特征;掌握应用四大波谱进行结构解析的基本程序;了解有关的实验技术;培养并提高学生的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生后续课

程学习、毕业论文(设计)和研发工作奠定良好的理论基础。 三、相关课程的衔接 已修课程:有机化学、仪器分析、分析化学 并修课程:工业分析食品分析 四、教学的目的、要求与方法 (一)教学目的 本课程的教学环节包括课题讲授,学生自学,习题讲解和期末考试,通过以上学习,要求学生掌握和了解四大谱图的基本理论及分析方法,培养并提高学生的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生今后毕业论文和工作奠定良好的理论基础。 (二)教学要求 通过本课程的学习,使学生了解有机化合物结构鉴定的现代波谱分析手段、方法;掌握结构解析的原理、规律和过程;掌握波谱的特征数据和化合物结构的关系以及在有机化合物结构鉴定中的应用;培养学生单独或综合利用波谱学技术解决实际问题的能力。 (三)教学方法 以讲授式为主,其它教学方法为辅。 五、教学内容(实验内容)及学时分配 第一章紫外光谱(4学时) 教学内容: 1、紫外光谱基本原理 2、紫外光谱仪 3、各类化合物紫外吸收光谱 4、紫外光谱的应用 本章重点:紫外光谱在结构解析中的应用 本章难点:紫外吸收与分子结构的关系、影响因素;紫外光谱在结构解析中的应用 第二章红外光谱(6学时) 教学内容:

相关主题
文本预览
相关文档 最新文档