当前位置:文档之家› 深度调剖及堵水

深度调剖及堵水

深度调剖及堵水
深度调剖及堵水

深度调剖及堵水

国内几十年来在治水方面积累了大量的经验教训。关于水井深度调剖,开始采用高强度堵剂,挤死高吸水层段,这种工艺对全层水淹的井效果显著。而我国油田属于陆相沉积,非均质性很强,在剖面上层内渗透率差异较大,如果深度调剖施工时将水淹层段堵死,这时注水井主要吸水层段被堵死,原来弱吸水段或不吸水段开始吸水,吸水剖面改变很理想。但是,由于注入堵剂数量有限,2m 油层挤入500m3堵剂,挤入深度只有12.6m,当低渗透层水线推进到此处时,注入水又会窜入特高渗透层,造成深度调剖失效。这种工艺每施工一口井增产油量一般不超过500t,个别有相对隔挡层的井或有相当好的潜力层的效果会好些。根据这一情况发展了深度调剖,即加大堵剂用量,但是,深度调剖深度与堵剂用量是平方的关系,所以堵剂用量加大很多,深度调剖深度增加得并不多。如2m 油层挤入1000m3堵剂进行深度调剖,深度也只有17.8m ,增产量和有效期改善仍不理想。近年来深度调剖工艺发展成调驱工艺,即将深度调剖剂改进为可动的弱凝胶(调驱剂),使得深度调剖后调驱剂段塞推进速度稍快于低渗透层段水线推进速度,直到调驱剂段塞薄到一定程度后突破,再注第二个段塞,增产量和有效期都会大幅度提高。

下面只重点介绍调驱工艺。值得注意的是调驱工艺有两个技术关键,一是必须根据渗透率,用岩心优选驱替剂的粘度,以保证调驱剂推进速度略快于新进水层段的水线推进速度;二是为了挤入调驱剂时尽量减少加强层的伤害,注入压力必须大于调剖层段的启动压差,小于加强层段的启动压差。这两方面都可以用岩心(或人造模拟岩心)实测。油井堵水也有类似问题,由于堵塞半径有限,增产量和有效期都很小,所以对孔隙性油藏来说,除非全层水淹否则对层内某层段出水不宜采用堵水措施。而对块状裂缝性底水油藏,由于无法在水井进行调整,只能利用这类油田的非均质性在油井进行堵水,开始将大裂缝堵死,这样虽然将出水通道堵死,同时也将与大裂缝连通的小裂缝的出油通道堵死,所以效果也不理想。以后发展为有渗透性的堵大裂缝的堵剂,效果有所改善。但是,由于岩块系统的驱替压差很大,大裂缝中渗透率下降很大,渗流阻力较大,大裂缝中压力憋得较高,形不成大的驱替压差,岩块系统中的油还是出不来。应当采取用堵剂堵死水源,保持一定长度的大裂缝,使这段裂缝中的压力与井底流压接近,充分发挥与大裂缝连通的岩块系统的作用,尽可能地提高增产效果。

一、油井出水分析及预测

在油田正式投入开发以前,没有足够的动态资料进行分析预测,只能凭静态资料和少量的试油。试采资料做粗略的预测。具体步骤如下;

(一)建立理想的剖面非均质模型,预测面积注水时不同开发阶段的油井出水状况

利用测井曲线计算层间和层内渗透率近似的层段厚度乘以该段平均渗透率,得出地层参数Kh (K 为渗透率、h 为渗透率近似的层段厚度)。或利用分层试油不稳定试并求得的流动系数Kh/μ,乘以原油地下粘度,得地层参数。根据达西定律可知油层吸水量与地层参数成正比。在相同的压差下可以求出吸水剖面,从而判断出层内和层间的矛盾。进一步预测油井出水情况,判断出油井出水矛盾是层间为主,还是层内为主。确定治理水患的方针。于层间矛盾采用封堵水,属于层内矛盾(渗透率差异段之间有较大的相对隔挡层,可视做层内矛盾)是调剖。

(二)建立理想的平面非均质模型,预测面积注水时不同开发阶段注水井组油井出水情况根据油藏工程方案中油藏描述技术得到的渗透率平面矛盾情况(等渗透率图),以及地层参数预测水流方向;或利用试注时注示综剂求得的水流方向,或利用油水井之间平面压力梯度(即水井和油井折算到同一海拔高度的静止压力之差,除以井距)得出面积注水时的平面矛盾。这个压力梯度越小,说明这个方向是水流方向。根据各个方向压力梯度相差的倍数,可分析出平面水线推进的不均匀程度。分析判断是否需要做水流方向的平面调整。

二、封、堵剂和深度调剖剂

封、堵剂和深度凋剖剂性能上是有原则区别的,封、堵剂是要高强度堵死,而深度调剖剂是堵而不死,是一种可动的弱凝胶,可用模拟岩心优选深度调剖剂性能,使深度调剖剂推进速度比低渗透新进水层段的水线推进速度稍快一点,使得水线总超不过深度调剖剂,极大地扩大了波及体积,达到深度调剖的目的。国内主要的封、堵剂。

从深度调剖剂的性能可知,其特点是堵而不死,注入地层后还可以被水驱动,并可以控制推进速度,常用的是水解高分子聚合物或轻微胶凝高分子聚合物(弱凝胶)。在编制方案时必须根据本油田的特点,进行封堵剂和深度调剖剂室内配方优化筛选,确定总体配方。

三、堵水、深度调剖工艺方法选择及工艺参数的确定

编制堵水、深度调剖方案时,首先要本着块状底水油藏以封堵水为主,对层状注水油田在油井出水时应在水井上做工作(以深度调剖为主)。除确定堵剂、深度调剖剂总体配方外,对调堵工艺参数要有一个基本的论证,作为概念设计的依据。重点确定以下堵水、深度调剖工艺方法和工艺参数。(一)堵水、深度调剖工艺方法选择

编制堵水、深度调剖工艺方案时,首先根据前述的剖面和平面非均质的研究成果和油田出水预测,确定堵水、深度调剖工艺方法。在油田开发过程中,要以“笼统调堵为主,分层调堵为辅”为原则,非均质程度越严重越可以采取笼统调堵的施工方法。

1.笼统调堵工艺。

利用井内原有的注水管柱或采油管柱,从油管挤入化学调堵剂,关井3~5d后,开井恢复水井正常生产的一种工艺方法。其工艺特点是:不动原生产管柱,作业周期短,工艺成功率高,施工安全可靠。该工艺适合于层间渗透性差异大,隔层或夹层薄,产液剖面、吸水剖面不清楚,或固井质量差而引起窜槽的油水井。但要严格控制注入速度和注入压力,使调堵剂选择性地进入高吸水层段或产水层段,尽量减小含油层段伤害。

2.分层调堵工艺。

采用该工艺能够有效地改善油水井注采剖面,深度调剖、堵水伤害小,效果较好。但技术资料不准确会造成不该堵的层堵了,不该调的层调了,造成严重伤害。而且要求油层具有一定的隔层厚度,确保分层时不会造成管外窜。

(二)堵水和深度调剖工艺参数确定

1.堵水时堵剂用量。

(1)孔隙性油藏封堵剂用量主要依据处理半径、调堵层厚度及地层孔隙度等参数来确定。通常接下列公式(2-1)计算用量:

Q=πR2HΦ (2-1)

式中Q———堵剂用量,m3;

R———堵水处理半径(由堵剂强度决定,强度愈大半径愈小),m ;

Φ———堵水层孔隙度,%;

H———堵水层厚度,m。

(2)裂缝性油藏堵剂用量,可初步根据无水采油期累积产量的10%~40%选用,无水采油期的累积产量越小,堵剂用量可选多一些。替水量可参考无水采油期的累积产量决定,原则上无水采油期的累积产量越高,替水量越多,概念设计可按无水采油期累积产量的60%~90%确定。

2.深度调剖处理半径确定。

在深度调剖作业中,深度调剖剂用量越大,作业费用越高。因此,在优化措施经济效果的前提下,合理的深度调剖处理半径用下式计算:

3.深度调剖和封堵施工压力确定,施工压力,应满足下式(2-3)要求:

pbh<pz<pbi (2-3)

式中pz———深度调剖或封堵施工井口压力,MPa;

pbh———调堵层吸水井口启动压力,MPa;

pbi———非调堵层吸水井口启动压力,MPa。

在调堵施工中,注入压力绝对不能高于地层破裂压力。注入压力应由室内模拟试验确定,即高于调剖剂注入调整层段的启动压力,同时小于低渗透层注调剖剂的启动压力。

四、堵水及深度调剖效果的评估方法

油井要在有利于增加油田可采储量和尽可能小地影响油田采油速度的前提下,合理选井选层进行封堵水。

(1)对于单层达到堵水层含水界限的油层可以实施封堵水措施。但层内部分层段水洗,则不应采取堵水的措施,而应从剖面和平面调整和改善水驱波及体积,采用从水井深度调剖的措施。

(2)在层内部分层段水洗后,为满足油田产量的要求,对于具备提液条件的井应优先选择提液,当含水过高,提液得不偿失时应及时进行深度调剖作业。

(3)不论采取堵水还是深度调剖措施都应以扩大波及体积为最终目标,而不是单纯地看剖面的改善情况。也就是说不能单纯看一维的效果,而是要看三维的效果。

调剖堵水

油田开发到中后期,地层能量降低,采收率降低,我国大部分油田开始通过注水补充地层能量以提高采收率。但由于地层、油层的非均质性和复杂性,会出现水在油层中的“突进”和“窜流”现象。随着注水量的增加,注水剖面的不均匀性增加,导致油井大量出水。目前,油井平均含水已达80%以上,东部地区的一些老油田含水高达90%以上,甚至于超过了经济极限(含水率95%-98%)。因此,堵水调剖的工作量逐年增大,工作难度增加,而增油潜力降低,这种形式促进了堵水调剖技术的不断发展[1]。 我国自上个世纪50年代开始进行堵水技术的探索和研究,至今已有50多年历史。堵水就是控制水油比或控制产水,其实质是改变水在地层中的流动特性,即改变水在地层中的渗透规律[2]。堵水作业根据施工对象的不同,分为油井(生产井)堵水和水井(注入井)调剖两类,其目的是补救油井的固井技术状况和降低水淹层的渗透率(调整流动剖面),提高油层的采收率。 一、我国油田堵水调剖技术经历的发展阶段 上个世纪50-60年代我国处于探索研究阶段,探索研究堵水的一些方法和化学剂,开展了少量的油田应用实践,取得了一定成效。60-70年代主要以油井堵水为主,大庆油田在机械堵水方法和井下工具、胜利油田在化学堵水方面发展较快,其他油田也有相应的发展。80年代注水井调剖技术大为发展,为形成油田区块、井组为单元的整体措施奠定了基础。80-90年代初期,堵水技术由单井处理发展到区块综合治理,大规模地开展了从油藏整体出发,以油田区块为单元的整体堵水调剖处理。90年代中后期,提出了在油藏深部调整吸水剖面,促进了油藏深部调剖技术的发展[3]。 二、我国油田堵水调剖剂的利用现状 调剖堵水技术对油田稳产增产有着重要的意义,随着高含水油藏水驱问题的日益复杂对该领域技术要求越来越高,推动着堵水调剖及相关技术的不断创新和发展,尤其近年来在深部调剖(调驱)液流转向剂研究与应用方面取得了许多新进展[4]。油田中常用的堵水方法分为机械堵水和化学堵水两类,化学法堵水是化学堵水剂的化学作用对出水层造成堵塞,机械法堵水是用分隔器将出水层位在井筒内卡开,以阻止水流入井内。 我国化学堵水调剖技术始于20世纪50年代,早期使用的主要是水泥浆、油基水泥和活性稠油等,60年代以树脂为主,70年代水溶性聚合物及其凝胶开始在油田应用,从此,油田堵水调剖技术进入一个新的发展阶段,堵剂品种迅速增加,处理井次增多,经济效益也明显提高。就目前应用和发展情况看,主要是化学方法堵水调剖。 2.1油田化学堵水剂的种类 化学剂技术是堵水调剖中发展最活跃、最引人关注的技术。根据堵水剂对油层和水层的不同堵塞作用,化学堵水剂可分为非选择性堵水剂和选择性堵水剂。非选择性堵水剂是指堵水剂在油层中能同时封堵油层和水层的化学剂;选择性堵水剂是指堵水剂只与水起作用,而不与油起作用,故只在水层造成堵塞而对油层影响甚微[4]。 非选择性堵水剂的方式只适用于封堵单一层位,且施工复杂,要找准水层段,这就限制了它的使用。而在油田堵水调剖作业过程中,往往会遇到以下情况,油田出水层位不明确、固井质量不合格、套管变形、隔层薄和特殊的完井方式,这时只能采用选择性堵水剂[4]。 选择性堵水剂是相对的,它进入目的层后,对水的堵塞率可达80%以上,而对油的堵塞率小于30%。选择性堵水剂是通过油和水,产油层和产水层的差别进行堵水调剖[5]。选择性堵水剂的种类较多,根据配制堵水剂时所用的溶剂或分散介质,可分为水基选择性堵水剂、油基选择性堵水剂、醇基选择性堵水剂,而醇基选择性堵水剂在油田现场应用较少。 2.1.1水基选择性堵水剂 水基选择性堵水剂是选择性堵水剂中应用最广、品种最多、成本较低的一种堵水剂,包

中水深度处理系统计算书

记录编码:100-FA04621CT-Y5-JS-H02 国核电力规划设计研究院 年月日北京

再生水深度处理系统计算 一、设计依据: 1.机组规模:电厂本期建设规模为2×E级燃机-蒸汽联合循环供热机组,留有二期扩建2×E级机组的场地。 2.用水水源及水质:电厂用水水源天津武清污水处理厂三期出水320m3/h;龙凤河水水作为备用水源。水质报告见附件。 3.锅炉补给水处理系统用水水源为循环水排污水。 二、循环水石灰处理系统 1、循环水石灰处理系统确定: 为了循环水系统运行方便,循环水石灰处理系统本期一次建成。根据水源情况、各用水点对水质的要求及水量平衡的结果,该系统采用如下方案: 该系统中,处理再生水的机械加速澄清池与处理循环水排污水的机械加速澄清池互为备用。 2、石灰加药量计算: 1)计算公式: 根据《给水排水设计手册(第4册)》,消石灰加药量按下式计算: (1)当H Ca ≥H Z 时, CaO=28(H Z +CO 2 +F e +K+α)(g/m3)

(2)当H Ca ≤H Z 时, CaO=28(2H Z -H Ca +CO 2 +F e +K+α)(g/m3) 式中: CaO——石灰投药量(g/m3) H Ca ——原水中的钙硬度(mmol/L) H Z ——原水中的碳酸盐硬度(mmol/L) CO 2 ——原水中游离二氧化碳的含量(mmol/L) F e ——原水中的含铁量(mmol/L) K——凝聚剂(铁盐)的投加量 (mmol/L) α——石灰(Ca(OH)2)过剩量 (mmol/L),一般为0.2~0.4 mmol/L。 2)设备选择 (1)石灰乳计量泵选择: 经计算,循环水排污水处理系统投药量为:49kg/h;排污水处理系统投药量为:38kg/h。 石灰乳含量按3%计, 混合水处理系统及循环水排污水处理系统石灰乳计量泵流量为: 49÷0.03÷1000=1.6t/h 黄河水处理系统石灰乳计量泵流量为: 38÷0.03÷1000=1.3 t/h (2)石灰筒仓选择 经计算,消石灰粉10天的消耗量约:33m3,(详细计算过程见附表),故选择2座石灰筒仓,每座有效容积20m3。 3)石灰加药系统主要设备明细表

饮用水深度处理工艺设计

饮用水深度处理工艺设计 [摘要]针对饮用水水源有机物污染现象日趋严重,常规水处理工艺已难以生产出符合水质标准的饮用水,本文在常规饮用水处理的基础上设计了饮用水深度处理工艺,采用臭氧+砂滤+生物活性炭的新型组合工艺,能够有效保证饮用水的安全性。 [关键词]饮用水;深度处理;臭氧;生物活性炭 1.设计背景 饮用水的质量与人们的生活水平和身体健康息息相关。由于人们对饮用水水质的要求在不断提高,我国也提出了比现行饮用水水质标准(GB5749-85)更严格的2000年城市供水水质目标。 2.设计思想 2.1活性炭吸附 活性炭是一种具有较大吸附能力的多孔性物质。活性炭吸附在常规处理基础上去除水中有机污染物最有效最成熟的水处理深度处理技术。实验研究表明,饮用水处理中活性炭吸附去除的有机物的分子量主要分布在500-1000u(道尔顿)之间,分子量过大或过小吸附作用都较差。 2.2臭氧氧化 臭氧是一种氧化剂,它可以通过氧化作用分解有机污染物。臭氧可氧化溶解性铁、锰、氰化物、酚、致嗅物质和有色物质、生物难降解的大分子有机物等。 2.2.1去除无机物 臭氧预氧化可去除大多数无机物,但预氧化后必须有过滤或凝聚一絮凝一沉淀处理措施,以除去金属离子氧化后形成的不溶物。 2.2.2促进凝聚一絮凝处理 低剂量03(0.5g/m3lg/m3)就足以强化凝聚一絮凝处理。因为一些大分子溶解状污染物被03氧化后分子的极性变大,可与其他含有氢原子的有机物形成氢键,增加分子量,当这种达到一定程度时,溶解度将降低,产生微絮凝效果。 2.2.3氧化天然有机物 地表水和地下中含有大量会使水质恶化的有机物,另外,在末端氧化中腐殖

水的深度处理DOC

水的深度处理 水中溶解的有机物大致可以分成四类:(1)可吸附与可生物降解的;(2)可吸附但非生物降解的;(3)非吸附但可生物降解的;(4)非吸附与非生物降解的。当进入活性炭滤池水中的有机物可以生物降解的,或者经预臭氧氧化后变成可生物降解的,都起到了减少活性炭的吸附负载,从而延长了活性炭使用寿命的作用。 在水源水质不断恶化的条件下,要使自来水达到新的水质标准要求,视水源水质的不同,有些是可以强化常规处理即可达到标准;有些必须将常规处理工艺改造成深度处理工艺,增加去除溶解性有机污染物、臭味与氨氮才能达到标准的要求。深度处理是在强化常规处理的条件下,增加活性炭吸附、生物预处理等构筑物。 1、深度处理技术可以分为以下几种: 1.1、投加氧化剂 投加高锰酸钾、臭氧、过氧化氢、二氧化氯等氧化剂取代氯,使氯的消毒副产物减少,可以改善水的混凝条件,将粘附在胶体表面的有机物氧化,使胶体容易凝聚下沉。 1.2、活性炭吸附(下节内容讨论) 1.3、生物预处理 如原水中氨氮高,则采用生物预处理去除。 1.4、膜技术 微滤(孔径约0.1μm)和超滤(孔径约0.01μm),在给水厂可取代砂滤,超滤可去除细菌、病毒等颗粒污染物,但对溶解性小分子有机污

染物和臭味物质不能去除,可去除CODMn约10%(主要去除1万以上分子量)。 2、活性炭的吸附性能: 任何碳质原材料几乎都可以用来制造活性炭。植物类原料有木材、锯末、果壳、蔗渣、纸浆、废液等。无机类原料有褐煤、烟煤、无烟煤、泥炭、石油脚、石油焦炭、石油沥清等。 活性炭的制造主要分成碳化及活化两步。碳化有多种作用,一是使原材料分解放出水气、一氧化碳、二氧化碳及氢等气体,二是使原材料分解成碎片,并重新集合成稳定结构。原材料碳化后成为一种由碳原子微晶体构成的孔隙结构,其表面积达200~400m/g。活化是在有氧化剂的作用下,对碳化后的材料加热,以产生活性炭。活化过程大致所起的3个作用:(1)生成新的微孔或将原来闭塞的微孔打通;(2)扩大原有的细孔尺寸;(3)将相邻细孔合并成更大的孔。经活化后就产生更完善的孔隙结构,并使比表面积可达1000~1300m/g。活化过程同时把活性炭表面的化学结构固定下来。 活性炭的孔隙大小可分成微孔、中孔和大孔三级,其孔径分别为<2nm、2~6nm和60nm~10μm。活性炭以粉状(粉状活性炭PAC)和粒状(粒状活性炭GAC)两种形式应用。 粉炭的粒度为10~50μm,直接投入水中,一般与混凝剂一起联合使用,很难回收重复利用,粉炭只用于投量少或间歇处理的情况。 颗粒活性炭包括柱状炭和破碎炭二种,前者是制备好的粉末活性炭通过煤焦油等粘接材料通过粘接、成型工艺制成一定大小园柱颗粒,直

堵水调剖工艺

①摘要凝胶类堵水调剖剂的地下交联程度和选择性进入能力是影响堵水调剖效果的重要因素,为解决这些问题,开发研制了一种新型体膨型颗粒类堵水调剖剂,该堵水调剖挤为地面交联预聚体,具有膨胀度和粒径可控、比重接近于水、稳定性好、选择性好等优点,较好地解决了常规堵水调剖剂进入地层因稀释作用而不关联的弊端;同时,通过分理选择颗粒粒径和注入压力,可使堵水调剖剂在低渗透层形成表面堵塞而顺利地进入高渗透水洗层位,从而达到堵水调剖剂选择性进入太孔道的目的。——体膨型颗粒类堵水调剖技术的研究(李宇乡、刘玉章、白宝君、刘戈辉) ②摘要:低渗透裂缝型油田(以国内ST油田为例)经过长期注水开发后,由于注入水的长期冲刷,油藏孔隙结构和物理参数将发生变化,在注水井和生产井之间渗透率增大或出现大孔道;流动孔道变大,造成注入水在注水井和生产井之间循环流动,大大降低了水驱油的效率。根据ST油田地质特征、岩石性质、地下水型和注入水型,研制了一种新的调剖体系“预交联颗粒+PL调剖剂+缔合聚合物+水驱流向改变剂” 复合深部调剖体系。通过应用效果评价证明,该体系适合ST油田注水井堵水调剖需要,对水淹时间长的注水井也有良好的封堵和调驱作用,且具有见效快和有效期长的特点。——低渗透裂缝型油田注水井复合堵水调剖技术(李泽伟张涛新疆油田公司陆梁油田作业区) ③摘要:随着开采时间的延长,含水上升成为制约乐安油田水平井开发效果的主要因素。通过对水平井不同的出水点采取的针对性措施,即上部出水点氮气泡沫调剖和下部出水采取插管塞配合水泥浆封堵的方式,一定程度上解决了水平井,尤其是精密微孔滤砂管完井方式水平井的出水问题。经过在3口井例上的应用,取得较为明显的效果。——乐安稠油油藏水平井堵水调剖技术研究应用(翟永明,刘东亮,刘军,栾晓冬) ④摘要:油水井堵水调剖是严重非均质油藏控水稳油、提高水驱效率的重要技术手段。我国油田多数进入高含水或特高含水开采期后,常规的堵水调剖技术已

饮用水深度净化技术的现状与发展方向

第35卷 第6期2003年6月  哈 尔 滨 工 业 大 学 学 报 JOURNAL OF HARBIN INS TITUTE OF TECHNOLOGY   Vol .35No .6 June ,2003 饮用水深度净化技术的现状与发展方向 刘淑彦,王秀蘅 (哈尔滨工业大学市政环境工程学院,黑龙江哈尔滨150090) 摘 要:常规的给水处理工艺以去除浊度和细菌为主要目的,对有机物尤其是溶解性有机物的去除能力很低,因此有必要对饮用水进行深度净化.通过对目前饮用水深度净化技术的分析,提出采用臭氧、活性炭和膜联用深度处理技术,供给管道直饮水是目前我国城镇供水的必然趋势.关键词:饮用水;深度净化;臭氧;活性炭;膜中图分类号:T U991.2 文献标识码:A 文章编号:0367-6234(2003)06-0711-04 S tatus an d develo pment trend of ad vanced d rinking water treatment tech nolo gies LI U Shu -yan ,WANG Xiu -heng (School of M unicipal and Enviro nmental Eng ineering ,Harbin Institute of T echnolog y ,Harbin 150090,China ) A bstract :The aim of the no rmal treatment of drinking w ater is to remove turbidity and bacteria ,but it is not efficient to remove o rganism ,especially to dissolve organism .The necessity to advance treatment of drinking w ater throug h analyzing the recent w ater quality status of municipal w ater supply in China .Ac -co rding to application and study actuality of advanced treatment technology ,imperative to treat drinking w ater w ith activated carbon ,ozone and membrane through dual system .Key words :drinking water ;advanced treatment ;ozone ;activ ated carbon ;membrane 收稿日期:2002-04-29. 作者简介:刘淑彦(1956-),女,高级工程师. 我国自来水处理工艺90%以上仍采用20世纪初形成的混凝、沉淀、过滤和加氯消毒的常规工艺.这种工艺是建立在有合格水源的基础上,以去除浊度和细菌为主要目标,对有机物尤其是溶解性有机物的去除能力很低(20%~30%).2000年,我国7大重点流域地表水普遍存在有机污染,各流域干流仅有57.7%的断面满足我国供水水源Ⅲ类水质的标准[1];新的病原微生物隐孢子虫、微孢子虫尺寸小(1~5μm ),很难用常规过滤技术去除,而且对加氯消毒有很强的抗性[2] ;含有机污染物的水经加氯消毒后还会产生有机卤化物等“三致”物质.供水水质的下降严重危害健康,已引起供水行业和居民的极大关注. 1 饮用水深度净化的目的与对策 改善饮用水水质有两条途径:一是控制污水 的排放量及提高污水处理率,保护饮用水源[4]; 二是强化处理工艺对受污染水源进行深度处理.经过深度净化后的饮用水应去除三卤甲烷等有机污染物,不危害健康;去除病原菌和病毒,不引起传染性疾病;硬度和矿质元素含量适当,有益健康 [5] . 我国不宜将深度净化工艺设于自来水厂,因 为要在所有水厂加设深度处理工艺,改造和运行费用相当可观.如加设臭氧活性炭工艺会使自来 水厂的基建费用增加50%[4] ,且市政供水中只有 2%用于生活饮用,其余为工业和消防等用水,全面提高市政供水水质是不经济的.再者,我国中小城市陈旧的铸铁供水管网和二次供水设施也会对深度处理的出厂水造成二次污染.在小区设置集中净化装置供给管道直饮水具有良好的经济性,取用便利,卫生可靠,已在哈尔滨、上海和深圳等地推广应用 [6] .广州市政府明文规定新建小区和 公共场所必须配套分质供水系统[7]. 我国目前的分质供水方式是在厨房设置一根深度净化水管,供给烹饪和饮用水.其余生活用水

污水深度处理分级工艺划分

污水深度处理分级工艺划分 污水深度处理需要根据水质污染和危害情况选用不同的处理级别,确保污水排放符合国家规定标准,尤其是化工污水处理要求更为严格。 污水深度处理工艺级别划分 一级处理 该步骤主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理 主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准,目前使用比较广泛的是短纤维,悬浮物去除率达95%出水效果好。 三级处理 进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。

化工污水处理设备整个过程为通过粗格栅的原污水经过污水提 升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。 经过三级污水深度处理处理后的,出水水质即可满足污水排放水质标准,如若想污水回用,则需再经过深度处理才能满足水质要求。

再生水深度处理方案设计调研报告材料201306

再生水深度处理方案调研报告 xxxxxx热电有限公司 2013年06月

目录 一、第一部分:电话调研情况 (3) 二、第二部分:实地调研情况 (5) 三、第三部分:结论分析 (15) 四、第四部分:附件 (17)

为了解火电厂再生水深度处理方案的应用情况,充分做好xxxxxx2×350MW冷热电联供机组工程再生水深度处理方案选择工作,xxxxxx热电有限公司技术人员与设计院人员近期对相关电厂进行了电话调研和实地调研。现将调研情况汇报如下: 第一部分电话调研情况 一、采用石灰石处理的电厂情况

二、采用膜处理的电厂情况 第二部分实地调研情况

华能包头第三热电厂 一、工程概况 华能包头第三热电厂2×300MW供热机组是亚临界湿冷机组。 1号、 2号机组分别于2006年10月和2007年3月投产。 原设计电厂的工业用水水源为包头市北郊城市污水处理厂二级排放水,中水设计处理水量为1600t/h。经过调研,现电厂的循环水补水水源为包头市北郊城市污水处理厂二级排放水和城市自来水,用水比例约为8:2,锅炉补给水水源采用城市自来水。调研期间,正值1号机组大修,仅2号机组运行。电厂总用水量约为800t/h。 二、中水岛系统介绍 中水岛的处理系统流程:进水→曝气生物滤池→石灰混凝澄清→重力滤池→出水。 详细流程图如下:

三、采用石灰石法使用情况 中水水质经过调研,该厂中水来水主要指标中,生化需氧量(BOD)为5~13,化学需氧量(COD)20~30,氨氮为30~40,总硬度为280~350,甲基橙碱度为260~580,详情见附件一相关部分。 经过调研了解,机械加速澄清池已经停运3年,由于石灰储存计量系统堵塞问题严重,电厂运行人员根据运行实际情况,将中水系统进行了改进,曝气生物滤池运行良好,出水直接经过重力滤池,补入循环水系统,根据出水的碱度,在循环水前池中将硫酸直接投加至循环水系统进行调节。 当前中水处理系统仅有曝气生物滤池和重力滤池在投运,曝气生物滤池06年投运至今,没有更换过滤料;重力滤池每周反洗一次,维护工作量不大。原澄清池石灰系统运行时,石灰的投加量很难控制,无法在线监测,很难调节水PH值,导致后续重力滤池部分填料(海沙)板结腐蚀,故石灰系统停运。 石灰石来源情况 石灰石来源自鄂尔多斯世通商贸有限公司和包头市长乐矿产品有限公司,石灰石矿区距电厂约100公里。来料要求200目以上,消石灰纯度在80%以上。每吨石灰石价格在300~400元(不计入运费)。石灰用量10吨左右(在出水800~900吨/小时) 四、石灰石化验管理介绍 石灰石采购及签订合同由物资部负责,运行部化学专业负责

深度调剖及堵水

深度调剖及堵水 国内几十年来在治水方面积累了大量的经验教训。关于水井深度调剖,开始采用高强度堵剂,挤死高吸水层段,这种工艺对全层水淹的井效果显著。而我国油田属于陆相沉积,非均质性很强,在剖面上层内渗透率差异较大,如果深度调剖施工时将水淹层段堵死,这时注水井主要吸水层段被堵死,原来弱吸水段或不吸水段开始吸水,吸水剖面改变很理想。但是,由于注入堵剂数量有限,2m 油层挤入500m3堵剂,挤入深度只有12.6m,当低渗透层水线推进到此处时,注入水又会窜入特高渗透层,造成深度调剖失效。这种工艺每施工一口井增产油量一般不超过500t,个别有相对隔挡层的井或有相当好的潜力层的效果会好些。根据这一情况发展了深度调剖,即加大堵剂用量,但是,深度调剖深度与堵剂用量是平方的关系,所以堵剂用量加大很多,深度调剖深度增加得并不多。如2m 油层挤入1000m3堵剂进行深度调剖,深度也只有17.8m ,增产量和有效期改善仍不理想。近年来深度调剖工艺发展成调驱工艺,即将深度调剖剂改进为可动的弱凝胶(调驱剂),使得深度调剖后调驱剂段塞推进速度稍快于低渗透层段水线推进速度,直到调驱剂段塞薄到一定程度后突破,再注第二个段塞,增产量和有效期都会大幅度提高。 下面只重点介绍调驱工艺。值得注意的是调驱工艺有两个技术关键,一是必须根据渗透率,用岩心优选驱替剂的粘度,以保证调驱剂推进速度略快于新进水层段的水线推进速度;二是为了挤入调驱剂时尽量减少加强层的伤害,注入压力必须大于调剖层段的启动压差,小于加强层段的启动压差。这两方面都可以用岩心(或人造模拟岩心)实测。油井堵水也有类似问题,由于堵塞半径有限,增产量和有效期都很小,所以对孔隙性油藏来说,除非全层水淹否则对层内某层段出水不宜采用堵水措施。而对块状裂缝性底水油藏,由于无法在水井进行调整,只能利用这类油田的非均质性在油井进行堵水,开始将大裂缝堵死,这样虽然将出水通道堵死,同时也将与大裂缝连通的小裂缝的出油通道堵死,所以效果也不理想。以后发展为有渗透性的堵大裂缝的堵剂,效果有所改善。但是,由于岩块系统的驱替压差很大,大裂缝中渗透率下降很大,渗流阻力较大,大裂缝中压力憋得较高,形不成大的驱替压差,岩块系统中的油还是出不来。应当采取用堵剂堵死水源,保持一定长度的大裂缝,使这段裂缝中的压力与井底流压接近,充分发挥与大裂缝连通的岩块系统的作用,尽可能地提高增产效果。 一、油井出水分析及预测 在油田正式投入开发以前,没有足够的动态资料进行分析预测,只能凭静态资料和少量的试油。试采资料做粗略的预测。具体步骤如下; (一)建立理想的剖面非均质模型,预测面积注水时不同开发阶段的油井出水状况 利用测井曲线计算层间和层内渗透率近似的层段厚度乘以该段平均渗透率,得出地层参数Kh (K 为渗透率、h 为渗透率近似的层段厚度)。或利用分层试油不稳定试并求得的流动系数Kh/μ,乘以原油地下粘度,得地层参数。根据达西定律可知油层吸水量与地层参数成正比。在相同的压差下可以求出吸水剖面,从而判断出层内和层间的矛盾。进一步预测油井出水情况,判断出油井出水矛盾是层间为主,还是层内为主。确定治理水患的方针。于层间矛盾采用封堵水,属于层内矛盾(渗透率差异段之间有较大的相对隔挡层,可视做层内矛盾)是调剖。 (二)建立理想的平面非均质模型,预测面积注水时不同开发阶段注水井组油井出水情况根据油藏工程方案中油藏描述技术得到的渗透率平面矛盾情况(等渗透率图),以及地层参数预测水流方向;或利用试注时注示综剂求得的水流方向,或利用油水井之间平面压力梯度(即水井和油井折算到同一海拔高度的静止压力之差,除以井距)得出面积注水时的平面矛盾。这个压力梯度越小,说明这个方向是水流方向。根据各个方向压力梯度相差的倍数,可分析出平面水线推进的不均匀程度。分析判断是否需要做水流方向的平面调整。 二、封、堵剂和深度调剖剂 封、堵剂和深度凋剖剂性能上是有原则区别的,封、堵剂是要高强度堵死,而深度调剖剂是堵而不死,是一种可动的弱凝胶,可用模拟岩心优选深度调剖剂性能,使深度调剖剂推进速度比低渗透新进水层段的水线推进速度稍快一点,使得水线总超不过深度调剖剂,极大地扩大了波及体积,达到深度调剖的目的。国内主要的封、堵剂。 从深度调剖剂的性能可知,其特点是堵而不死,注入地层后还可以被水驱动,并可以控制推进速度,常用的是水解高分子聚合物或轻微胶凝高分子聚合物(弱凝胶)。在编制方案时必须根据本油田的特点,进行封堵剂和深度调剖剂室内配方优化筛选,确定总体配方。

污水的几种深度处理方法

目录 污水的几种深度处理方法 (2) 1.1 活性炭吸附法与离子交换 (2) 1.2 膜分离法 (2) 1.3.1 湿式氧化法 (3) 1.3.2 湿式催化氧化法 (3) 1.3.3 超临界水氧化法 (4) 1.3.4 光化学催化氧化法 (4) 1.3.5 电化学氧化法 (4) 1.3.6 超声辐射降解法 (5) 1.3.7 辐射法 (5) 1.4 臭氧法 (5) Ⅰ

污水的几种深度处理方法 污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。 1.1 活性炭吸附法与离子交换 活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%[1],可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。 常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度[2]。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术[3]。 GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理[4]。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一[5]。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。 1.2 膜分离法 膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术[6,7]。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。 微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求[8]。

工业废水深度处理与回用技术评价导则

《工业废水深度处理与回用技术评估导则》 (征求意见稿) 编制说明 编制单位:轻工业环境保护研究所 二〇一二年四月

目录 1.前言1 1.1 标准编制的背景1 1.2 标准编制的必要性和意义1 2 国内外技术评估方法发展现状2 2.1 常用技术综合评估方法概述2 2.2 国内外技术评估现状5 2.3 技术评估的原则5 2.4 技术评估的标准7 3 导则的编制过程7 4 适用范围8 5 导则编制的原则、方法及技术依据8 5.1 导则编制的基本原则8 5.2 导则编制的工作方法和技术依据9 6 技术评估指标体系建立10 6.1 现有废水处理技术评估指标体系研究10 6.2 国家文件对评估指标体系建立的要求12 6.3 评估指标体系建立的原则13 6.4 评估指标确定的依据14 6.5 评估指标体系建立流程14 6.6 评估指标的建立15 7 技术评估指标权重值研究15 7.1主观赋权法16 7.2客观赋权法17 7.3本导则指标权重确定方法18 8 导则实施建议18 8.1 管理措施建议18 8.2 实施方案建议19

《工业废水深度处理与回用技术评估导则》编制说明 1.前言 1.1 标准编制的背景 为进一步开展工业废水深度处理与回用吗,保护人体健康和生态环境,规范企业在工业废水深度处理与回用技术选用与实施过程中的监督管理,制定《工业废水深度处理与回用技术评估导则》国家标准,项目承担单位为轻工业环境保护研究所。 1.2 标准编制的必要性和意义 随着废水排放标准越来越严格以及废水资源化的迫切要求,近年来才开始广泛地重视、推广废水深度处理及回用技术。工业和信息化部印发的“关于进一步加强工业节水工作的意见”中指出:积极推进企业水资源循环利用和工业废水处理回用。采用高效、安全、可靠的水处理技术工艺,大力提高水循环利用率,降低单位产品取水量。加强废水综合处理,实现废水资源化,减少水循环系统的废水排放量。加快培育节水和废水处理回用专业技术服务支撑体系。鼓励专业节水和废水处理回用服务公司联合设备供应商、融资方和用水企业,实施节水和废水处理回用技术改造项目。在造纸、钢铁等行业,逐步推广特许经营、委托营运等专业化模式,提高企业节水管理能力和废水资源化利用率;开展废水“零”排放示范企业创建活动,树立一批行业“零”排放示范典型。鼓励各级工业园区、经济技术开发区、高新技术开发区采取统一供水、废水集中治理模式,实施专业化运营,实现水资源梯级优化利用。 目前,我国对再生水利用遵循“分质使用”的原则,只有广泛意义上界定的各再生水水质标准,针对性不强,不能对行业技术起到很好的指导作用;此外种类繁多的工业废水深度处理与回用技术,各技术参差不齐现象,处于无序的市场竞争阶段,技术市场较为混乱,最终导致多数污水处理厂在对工业废水处理与回用技术的选择和应用上存在偏差和盲从性,使很多真正较好的工业废水处理与回用技术不能被有效的转化和推广,导致成本的加大,更有甚者造成了环境的二次污染,不能在根本上解决我国目前工业企业废水回收利用率不高等问题,企业废

堵水调剖技术发展现状

堵水调剖技术发展现状 油井出水是油田(特别是注水开发油田)开发过程中普遍存在的问题。由于地层原生及后生 的非均质性、流体流度差异以及其他原因(如作业失败、生产措施错误等),在地层中形成水 流优势通道,导致水锥、水窜、水指进,使一些油井过早见水或水淹,水驱低效或无效循环。 堵水调剖技术一直是油田改善注水开发效果、实现油藏稳产的有效手段。我国堵水调剖技术已有几十年的研究与应用历史,在油田不同的开发阶段发挥着重要作用。但油田进入高含水或特高含水开采期后,油田水驱问题越来越复杂,堵水调剖等控水稳油技术难度及要求越 来越高,推动着该技术领域不断创新和发展,尤其在深部调剖(调驱)液流转向技术研究与应用方面取得了较多新的进展,在改善高含水油田注水开发效果方面获得了显著效果。 1 技术现状及最新进展 1.1发展历程 我国堵水调剖技术的研究与应用可追溯到 20 世纪50年代末,60至 70年代主要以油井堵 水为主。80年代初随着聚合物及其交联凝胶的出现,注水井调剖技术迅速发展,不论是堵水还是调剖,均以高强度堵剂为主,作用机理多为物理屏障式堵塞。90年代,油田进入高含水期,调剖堵水技术也进入发展的鼎盛期,由单井处理发展到以调剖堵水措施为主的区块综合治理。进入21世纪后,油田普遍高含水,油藏原生非均质及长期水驱使非均质性进一步加剧,油层 中逐渐形成高渗通道或大孔道,使地层压力场、流线场形成定势,油水井间形成水流优势通道,造成水驱“短路”,严重影响油藏水驱开发效果。加之对高含水油藏现状认识的局限性,常 规调剖堵水技术无法满足油藏开发需要,因而,作用及影响效果更大的深部调剖(调驱)技术获得快速发展,改善水驱的理论认识及技术发展进入了一个新阶段。分析我国堵水调剖技术的研究内容和应用规模,其发展大体经历了4个阶段。①50至70年代:油井堵水为主,堵剂材 料主要是水泥、树脂、活性稠油、水玻璃/氯化钙等。②70至80年代:随着聚合物及其交联凝胶的出现,堵水调剖剂研制得以迅速发展,以强凝胶堵剂为主,作用机理多为物理屏障式 堵塞,以调整近井地层吸水剖面及产液剖面为目的。③90年代:油田进入高含水期,调剖技 术进入鼎盛期,因处理目的不同,油田应用的堵剂体系有近100种,其中深部调剖(调驱)及相 关技术得到快速发展,以区块综合治理为目标。④2000年以后:基于油藏工程的深部调剖(驱)改善水驱配套技术的提出,使深部调剖(驱)技术上了一个新台阶,将油藏工程技术 和分析方法应用到改变水驱的深部液流转向技术中。处理目标是整个油藏,作业规模大、时间长。 1.2技术现状与最新进展 堵水调剖及相关配套技术在高含水油田控水稳产(增产)措施中占有重要地位,但随着高含水 油藏水驱问题的日益复杂,对该领域技术要求越来越高,推动着堵水调剖及相关技术的不断

中水深度处理

污水深度处理定义:在传统的二级处理后,对悬浮物,胶体以及溶解的物质进行深度处理的过程。其中,溶解的成分包括相对简单的无机离子,如钙离子,钾离子,硫酸根离子,硝酸根离子,磷酸根离子以及日益增加的较复杂的合成有机化合物。近年来,这些物质的环境影响越来越来明显。深度处理技术的进一步研究能够知道废水中生物活性物质的潜在毒性的环境影响,以及这些物质怎么利用传统的和高级的废水处理方法将其去除。这样一来,废水处理技术就显得非常必要,不仅是由于出水的浓度受限制,还有出水的毒性限制,具体说明见第二章。为了满足这些新的要求,现在许多二级处理装置都要更新,新的高级处理装置将要建立。因此,本部分的内容主要是对高级废水处理进行介绍,另外进一步对深度处理的要求,以及在第二章对处理这些成分的技术进行整体介绍,以及对具体的物质的去除技术的介绍。对深度处理过的残留物质的最终处理将在第十四章讨论。 11-1 废水深度处理技术的必要性 1,传统的二级处理技术对有机物质和总悬浮物的去除不能满足严格的排放和回用要求。 2,对残留的总悬浮颗粒物的处理需要更好的消毒措施。 3,传统的二级处理技术对营养物质的去除不能降低到水体的富营养化水平以下。 4,对特殊的无机物(如重金属离子)和有机物不能满足地表水的排放和再利用要求。 5,工业回用水中的无机物和有机物的去除要求。

随着实验室研究方法和环境监测技术的飞快发展,现在的先进,高级的技术在5-10年后也将会变得过时。 从20世纪60年代中期,含氮,磷的化合物就收到了重视。最初,它们受到重视是因为湖泊的富营养化。为了降低氨的浓度,减少河口中氧化物质的影响,因此更多的关注营养物质的去除方法,因此,营养物质的用生物方法去除氮磷将会在第8,9章讨论,用化学法对磷的去除将会在第六章讲到。 11-2 深度处理技术介绍 1.处理过废水中的残留物质 国内废水的典型成分在表3-15中讨论过,另外,国内许多废水包括许多痕量物质和元素,虽然它们没作为常规检测项目。这些物质的影响如表11-1所示,而且表明许多物质都应该作为废水排放的要求的检测指标。 2.技术的分类 深度废水处理系统主要根据操作单元的类型或者根据主要的去除效果进行分类,如表11-2所示,其中许多操作能够处理不同种类的物质,表11-2中的单个成分能够整合为四个大的范畴,即:a,残留的有机和无机胶体及悬浮物;b,溶解的有机物;c,溶解的无机物;d,生物成分。典型的深度处理技术包括很多个表11-2所示的单个操作单元,具体流程图见图11-1。

国内外堵水调剖技术最新进展及发展趋势

国内外堵水调剖技术最新进展及发展趋势 油井出水是油田(特别是注水开发油田)开发过程中普遍存在的问题。由于地层原生及后生的非均质性、流体流度差异以及其他原因(如作业失败、生产措施错误等),在地层中形成水流优势通道,导致水锥、水窜、水指进,使一些油井过早见水或水淹,水驱低效或无效循环。堵水调剖技术一直是油田改善注水开发效果、实现油藏稳产的有效手段。 我国堵水调剖技术已有几十年的研究与应用历史,在油田不同的开发阶段发挥着重要作用。但油田进入高含水或特高含水开采期后,油田水驱问题越来越复杂,堵水调剖等控水稳油技术难度及要求越来越高,推动着该技术领域不断创新和发展,尤其在深部调剖(调驱)液流转向技术研究与应用方面取得了较多新的进展,在改善高含水油田注水开发效 果方面获得了显著效果。 1技术现状及最新进展 1.1发展历程 我国堵水调剖技术的研究与应用可追溯到20世纪50年代末,60至70年代主要以 油井堵水为主。80年代初随着聚合物及其交联凝胶的出现,注水井调剖技术迅速发展,不论是堵水还是调剖,均以高强度堵剂为主,作用机理多为物理屏障式堵塞。90年代,油田进入高含水期,调剖堵水技术也进入发展的鼎盛期,由单井处理发展到以调剖堵水措施为主的区块综合治理。进入21世纪后,油田普遍高含水,油藏原生非均质及长期水驱使非均质性进一步加剧,油层中逐渐形成高渗通道或大孔道,使地层压力场、流线场形成定势,油水井间形成水流优势通道,造成水驱“短路”,严重影响油藏水驱开发效果。加之对高含水油藏现状认识的局限性,常规调剖堵水技术无法满足油藏开发需要,因而,作用 及影响效果更大的深部调剖(调驱)技术获得快速发展,改善水驱的理论认识及技术发展进入了一个新阶段。分析我国堵水调剖技术的研究内容和应用规模,其发展大体经历了4个阶段。①50至70年代:油井堵水为主,堵剂材料主要是水泥、树脂、活性稠油、水玻璃/氯化钙等。②70至80年代:随着聚合物及其交联凝胶的出现,堵水调剖剂研制得以迅速发展,以强凝胶堵剂为主,作用机理多为物理屏障式堵塞,以调整近井地层吸水剖面及产液剖面为目的。③90年代:油田进入高含水期,调剖技术进入鼎盛期,因处理目的不同,油田应用的堵剂体系有近100种,其中深部调剖(调驱)及相关技术得到快速发展,以区块综合治理为目标。④2000年以后:基于油藏工程的深部调剖改善水驱配套技术的提出,使深 部调剖技术上了一个新台阶,将油藏工程技术和分析方法应用到改变水驱的深部液流转向技术中。处理目标是整个油藏,作业规模大、时间长。

第3章 污水深度处理设计计算

第3章 污水深度处理设计计算 污水深度处理是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD 和BOD 有机污染物质,SS 及氮、磷高浓度营养物质及盐类。 絮凝过程就是使具有絮凝性能的微絮粒相互碰撞,从而形成较大的,絮凝体,以适应沉淀分离的要求。 常见的絮凝池有隔板絮凝池,折板絮凝池,机械絮凝池,网格絮凝池。隔板絮凝池虽构造简单,施工管理方便,但出水流量不易分配均匀。折板絮凝池虽絮凝时间短,效果好,但其絮凝不充分, 形成矾花颗粒较小、细碎、比重小,沉淀性能差,只适用于水量变化不大水厂。机械絮凝池虽絮凝效果较好、水头损失较小、絮凝时间短,但机械设备维护量大、管理比较复杂、机械设备投资高、运行费用大。网格絮凝池构造简单、絮凝时间短且效果较好,本设计将采用网格絮凝池[8,9,10,11]。 3.1.1网格絮凝池设计计算 网格絮凝池分为1座,每座分1组,每组絮凝池设计水量: s /m 308.0Q 31= (1)絮凝池有效容积 T Q V 1= (3-12) 式中Q 1—单个絮凝池处理水量(m 3/s ) V —絮凝池有效容积(m 3) T —絮凝时间,一般采用10~15min ,设计中取T=15min 。 3277.2m 60150.308V =??= (2)絮凝池面积 H V A = (3-13) 式中 A —絮凝池面积(m 2); V —絮凝池有效容积(m 3); H —有效水深(m ),设计中取H=4m 。 2m 3.694 2.277A == (3)单格面积 11v Q f = (3-14) 式中f —单格面积(m 2); Q 1—每个絮凝池处理水量(m 3/s ); v 1—竖井流速(m/s ),前段和中段0.12~0.14m/s ,末段0.1~0.14m/s 。

深度再生水处理技术满足各种水质要求

深度再生水处理技术满足各种水质要求 在污水再生处理工程中单独使用某项单元技术很难满足用 户对水质的要求,通常情况下要针对不同的水质要求采用相应的组合工艺进行处理。 现在很多厂家都采用了多种深度处理组合工艺,包括:反硝化生物滤池+超滤+臭氧接触池+紫外线消毒。 根据国内外城镇污水再生处理与利用研究成果和实践经验,《技术指南》针对工业用水、景观环境用水、绿地灌溉、农田污染、城市杂用及地下水回灌等不同再生水利用途径推荐了相应的主要组合工艺方案。如何保证再生水组合工艺高效、连续稳定地运行,并进一步提高产水率是再生水组合工艺的发展方向。 深度水处理技术主要包括混凝沉淀、介质过滤(含生物过滤)、膜处理、氧化等单元处理技术及其组合技术。再生水深度处理技术主要功能为进一步去除二级处理未能完全去除的水中有机污 染物、SS、色度、嗅味和矿化物等。 膜处理技术。再生水膜处理技术包括膜生物反应器抛光混床(MBR)技术、微滤/超滤膜过滤技术;反渗透(RO)技术等。《技术 指南》指出,抛光混床(MBR)膜组件采用中空纤维更换周期一般 为3-5年,采用板式更换周期一般为5-8年;微滤/超滤膜组件更

换周期约为3-5年;反渗透对预处理要求高,一般要求有超滤或微滤预处理,3-5年需更换膜组件。 目前将采用“浸没式超滤+反渗透+能量回收系统工艺”和采用“超滤+反渗透”双膜过滤工艺等来进行再生! 氧化技术。氧化技术是利用臭氧等强氧化剂对水中色度、嗅味及有毒有害有机物等进行氧化去除的技术,根据来水水质状况和出水水质要求还可以采用臭氧-过氧化氢、紫外-过氧化氢等高级氧化技术。 生物过滤。生物过滤是利用滤料及其表面附着的生物膜去除氮、有机污染物和悬浮物。根据处理目标不同可分为曝气生物滤池和反硝化滤池。曝气生物滤池适用于氨氮的去除,反硝化滤池适用于硝态氮的去除。

相关主题
文本预览
相关文档 最新文档