当前位置:文档之家› 正弦定理知识点总结与复习

正弦定理知识点总结与复习

正弦定理知识点总结与复习
正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形

[解题过程] 在△ABC 中,C =180°-(A +B )

=180°-(60°+45°)=75°. sin 75°=sin(45°+30°)

=sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24

根据正弦定理:

a =c sin A sin C =2sin 60°sin 75°=2×3

2

2(3+1)4=6(3-1)=32-

6,

b =

c sin B sin C =2sin 45°

sin 75°=2×

222(3+1)

4

=2(3-1).

[题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是:

(1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B

sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况,

∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边

c.

1.(1)已知A =45°,B =30°,c =10.求b .

(2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64,

∴b =c sin B sin C =10×sin 30°

sin 105°=10×

122+64

=5(6-2).

(2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c

sin C ,

∴c =b sin C sin B =22×sin 30°sin 45°=

22×12

2

2

=2.

在△ABC 中,A =60°,a =43,b =42,解三角形.

2.本例中条件“A =60°”改为“B =45°”,其它条件不变,解三角形

[解题过程] 由a sin A =b sin B

,得 sin B =b ·sin A a =42×sin 60°43

=2

2.

∵a >b ,∴A >B ,而A =60°,∴B 为锐角,∴B =45°. C =180°-(A +B )=75° 由a sin A =c sin C 得c =a sin C sin A =43·sin 75°sin 60°=2(6+2) [题后感悟] 已知两边和其中一边对角(如a ,b ,A )不能唯一确定三角形形状,解这类问题将出现无解、一解、两解三种情况,要注意判别,其方法是:由三角形中大边对大角可知,若a ≥b ,则A ≥B ,从而B 为锐角,有一解,若a

a ,①当sin B >1,无解;②当sin B =1

,一解;③当sin B <1,两解. , 解析: 由正弦定理a sin A =b sin B 得

sin A =a sin B b =43sin 45°42=3

2

∵a >b ,∴A >B ,∴A =60°或120°. 当A =60°时,C =180°-(A +B )=75° 由正弦定理c sin C =b

sin B

在△ABC 中,已知a2tan B =b2tan A ,试判断△ABC 的形状. 思路点拨 :观察已知条件,是一个边角等式,可以应用正弦定 理把边化为角,再利用三角公式求解

c =b sin C sin B =42·sin 75°

sin 45°=2(6+2). 当A =120°时,C =180°-(A +B )=15° 由正弦定理c sin C =b sin B

c =b sin C sin B =42·sin 15°

sin 45°=2(6-2) ∴A =60°,C =75°,c =2(6+2) 或A =120°,C =15°,c

=2(6-2)

[规范作答] 由已知得a 2sin B cos B =b 2

sin A

cos A .2分 由正弦定理的推广得a =2R sin A ,b =2R sin B (R 为△ABC

的外接圆半径),∴4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A

cos A

,6分

即sin A cos A =sin B cos B ,∴sin 2A =sin 2B .8分 又A 、B 为三角形的内角,

∴2A =2B 或2A =π-2B ,即A =B 或A +B =π

2.10分

∴△ABC 为等腰三角形或直角三角形.12分

[题后感悟] (1)确定三角形的形状主要有两条途径: ①化边为角;②化角为边. (2)确定三角形形状的思想方法:

先将条件中的边角关系由正弦定理统一为角角或边边关系,再由三角变形或代数变形分解因式,判定形状.在变形过程中要注意等式两端的公因式不要约掉,应移项提取公因式,否则会有漏掉一种解的可能.

3.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若b =acos C ,试判断△ABC 的形状. 解析: ∵b =acos C ,

由正弦定理得:sin B =sin A ·sin C. ∵B =π-(A +C), ∴sin(A +C)=sin A ·cos C.

即sin Acos C +cos Asin C =sin A ·cos C , ∴cos Asin C =0,

∵A 、C ∈(0,π),

∴cos A =0,∴A =π2, ∴△ABC 为直角三角形.

在△ABC 中,分别根据下列条件解三角形: (1)a =1,b =3,A =30°;

(2)a =3,b =1,A =60°; (3)a =3,b =1,B =120°.

[解题过程] 在△ABC 中, (1)根据正弦定理,sin B =b sin A a =3sin 30°1

=3

2. ∵b >a ,∴B >A =30°,∴B =60°或120°. 当B =60°时,C =180°-(A +B )=180°-(30°+60°)=90°, ∴c =b sin B =3sin 60°=2; 当B =120°时,C =180°-(A +B )=180°-(30°+120°)=30°, c =b sin C sin B =3sin 30°sin 120°=1. (2)根据正弦定理,sin B =b sin A a =sin 60°3=12.

∵b

(3)根据正弦定理,sin A =a sin B b =3sin 120°1=32>1. 因为在△ABC 中,A <180°-B =60°.所以,A 不存在,即无解.

[题后感悟] (1)正弦函数y =sin x 的值域是[-1,1],据此可判断是否有解.

(2)在△ABC 中,大边对大角,小边对小角,据此可判断解的个数.

4.已知下列各三角形中的两边及其一边的对角,先判断三角形是否有解?有解的作出解答. (1)a =23,b =6,A =30°. (2)a =2,b =2,A =45°. (3)a =5,b =3,B =120°. (4)a =3,b =4,A =60°. 解析: (1)a =23,b =6,a

=3,a >b sin A ,∴本题有两解. 由正弦定理得sin B =b sin A a =6sin 30°23=32, ∴B =60°或120°. 当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°

=43; 当B =120°

时,C =30°,c =a sin C sin A =23sin 30°

sin 30°=2 3. ∴B =60°

,C =90°,c =43或B =120°,C =30°,c =2 3. (2)由a sin A =b sin B 得 sin B =b sin A a =2sin 45°2=2×22

2=12, ∵a >b ,∴A >B ,∴B 必为锐角. ∴B =30°, ∴C =180°-(A +B )=180°-(45°+30°)=105°,

∴c =a sin C sin A =2sin 105°sin 45°=2×6+24

22=3+1,

∴B =30°,C =105°,c =3+1.

(3)∵a =5,b =3,a >b .∴A >B 又∵B =120°

∴不存在角A ,故此题无解. (4)∵a

=4·sin 60°=2 3 又∵a

1.正弦定理的常见变形

设R 为三角形外接圆半径,公式可扩展为a sin A =b sin B =c

sin C =2R ,即当一内角为90°

时,所对边为外接圆的直径,灵活运用正弦定理,还需知道它的几个变形:

(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c

2R ;

(3)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A ; (4)a ∶b ∶c =sin A ∶sin B ∶sin C .

◎在△ABC 中,已知a =52,c =10,A =30°,求B 、C 及b .

【错解】 根据正弦定理得: sin C =c sin A a =10×1252

=2

2 ∴C =45° ∴B =180°-(A +C )=180°-(30°+45°)=105° ∴b =a ·sin B sin A =52·sin 105°

sin 30°

=5(3+1) 【错因】 上述解法由sin C =22,求角C 时漏掉了一个解, ∵在△ABC 中,c =10>a =52, ∴C >A ,∴C =45°或135°. 【正解】 根据正弦定理得: sin C =c sin A a =10sin 30°52=2

2 ∵a

时,B =180°-(30°+45°)=105° ∴b =a sin B sin A =52·sin 105°sin 30°=5(3+1) (2)当C =135°时,B =180°-(135°+30°)=15° ∴b =a sin B sin A =52·sin 15°sin 30° =5(3-1)

1.1.1 正弦定理 同步练习

一、

选择题

1.在△ABC 中,已知0075,60,8===C B a ,则b 等于( ) A.24 B.34 C.64 D.

3

32 2.在△ABC 中,已知045,2,===B cm b xcm a ,如果利用正弦定理解三角形有两解,则x 的取值范围是 ( )

A.222<x< B.222≤<x C.2x > D.2x < 3.△ABC 中,若sinA :sinB :sinC=m :(m+1):2m, 则m 的取值范围是( )

A.(0,+∞) B.(2

1

,+∞) C.(1,+∞) D.(2,+∞)

二、填空题

4.在△ABC 中,若sinA =2cosBsinC,则△ABC 的形状是______ ___

5.在△ABC 中,已知3

1

cos ,23==C a ,S△ABC =34,则=b _________

三、解答题

6.已知方程0cos )cos (2=+-B a x A b x 的两根之积等于两根之和,且b a ,为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状

7.在△ABC 中,3

,2π

=-=+C A b c a ,求sinB 的值。

正弦与余弦定理和公式高中数学知识点梳理

正弦与余弦定理和公式高中数学知识点 梳理 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形

中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题 (3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sin A+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,C=90,a=1,c=4,则sinA 的值为 2.已知为锐角,且,则的度数是( ) 3.在△ABC中,若,A,B为锐角,则C的度数是() 4.若A为锐角,且,则A=() 5.在△ABC中,AB=AC=2,ADBC,垂足为D,且AD= ,E 是AC中点, EFBC,垂足为F,求sinEBF的值。

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

高一数学正余弦定理知识点梳理和分层训练修订稿

高一数学正余弦定理知 识点梳理和分层训练 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-

高一数学正、余弦定理知识点梳理和分层训练 班级 姓名 座号 1.正弦定理: 2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-? = ?? ?+-= ?? . 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用ABC ?中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin 2222 A B C A B C ++==. 表一:

表二:已知三角形两边及其中一边的对角求解三角形的有可能有两种情况,具 基础达标: 1. 在△ABC 中,a=18,b=24,∠A=45°,此三角形解的情况为 A. 一个解 B. 二个解 C. 无解 D. 无法确定 2.在△ABC 中,若2,a b c ===+A 的度数是 A. 30° B. 45° C. 60° D. 75° 3.ΔABC 中,若a 2 =b 2 +c 2 +bc ,则∠A= A. 60 B. 45 C. 120 D. 30 4.边长为5、7、8的三角形的最大角与最小角之和为 A. 90° B. 120° C. 135° D. 150° 5.在△ABC 中,已知3=a ,2=b ,B=45.求A 、C 及c.

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.doczj.com/doc/2611726788.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.doczj.com/doc/2611726788.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

正余弦定理知识点+经典题(有答案)

正余弦定理 1.定理内容: (1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 2sin sin sin a b c R A B C === (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- (3)面积定理:111 sin sin sin 222 ABC S ab C bc A ac B ?= == 2.利用正余弦定理解三角形: (1)已知一边和两角: (2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边: 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.32 3 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12C .2 D.1 4 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

正弦定理和余弦定理学习知识点情况总结(学案)

正弦定理和余弦定理 一、正、余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 正弦定理可以用来解决两类解三角形的问题: 1.已知两角和任意一边,求另两边和另一角; 2.已知两边和其中一边的对角,求其他的边和角. 第一类问题有唯一解,当三角形的两角和任一边确定时,三角形就被唯一确定. 第二类问题的三角形不能唯一确定,可能出现一解、两解或无解的情况. 下面以已知a ,b 和A ,解三角形为例加以说明. 法一;由正弦定理、正弦函数的有界性及三角形的性质可得: (1)若sin B = b sin A a >1,则满足条件的三角形的个数为0,即无解;

(2)若sin B = b sin A a =1,则满足条件的三角形的个数为1; (3)若sin B = b sin A a <1,则满足条件的三角形的个数为1或2. 显然由01, 无解;②sin B =1,一解;③sin B <1,两解. 法二: A 为锐角 A 为钝角或直角 图形 关系式 ①a =b sin A ②a ≥b b sin A b a ≤b 解的个数 一解 两解 无解 一解 无解 三、三角形的面积公式 已知条件 选用公式 三角形的一边及此边上的高 公式1:S △ABC =12a ·h a =12b ·h b =1 2 c ·h c

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

人教版勾股定理知识要点--总结及练习

勾股定理知识总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2 ) 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2 +b 2 =c 2 ,那么这个三角形是直角三角形。 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 二、经典例题精讲: 题型一:直接考查勾股定理: 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 题型二:利用勾股定理测量长度: 例题1 如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸 边,它的顶端B 恰好落到D 点,并求水池的深度AC. 题型三:勾股定理和逆定理并用— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 = 那么△DEF 是直角三角形吗?为什么? 题型四:关于翻折问题: 例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上

的点G 处,求BE 的长. 勾股定理练习(随堂练) 一.填空题: 1. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________________________; (2)b=8,c=17,则S △ ABC =________。 2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为____________________。 4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所 行的最短路线的长是_______________________。 二.选择题: 5.观察下列几组数据 :(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4 6.三个正方形的面积如图,正方形A 的面积为( ) A. 6 B.4 C. 64 D. 8 7.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A.13 B.119 C.13或119 D. 不能确定 8.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2 ∶b 2 ∶c 2 =2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 9.三角形的三边长为(a+b )2 =c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. A B 第8题图 A 10 6

正余弦定理知识点

正余弦定理知识点 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

平面向量知识点 考试内容:数学探索?版权所有https://www.doczj.com/doc/2611726788.html,向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.数学探索?版权所有https://www.doczj.com/doc/2611726788.html,考试要求:数学探索?版权所有https://www.doczj.com/doc/2611726788.html,<1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.数学探索?版权所有https://www.doczj.com/doc/2611726788.html,<2)掌握向量的加法和减法.数学探索?版权所有https://www.doczj.com/doc/2611726788.html,<3)掌握实数与向量的积,理解两个向量共线的充要条件.数学探索?版权所有https://www.doczj.com/doc/2611726788.html,<4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.数学探索?版权所有https://www.doczj.com/doc/2611726788.html,<5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.数学探索?版权所有https://www.doczj.com/doc/2611726788.html,<6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式. 1.本章知识网络结构

2.向量的概念 (1>向量的基本要素:大小和方向向量的表示:几何表示法 ;字母表示:a; 坐标表示法 a=xi+yj=<x,y) (3>向量的长度:即向量的大小,记作|a| (4>特殊的向量:零向量a=O|a|= 单位向量aO为单位向量|aO|= (5>相等的向量:大小相等,方向相同x1,y1>=<x2,y2) (6> 相反向量:a=-b b=-a a+b=0 (7>平行向量(共线向量>:方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量 3.向量的运算 ,

文本预览
相关文档 最新文档