当前位置:文档之家› 蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究
蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究

【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。

【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。

焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发

展并投入生产使用。焰熔法是以Al2O3 粉末为原

料,置于设备上部,原料在撒落过程中通过氢及氧气

在燃烧过程中产生的高温火焰,熔化,继续下落,落

在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生

产设备主要有料筒、锤打机构、筛网、混合室、氢气

管、氧气管、炉体、结晶杆、下降机构、旋转平台等

组成。锤打机构使料筒振动,与筛网合作使粉料少

量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。

提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

相较于焰熔法,提拉法生长的晶体错密度较低,完整性高,因为整个生长装置是安放在封闭的外罩里,所以可以随时观察到生长的情况。

提拉法的改进方法有两种:连续加料提拉法、冷心放肩微量提拉法。连续加料提拉法的在生长过程中可以不断补充原料,晶体尺寸可以不受坩埚内物料的限制长大。连续加料提拉法与改进前相比,多出了一个圆形槽,原料由导管进入槽内,待原料熔化为液体后再进入坩埚。而坩埚是放置在了一个可以旋转的支撑环上,保证坩埚与晶体同步旋转,使晶体生长环境温度轴向对称。此工艺一般采用自动控制方式控制晶体直径。冷心放肩微量提拉法主要用于生长大尺寸晶体。冷心放肩微量提拉法的系统有控制系统、真空系统、加热体、冷却系统、热蔽装置等,通过引晶、放肩、等径、退火、冷却五个阶段完成晶体生长。冷心放肩微量提拉法除了可生长大尺寸晶体的特点外,还具有晶体品质优良、缺陷少、成功率高、材料利用率高、成本低的特点。

泡生法。泡生法于1926 年提出应用以来不断改进

发展,是目前蓝宝石生长工艺中最常用的方法。泡生法适合于生长同成分熔化的化合物或用于生长含某种过量组份的晶体。它与提拉法有很多的相似性,所用装置也有相似之处,具体工艺是:将原料装入坩埚中,籽晶放入坩埚上方的提拉杆籽晶夹具中,对坩埚进行加热至2050C以

上,降低提拉杆使籽晶插入熔体中。籽晶刚插入熔体中使要使熔体温度略高于熔点来清洁籽晶的表面,待籽晶与熔体充分沾润后使熔体温度处于熔点,使籽晶在匀速转动中缓慢提升,因为界面温度低于凝固点时籽晶开始生长,因此需要逐渐降低熔体温度。泡生法与提拉法的不同处:泡生法的晶体生长和退火过程都是在坩锅中进行的,等径生长时不再使用提拉技术,泡生法晶体生长直径有限制,晶体生长是通过外部温场降低温度的热损耗实现的。

热交换法。将原料放入坩埚内,籽晶放置在坩埚底部中心,坩埚放到热交换器中、坩埚中心与热交换器的顶端接触,并将两者固定。以氦气为热交换介质,加热使原料熔化,控制氦气通向坩埚底部的流量,以免籽晶熔化。温场稳定之后,将氦气流量逐渐增大,带走的热量也随之增加,在此过程中熔体延籽晶逐渐凝固并长大。逐渐降低加热温度到坩埚内的熔体全都凝固。生长过程中尤其需要控制氦气流量,氦气流量决定着熔体温度,熔体中保持基本不变的温度梯度,才好控制晶体的生长速率。热交换法与其他方法相比更能精确控制温场,由于坩埚、晶体、热交换器都没有机械运动,温场也处于比较稳定的状态。生产出的晶体质量较高,只是这种方法国外运用的较多,美国一直掌握着其核心技术。

导模法。导模法是提拉法的一种变形,设备采用提拉

法单晶炉,坩埚中放入原料加热使之熔化,把与拟生长晶体形状相同的模具放入熔体中,使导模顶端的温度略高于拟生长晶体的熔点,然后使籽晶与模具顶部的薄膜接触,薄膜将覆盖模具。然后运用提拉杆慢慢拉升晶种,晶体逐渐生长。导模法可直接从熔体中生长出丝、棒、片等形状的晶体,生产程序简化、生长速度快、尺寸形状可精确控制,成本低效益高。

蓝宝石在众行业的广泛应用促使晶体生长技术不断改进发展,如上所述,蓝宝石晶体生长有多种方法,也各具特点。随着蓝宝石晶体生长行业的竞争日益剧烈,要求生产方必须不断完善生产技术,能够提供高质量、多种类的晶体,同时降低生产成本、提高效益,形成良性循环。

参考文献:

[1]李留臣,冯金生.我国蓝宝石晶体生长技术的现状与发展趋势[J],人工晶体学报,2012年S1期

[2]刘丽君,徐家庆,蔡兴民.泡生法蓝宝石晶体生长工艺的探讨[J],哈尔滨工业大学学报,2011年03

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

助熔剂法合成宝石

助熔剂法合成宝石 助熔剂法,顾名思义,它是在高温下,矿质借助助熔剂的作用在较低温度 下熔融,从熔融体中生长出宝石晶体的方法。 助熔剂法晶体生长过程,类似于岩浆结晶分异过程中矿物的形成,与水热法生长晶体相类似,只不过助熔剂代替了水溶剂。因此,助熔剂法也可称为高温熔体溶液法、熔剂法或熔盐法。该法在晶体合成中占有重要地位,早在十九世纪中叶曾有人用此法合成金红石,但由于焰熔法兴起而被忽视,直到近些年来才得以大量应用。 1.助熔剂法分类 根据晶体成核及晶体生长方式,助熔剂法可分为两大类: (1)自发成核法 该法生长晶体过程的第一步,就是形成晶核。成核是一个相变过程,即在母液相中形成固相小晶芽。这一相变过程中体系自由能的变化为:△G=△G u +△ G s 。 公式中:△G u 为新相形成时体系自由能的变化,且△G u ﹤0;△G s 为新相形 成时新相与旧相界的表面能,且△G s ﹥0。这就是说,晶核的形成,一方面由于体系从液相转变为内能更小的晶相而使体系自由能下降,另一方面又由于增加了液-固界面而使体系自由能升高。实验表明,影响成核的外因主要是过冷却与过饱和度。成核的相变有滞后现象,就是说,当温度降至相变点时,或当浓度刚达到饱和度时,并不能看到成核相变。成核总需要一定的过冷或过饱和。另外成核可分为均匀成核与非均匀成核两种。均匀成核是在体系内任何部位成核率是相等的,非均匀成核则是在体系的某些部位的成何率高于另一些部位。 均匀成核是在非常理想的情况下才能发生,实际成核过程都是非均匀成核,即在体系里总是存在杂质、热流不均、容器壁不平等不均匀的情况,这些不均匀性有效地降低了成核时的表面能位垒,核就先在这些部位形成。所以人工合成宝石总是人为地制造不均匀性,使成核容易发生,如放入籽晶、成核剂等。 该法按照获取过饱和溶液的方式不同,又可分为缓冷法、反应法和蒸发法三种,其中以缓冷法设备简单而被广泛使用(图2-3)。 a.缓冷法是晶体材料全部熔于助熔剂之后,在高温炉中缓慢降温冷却,使晶体自发成核并逐渐成长的方法。该法可用来生产合成刚玉宝石以及人造钇铝榴石。 b.反应法是使助熔剂与待生长晶体的原料熔融,并发生化学反应,在一定的过饱和度条件下,从而晶体成核生长晶体的方法。 c.蒸发法则是在恒温条件下蒸发熔剂,使熔体达到过饱和状态,从而使晶 体从熔体中析出并长大的方法。如生产CeO 2、YbCrO 3 等晶体生长。 (2)籽晶生长法 该法是一种在熔体中加入籽晶的晶体生长方法。其特点是,仅让晶体在籽晶上结晶生长。克服了自发成核时晶粒过多的缺点。以晶体生长的工艺过程不同而分为如下几种方法: a.籽晶旋转法。旋转籽晶起到搅拌助熔剂熔融液使之向籽晶扩散,加速晶体生长,减少包裹体(图2-3,b)。

蓝宝石生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

蓝宝石缺陷产生机理及改进方法研究

蓝宝石缺陷产生机理及改进方法研究 在蓝宝石晶体的制备过程中,常见的晶体缺陷主要有晶体开裂、气泡与空腔、杂质及色心、位错等,缺陷的产生极大影响了晶体的使用性能。文章从几种缺陷的产生机理着手,提出了有效降低晶体中缺陷率的措施,对生长大尺寸、高质量的蓝宝石晶体具有重要意义。 标签:蓝宝石单晶;晶体缺陷;产生机理;改进方法 Abstract:In the process of sapphire crystal preparation,the common crystal defects mainly include crystal crack,bubble and cavity,impurity and color center,dislocation,and so on. Based on the mechanism of several defects,this paper puts forward effective measures to reduce the defect rate in crystals,which is of great significance for the growth of large-size and high-quality sapphire crystals. Keywords:sapphire single crystal;crystal defect;generation mechanism;improving method 1 概述 蓝宝石(Sapphire),又称白宝石或刚玉。蓝宝石晶体的热学性能以及光学性能优良,化学性质稳定,广泛应用于光学和微电子领域,尤其是用作高亮度GaN 基发光二极管(LED)的外延基片材料。LED市场的迅猛发展,要求生长出大尺寸、高质量、性能稳定的蓝宝石晶体,这就对蓝宝石生长技术提出了更高要求。但在蓝宝石单晶的生长过程中,往往会产生一些显著影响蓝宝石性能的缺陷,比如位错、杂质及色心、气泡、晶体裂纹等。 2 几种常见的晶体缺陷产生机理 2.1 晶体裂纹 在生长过程中晶体内部各种应力的产生将引起应变,当应变大于晶体本身的塑性极限时,晶体将产生裂纹。晶体中的应力主要包括以下三种: (1)热应力:热应力是由于晶体受热不均匀而存在温度差异,导致晶体各处膨胀或收缩变形不一致,晶体各部分间相互约束而产生的一种内应力。因此只要晶体内存在温度梯度,就会存在热应力。 (2)化学应力:晶体中各种组分不均匀分布造成的。 (3)机械应力:晶体生长过程中的机械振动造成的。 在蓝宝石单晶生长过程中,热应力是所有应力中最重要的一种形式,导致晶

助熔剂法其合成宝石鉴定

助熔剂法又称熔剂法或熔盐法,它是在高温下从熔融盐熔剂中生长晶体的一种方法。利用助熔剂生长晶体的历史已近百年,现在用助熔剂生长的晶体类型很多,从金属到硫族及卤族化合物,从半导体材料、激光晶体、光学材料到磁性材料、声学晶体,也用于生长宝石晶体,如助熔剂法红宝石和祖母绿。 一、助熔剂法的基本原理和方法 助熔剂法是将组成宝石的原料在高温下溶解于低熔点的助熔剂中,使之形成饱和溶液,然后通过缓慢降温或在恒定温度下蒸发熔剂等方法,使熔融液处于过饱和状态,从而使宝石晶体析出生长的方法。助熔剂通常为无机盐类,故也被称为盐熔法或熔剂法。 助熔剂法根据晶体成核及生长的方式不同分为两大类:自发成核法和籽晶生长法。 1、自发成核法 按照获得过饱和度方法的不同助熔剂法又可分为缓冷法、反应法和蒸发法。这些方法中以缓冷法设备最为简单,使用最普遍。 缓冷法是在高温下,在晶体材料全部熔融于助熔剂中之后,缓慢地降温冷却,使晶体从饱和熔体中自发成核并逐渐成长的方法。 2、籽晶生长法 籽晶生长法是在熔体中加入籽晶的晶体生长方法。主要目的是克服自发成核时晶粒过多的缺点,在原料全部熔融于助熔剂中并成为过饱和溶液后,晶体在籽晶上结晶生长。 根据晶体生长的工艺过程不同,籽晶生长法又可分为以下几种方法: A.籽晶旋转法:由于助熔剂熔融后粘度较大,熔体向籽晶扩散比较困难,而采用籽晶旋转的方法可以起到搅拌作用,使晶体生长较快,且能减少包裹体。此法曾用于生长"卡善"红宝石。 B.顶部籽晶旋转提拉法:这是助熔剂籽晶旋转法与熔体提拉法相结合的方法。其原理是:原料在坩埚底部高温区熔融于助熔剂中,形成饱和熔融液,在旋转搅拌作用下扩散和对流到顶部相对低温区,形成过饱和熔液,在籽晶上结晶生长晶体。随着籽晶的不断旋转和提拉,晶体在籽晶上逐渐长大。该方法除具有籽晶旋转法的优点外,还可避免热应力和助熔剂固化加给晶体的应力。另外,晶体生长完毕后,剩余熔体可再加晶体材料和助熔剂继续使用。 C.底部籽晶水冷法:助熔剂挥发性高,顶部籽晶生长难以控制,晶体质量也不好。为了克服这些缺点,采用底部籽晶水冷技术,则能获得良好的晶体。水冷保证了籽晶生长,抑制了熔体表面和坩埚其它部位的成核。这是因为水冷部位才能形成过饱和熔体,从而保证了晶体在籽晶上不断成长。用此法可生长出质量良好的钇铝榴石晶体。

不同生长方法的蓝宝石颜色问题浅析

不同生长方法的蓝宝石颜色问题浅析 (2013-03-06 18:24:26) 转载▼ 标签: 分类:蓝宝石晶体 蓝宝石晶体 颜色问题 掺杂问题 杂谈 蓝宝石晶体生长 前言 恭祝大家在新的一年里有新的气象;好久不发表文章了,在这就说说为何停顿这么久时间吧!首先肯定不会是因为接到某些官员的恐吓电话而不写博文了,是因为有很多更值得忙的事;这些就在最近的博文里慢慢论述吧! 在我的《笑话连篇——真假自动化》(2012-09-15 10:25:34)的评论中有这么一段留言“............HEM 的创始人Fred Schmid差不多80岁了,天才的人物还奋战在第一线搞技术,国人惭愧啊!”。 不管是洋人还是国人,Fred Schmid作为一个晶体生长的老工程师是值得尊敬。不过这么舔洋人屁眼的话语我实在看不过去。说这话的人实在是没有什么专业知识,也没见过什么世面。如果Fred Schmid能称上天才人物的话,中国晶体生长界有太多人需要用“宇宙无敌”来形容了。 为了防止有人再发表“碳是黑色的,掺入蓝宝石晶体,晶体应该也是黑色.........”的笑话,就给大家分析一下不同方法生长出来的蓝宝石的颜色问题。 我讲的未必都对,听不听是你的事,怎么讲是我的事。 宝石材料的显色机理 众所周知,白光是一种混合光,由各种波长(各种颜色)混合显色的结果。当白光入射的时候,如所有的光都通过的时候,则蓝宝石为无色;全部反射,则呈现白色;部分吸收,则呈现剩余光的颜色。例如:吸收红光蓝宝石呈现青色;吸收黄光蓝宝石呈现紫色色;吸收绿光呈现蓝色;反之则反。

杂质离子的引入方式 蓝宝石材料呈现颜色的时候,一定是引入了杂质离子。杂质离子的引入途径只有两个:途径化铝原料中的杂质;途径2是热场包括保温、发热体和坩埚引入的杂质。

数种蓝宝石晶体生长方法

蓝宝石晶体的生长方法 自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。晶体尺寸从2吋扩大到目前的12吋。 低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。下面介绍几种国际上目前主流的蓝宝石晶体生长方法。

图9 蓝宝石晶体的生长技术发展 1 凯氏长晶法(Kyropoulos method) 简称KY法,中国大陆称之为泡生法。泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。其原理与柴氏拉晶法(Czochralski method)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(Seed Crystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇,图10即为泡生法(Kyropoulos method)的原理示意图。泡生法是利用温度控制来生长晶体,它与柴氏拉晶法最大的差异是只拉出晶颈,晶身部分是靠着温度变化来生长,少了拉升及旋转的干扰,比较好控制制程,并在拉晶颈的同时,调整加热器功率,使熔融的原料达到最合适的

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

SiC晶体生长工艺装备

SiC晶体生长工艺装备 一、SiC晶体生长工艺装备发展现状 由于SiC具有宽带隙、高临界击穿电场、高热导率、高载流子饱和浓度、化学性能稳定、高硬度、抗磨损等特点,使得它在军用和航天领域的高温、高频、大功率光电器件方面具有优越的应用价值。具体来看,其导热性能是Si材料的3倍以上;在相同反压下,SiC材料的击穿电场强度比Si高10倍,而内阻仅是Si片的百分之一。SiC器件的工作温度可以达到600℃,而一般的Si器件最多能坚持到150℃。因为这些特性,SiC可以用来制造各种耐高温的高频大功率器件,应用于Si器件难以胜任的场合。 目前SIC半导体材料发展十分迅速,总的发展趋势是晶体大直径、大尺寸化,向高纯无缺陷发展。6H和4H单晶片实现了商品化,3英寸(直径≥76.2mm)是主流产品,4英寸也有少量供应。4H-SiC 上的微管缺陷密度显著减小,n型4H-SiC的极低微管缺陷晶片上微管密度可接近0cm-2。 SiC材料的生长需要特殊的工艺装备。目前这些工艺装备的技术主要掌握在美日欧三方手中。这些发达国家和地区已对SiC 生长设备进行了持续的研究,积累了宝贵的经验。特别是美国,技术最成熟,凭借着先进的技术,不断研制基于SiC基的新军事电子产品,目前在航空、航天、军舰、卫星、深海等方面都得到了实际的应用,得以使其继续在全球军事电子领域保持领先地位。欧盟和日本也紧随其后,投入大量的人力和财力进行追赶。

美国Cree公司是世界上能够商业化提供SiC 产品最大的公司,占全球市场90%以上,其在工艺装备方面的技术先进、成熟稳定,领先世界水平,但受政策影响,技术处于绝对保密之中。 欧洲SiC晶体生长工艺装备的设备制造商集中在德国、瑞典和英国,目前主要生产以3“直径为主的工艺装备,但为了追赶世界先进水平,已开始进行4” SiC晶圆工艺装备的研发。 无论是美国、欧洲还是日本,其晶体生长工艺装备都是军方在三代半导体方面要重点发展的方向之一,长期得到国家的支持和投入,如美国海军、陆军、空军、美国国家航空航天局(NASA )、弹道导弹防卫局和国防预研局、几乎美国国防部所有部门都将SiC技术研究列入了各自军事系统发展规划。其中SiC晶体生长工艺装备是重要的组成部分,美军正是凭借其在碳化硅装备方面的强大实力,在军事电子方面继续拉大与其他国家的距离。 国内碳化硅研究始于2000年前后,基本都是在Si晶圆研究的基础上进行一些理论性的研究,工艺装备也是在原有的Si晶圆的工艺装备基础上进行了部分改造,研究进展缓慢,装备的缺乏已成为国内SiC项目研究的瓶径。近些年有些研究机构通过各种渠道引进了部分国外发达国家的工艺装备,但价格高昂,所引进设备的技术也不属于前沿技术,并且在引进过程中,对引进单位也有条款上的种种制约,限制了SiC项目在国内的研究。尽管起步早,但目前研究水平还处于初级阶段。 总之,国内SIC项目的研究以进口晶片为主,昂贵的晶片价格,

助溶剂法

助溶剂法合成晶体 摘要:晶体生长技术在合成晶体中有极重要的地位。由于晶体可以从气象、液相和固相中生长,不同的晶体又有不同的生长方法和生长条件,加上应用对人工晶体的要求十分苛刻,如尺寸从直径在毫米以下的单晶纤维到直径为50cm、重达数百千克的大单晶,这样造成了合成晶体生长方法和技术的多样性以及生长条件的复杂性。晶体生长技术互相渗透,不断改进和发展,一种晶体选择何种技术生长,取决于晶体的物化性质和应用要求。有的晶体只能用特定的生长技术生长;有的晶体则可采用不同的方法生长。 关键词:助溶剂晶体生长方法缓冷法溶剂蒸发法温差法 人工晶体的合成既是一门艺术,又是一门学科。由于需要从不同的状态和不同的条件下生成,加上一用对人工晶体的要求十分苛刻,因而造成了人工合成晶体方法和技术的多样性以及生长条件的复杂性。晶体生长技术在合成晶体中有极重要的地位。由于晶体可以从气象、液相和固相中生长,不同的晶体又有不同的生长方法和生长条件,加上应用对人工晶体的要求十分苛刻,如尺寸从直径在毫米以下的单晶纤维到直径为50cm、重达数百千克的大单晶,这样造成了合成晶体生长方法和技术的多样性以及生长条件的复杂性。晶体生长技术互相渗透,不断改进和发展,一种晶体选择何种技术生长,取决于晶体的物化性质和应用要求。有的晶体只能用特定的生长技术生长;有的晶体则可采用不同的方法生长,选择的原则一般为:a有利于提高晶体完整性,严格控制晶体中的杂质和缺陷;b有利于提高晶体的利用率,降低成本,因此,大尺寸的晶体始终是晶体生长工作者追求的重要目标;c有利于晶体的加工和器件化;d 有利于晶体生长的重复性和产业化,例如计算机控制晶体生长等。 助溶剂法又称为高温溶液法,和其他方法相比具有如下优点: ⑴适用性强,对某种材料,只能找到一种适当的助溶剂或助溶剂组合, 就是用此方法将这种材料的单晶生长出来,而几乎对于所有的材料, 都能找到一些相应的助溶剂或助溶剂组合。 ⑵许多难熔化合物和在熔点极易挥发或由于在高温时变价或有相变的材 料,以及非同成分熔融化合物,都不可能直接从其熔体中生长活或不 可能生长出完整的优质单晶,而助溶剂法由于生长温度低,对这些材 料的单晶生长却显示出独特的能力。 有时一些本来能用熔体生长的晶体或层状材料,为了获得高品质也改用助溶剂法来进行生长。尤其是一些在技术上很重要的(如砷化镓晶体),其晶块是用熔体法生长的,但用得最多的器件却是从金属作助溶剂的溶液中生长出来

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究 【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。 【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。 焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发 展并投入生产使用。焰熔法是以Al2O3 粉末为原 料,置于设备上部,原料在撒落过程中通过氢及氧气 在燃烧过程中产生的高温火焰,熔化,继续下落,落 在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生 产设备主要有料筒、锤打机构、筛网、混合室、氢气 管、氧气管、炉体、结晶杆、下降机构、旋转平台等 组成。锤打机构使料筒振动,与筛网合作使粉料少 量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。 提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

蓝宝石晶体生长设备

大规格蓝宝石单晶体生长炉技术说明 一、项目市场背景 α-Al2O3单晶又称蓝宝石,俗称刚玉,是一种简单配位型氧化物晶体。蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作,因而被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。 蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有熔焰法、提拉法、区熔法、坩埚移动法、热交换法、温度梯度法和泡生法等。但是,上述方法都存在各自的缺点和局限性,较难满足未来蓝宝石晶体的大尺寸、高质量、低成本发展需求。例如,熔焰法、提拉法、区熔法等方法生长的晶体质量和尺寸都受到限制,难以满足光学器件的高性能要

求;热交换法、温度梯度法和泡生法等方法生长的蓝宝石晶体尺寸大,质量较好,但热交换法需要大量氦气作冷却剂,温度梯度法、泡生法生长的蓝宝石晶体坯料需要进行高温退火处理,坯料的后续处理工艺比较复杂、成本高。 二、微提拉旋转泡生法制备蓝宝石晶体工艺技术说明 微提拉旋转泡生法制备蓝宝石晶体方法在对泡生法和提拉法改进的基础上发展而来的用于生长大尺寸蓝宝石晶体的方法,主要在乌克兰顿涅茨公司生产的 Ikal-220型晶体生长炉的基础上改进和开发。晶体生长系统主要包括控制系统、真空系统、加热体、冷却系统和热防护系统等。微提拉旋转泡生法大尺寸蓝宝石晶体生长技术主要是通过调控系统内的热量输运来控制整个晶体的生长过程,因此加热体与热防护系统的设计,热交换器工作流体的选择、散热能力的设计,晶体生长速率、冷却速率的控制等工艺问题对能否生长出品质优良的蓝宝石晶体都至关重要。 微提拉旋转泡生法制备蓝宝石晶体,生长设备集水、电、气于一体,主要由能量供应与控制系统、传动系统、晶体生长室、真空系统、水冷系统及其它附属设备等组成。传动系统作为籽晶杆(热交换器)提拉和旋转运动的导向和传动机构,与立柱相连位于炉筒之上,其主要由籽晶杆(热交换器)的升降、旋转装置组成。提拉传动装置由籽晶杆(热交换器)的快速及慢速升降系统两部分组成。籽晶杆(热交换器)的慢速升降系统由稀土永磁直流力矩电机,通过谐波减速器与精密滚珠丝杠相连,经滚动直线导轨导向,托动滑块实现籽晶杆(热交换器)在拉晶过程中的慢速升降运动。籽晶杆(热交换器)的快速升降系统由快速伺服电机经由谐波减速器上的蜗杆、蜗杆副与谐波的联动实现。籽晶杆的旋转运动由稀土永磁式伺服电机通过楔形带传动实现。该传动系统具有定位精度高、承载能力大,速度稳定、可靠,无振动、无爬行等特点。采用精密加热,其具有操作方法简单,容易控制的特点。在热防护系统方面,该设计保温罩具有调节气氛,防辐射性能好,保温隔热层热导率小,材料热稳定性好,长期工作不掉渣,不起皮,具有对晶体生长环境污染小,便于清洁等优点。选用金属钼坩埚,并依据设计的晶体生长尺寸、质量来设计坩埚的内径、净深、壁厚等几何尺寸,每炉最大可制备D200mmX200mm,重量25Kg蓝宝石单晶体。Al2O3原料晶体生长原料采用纯度为5N的高纯氧化铝粉或熔焰法制备的蓝宝石碎晶。 从熔体中结晶合成宝石的基本过程是:粉末原料→加热→熔化→冷却→超过临界过冷度→结晶。 99.99%以上纯度氧化铝粉末加有机黏结剂,在压力机上形成坯体;先将该坯体预先烧成半熟状态的氧化铝块,置入炉内预烧,将炉抽真空排出杂质气体,先后启动机械泵、扩散泵,抽真空至10↑[-3]-10↑[-4]Pa,当炉温达1500-1800℃充入混合保护气体,继续升温至设定温度(2100-2250℃);(3)炉温达设定温度后,保温4-8小时,调节炉膛温度

晶体生长计算与模拟软件之FEMAG

晶体生长计算软件FEMAG 20世纪80年代中期,鲁汶大学Fran?ois Dupret教授带领其团队,开始晶体生长的研究,经过10多年的行业研发及应用,Fran?ois Dupret教授于2003年成立了FEMAGSoft公司(总部设在比利时Louvain-la-Neuve市),正式推出晶体生长数值仿真软件FEMAG。如今,FEMAG软件已成为全球行业用户高度认可的数值仿真工具,在晶体生长数值模拟领域处于国际领先地位。 FEMAG Soft擅长所有类型晶体材料生长方面的工艺模拟专业技术,比如:?直拉法(Czochralski) ?区熔法(Floating Zone) ?适用于铸锭定向凝固过程工艺(DS),Bridgman法 ?物理气相传输法(PVT) 产品模块 1.FEMAG/CZ-Czochralski (CZ) Process 适用于Czochralski直拉法生长工艺和Kyropoulos生长工艺 2.FEMAG/DS-Directional Solidification (DS) Process 适用于铸锭定向凝固过程工艺 3.FEMAG/FZ-Float Zone Process (FZ) 适用于区熔法生长工艺

主要功能 1.全局热传递分析 “全局性”即包涵所有拉晶要素在内,并考虑传热模式的耦合。全局热传递模拟分析,主要考虑:炉内的辐射和传导、熔体对流和炉内气体流量分析。 2.热应力分析 按照经验,一般情况下,晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。该软件可以进行三维的非轴对称和非各向同性温度场热应力分析计算,可以提出对晶体总的剪切力预估。 “位错”的产生是由于在晶体生长过程中,热剪应力超越临界水平,被称为CRSS(临界分剪应力),而导致的塑性变形。 3.点缺陷预报 该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过程中点缺陷的分布。 4.动态仿真 动态仿真提供了对复杂几何形状对于时间演变的预测。该预测把发生在晶体生长和冷却过程中所有瞬时的影响因素都考虑在内。为了准确地预报晶体点缺陷和氧分,布动态仿真尤其是不可或缺的。 5.固液界面跟踪 在拉晶的过程中准确预测固液界面同样是一个关键问题。对于不同的柑祸旋转速度和不同的提拉高度,其固液界面是不同的。 6.加热器功率预测 利用软件动态仿真反算加热功率对于生长合格晶体也是非常必要的。

蓝宝石生产线项目可行性报告

LED级大尺寸蓝宝石单 晶生产线 项目可行性研究报告 江苏无锡爱能光电科技有限公司 2010-12-04

目录 第一章蓝宝石生产线项目总论 (3) 一、项目提要 (3) 二、主要的技术和经济指标 (3) 第二章项目背景及市场分析 (5) 一、项目由来 (5) 全球LED市场分析 (6) 国内LED市场分析 (7) LED级蓝宝石单晶市场分析 (8) LED级蓝宝石价格趋势 (9) 二、项目必要性和建设条件 (10) 第三章投资项目地点选址 (12) 一、选址的基本思路和原则 (12) 二、地址选址 (12) 三、项目区建设条件 (12) 第四章项目总体方案 (14) 一、项目建设的指导思想 (14) 二、项目产业定位和规模 (14) 三、主要生产技术路线 (14) 四、工程建设规划 (17) (一)项目平面布局 (17) (二)工程预算 (18) 五、原材料与能源消耗 (20) 第五章环境保护和节约能源 (21) 一、环境保护 (21) 1、项目所采用的环境标准 (21) 2、项目所在地环境分析 (21) 3、主要污染源、污染物及防治措施 (22) 4、节约能源 (24) 第六章职业安全与卫生及消防设施方案 (25) 一、设计依据 (25) 二、安全教育 (25) 三、劳动安全与工业卫生 (26) 四、消防设施及方案 (27) 第七章项目组织机构与劳动定员 (29) 一、项目组织 (29) 1、项目建设期组织与管理 (29) 2、项目运营期的组织与管理 (30) 二、劳动定员与培训 (32) 第八章项目实施进度与招投标 (34) 一、项目实施进度安排 (34) 1、土建工程 (34) 2、设备安装调试工程 (35) 第九章投资估算与资金筹措 (36) 一、投资估算的依据 (36) 1、建设投资估算 (36) 第十章财务评价 (38) 一、财务评价 (38) 1、评价条件 (38) 2、财务评价 (38) 3、财务评价结论 (39)

蓝宝石基本知识

蓝宝石基本知识 1、蓝宝石介绍 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应 用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿 透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性. 因此被大量用在光学元件、红外装置、高强度镭射镜片材料及 光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透 光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝光LE D的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料. 2、蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到 熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。 于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单

晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedC rystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成 广大外延片厂家使用的蓝宝石基片分为三种: 1:C-Plane蓝宝石基板 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物

蓝宝石切割工艺研究

蓝宝石切割工艺研究 蓝宝石材料因其优良的特性,成为多个特定行业领域广泛使用的基础材料,但是其高硬度特性也决定了其切割方面的难度,提高对蓝宝石的切割工艺水平,对于蓝宝石材料的应用意义重大。本文主要就蓝宝石的切割工艺进行了研究。 现代科学技术的飞速发展,推动着各行各业的不断进步,行业领域的建设发展都是以相应的基础建设材料为基础的,尤其是一些特殊行业领域,如航空航天、微电子、光电子等,其技术的革新往往伴随着对于材料的更高要求,为了适应行业领域的发展,质量优良,性能符合要求标准的材料至关重要。蓝宝石因其本身的优良特性,成为许多行业领域的重要材料,而如何对其实现有效切割也成为一个十分重要的问题。 一、蓝宝石概述 在光电子和微电子等行业领域中,蓝宝石晶体发挥着十分重要的作用,除此之外,在一些对于材料性能要求十分苛刻的行业领域中,也经常能看到蓝宝石晶体的应用。这主要是以为蓝宝石晶体具有十分突出的物理特性、化学特性以及光学特性。在种类十分繁多的氧化物晶体中,蓝宝石晶体具

有最高的硬度值,而且在高温环境下,蓝宝石依然具有极高的强度,同时其透过率与热属性也十分优秀。在介电特性和热透性以及电气特性以及防腐蚀方面蓝宝石晶体也具有十分显著的优势。但是作为一种硬脆材料,除了碳化硅和金刚石之外,蓝宝石晶体的硬度是所有物质中最大的,具有8.5左右的莫氏硬度值,而且其晶格结构表现出极高的同向性,再加上极强的分子结合,使得在需要对其进行切割时具有很大的难度,很难有效高效地对其进行切割,这在一定程度上限制了蓝宝石晶体地实际应用。 二、蓝宝石多线切割概论 传统的蓝宝石切割工艺是对棒状或者锭状的蓝宝石晶体采用内圆切割的技术,将其切成片状。这种切割方法对蓝宝石晶体材料的损耗比较严重,不仅出片率和效率比较低,而且晶片表面也因为切割工艺的缺陷出现质量下降的问题,致使无法利用切割出的蓝宝石进行高耐磨性和脆性、以及高硬度的材料。线切割技术在蓝宝石晶体切割过程中的应用,大大满足了当前各个行业领域发展对于蓝宝石晶片的高要求,利用线切割技术得到的蓝宝石晶片,不仅能够实现低损耗,而且能够实现大片经。多线切割技术最初应用的时候,使用的游离磨粒的方法,通过线带动碳化硅等游离磨粒实现对蓝宝石晶体的切割。但是,游离磨粒的缺点在于其体积十分小,所以其与蓝宝石晶体的实际接触面积十分有限,造成

蓝宝石衬底制作工艺流程简要说明

蓝宝石衬底制作工艺流程简要说明 长晶: 利用长晶炉生长尺寸大且高品质的单晶蓝宝石晶体 定向: 确保蓝宝石晶体在掏棒机台上的正确位置,便于掏棒加工 掏棒: 以特定方式从蓝宝石晶体中掏取出蓝宝石晶棒 滚磨: 用外圆磨床进行晶棒的外圆磨削,得到精确的外圆尺寸精度 品检: 确保晶棒品质以及以及掏取后的晶棒尺寸与方位是否合客户规格 定向:在切片机上准确定位蓝宝石晶棒的位置,以便于精准切片加工 切片:将蓝宝石晶棒切成薄薄的芯片 研磨:去除切片时造成的芯片切割损伤层及改善芯片的平坦度 倒角:将芯片边缘修整成圆弧状,改善薄片边缘的机械强度,避免应力集中造成缺陷 抛光:改善芯片粗糙度,使其表面达到外延片磊晶级的精度 清洗:清除芯片表面的污染物(如:微尘颗粒,金属,有机玷污物等) 品检:以高精密检测仪器检验芯片品质(平坦度,表面微尘颗粒等),以合乎客户要求 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响 江洋罗毅汪莱李洪涛席光义赵维韩彦军 【摘要】:在柱状图形蓝宝石衬底(PSS-p)和孔状图形蓝宝石衬底(PSS-h)上外延了GaN体材料和LED结构并进行了详细对比和分析.X射线衍射仪(XRD)和原子力显微镜(AFM)测试结果表明,PSS-h上体材料的晶体质量和表面形貌都优于PSS-p上体材料的特性,通过断面扫面电子显微镜(SEM)照片看出PSS-h上GaN的侧向生长是导致这种差异的原因.另外,基于PSS-p和PSS-h上外延的LED材料制作而成的器件结果表明,其20mA下光功率水平相比普通蓝宝石衬底(CSS)分别提高了46%和33%.通过变温光荧光谱(PL)分析发现,样品的内量子效率十分接近.因此,可以推断PSS-h上侧向外延中存留的空气隙则会影响光提取效率的提高. 【作者单位】:清华大学电子工程系集成光电子学国家重点实验室; 【关键词】:蓝宝石图形衬底氮化镓发光二极管侧向生长光提取效率内量子效率原子力显微镜体材料蓝宝石衬底晶体质量 【基金】:国家自然科学基金(批准号:60536020,60723002)国家重点基础研究发展计划“973”(批准号:2006CB302801,2006CB302804,2006CB302806,2006CB921106)国家高技术研究发展计划“863”(批准号:2006AA03A105)北京市科委重大计划(批准号:D0404003040321)资助的课题~~ 1·引言利用GaN基大功率LED作为一种新型高效的固体光源,具有能耗小、高功率、寿命长、体积小、环保等显著优点,将成为人类照明史上继白炽灯、荧光灯之后的第三代照明工具,被公认为21世纪最具发展前景的高技术领域之一[1,2].目前使用最广泛的外延GaN材料的衬底是成本较低的蓝

相关主题
文本预览
相关文档 最新文档