当前位置:文档之家› 细胞凋亡信号转导途径及调控的研究进展

细胞凋亡信号转导途径及调控的研究进展

细胞凋亡信号转导途径及调控的研究进展
细胞凋亡信号转导途径及调控的研究进展

细胞凋亡信号转导途径及其调控的研究

进展

学科:基础兽医学

专业:药理毒理学

姓名:ma cai hui

学号:13203023

细胞凋亡信号转导途径及其调控的研究进展

摘要目的:为了研究抗肿瘤药物促使细胞凋亡的作用机理,探讨细胞凋亡的信号转导途径以及相关基因对其的调控。方法:查阅近年的国内外相关文献,归纳整理细胞凋亡的信号转导途径和相关的调控基因。结果:介绍了细胞凋亡存在三条主要通路:线粒体通路、内质网通路和死亡受体通路,各通路间互相联系,共同调节细胞凋亡。以及调控凋亡的主要基因,Bcl-2、p53、c-myc、P16、Rb。结论:研究抗肿瘤药物的作用机理应从以上三条凋亡途径和相关调控基因出发。

关键词细胞凋亡;信号转导途径;基因调控;caspase

Progress study on signal transmission pathways and

regulation of cell apoptosis

Wang Saiqi

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 Key words : cell apoptosis; signal transmission pathways; gene regulation; caspase

Abstract Aim : To check the mechanism of apoptosis induced by anticarcinogen and research the cell apoptosis signal transmission pathways and related genes on its regulation. Methods: Signal transmission pathways and related genes were concluded by referring to related papers at home and abroad in recent years. Results: Three main signal transmission pathways, death receptor-mediated pathways, mitochondrial pathway, endoplasmic reticulum pathway and several main regulator genes,Bcl-2,p53, c-myc,P16,Rb were introduced. Conclusions: Research on the mechanism of anticarcinogen should start from the said signal transmission pathways and genes.

1 细胞凋亡概述

细胞凋亡,又名细胞程序性死亡,是诱导性的细胞自杀过程,它使生物体可以有序地清除受损伤或无用的细胞。自从1927年John Kerr第一次提出凋亡这一概念后,人们发现它在多细胞生物的基本生命活动中起着十分重要的作用。它对于

生物发育过程中控制细胞数量平衡必不可少。由于这种死亡是由基因调控引发的,因此也被称为程序性细胞死亡(programmed cell death,PCD)。目前大多数人认为,肿瘤是一种细胞凋亡过少而增殖过多的疾,病若能抑制肿瘤细胞的增殖并诱导其凋亡,肿瘤细胞就有可能停止生长[1]。

细胞凋亡时细胞质、细胞核和细胞膜会发生一系列生物化学和物理上的变化。在细胞凋亡早期, 细胞膨胀变圆, 与邻近细胞的联系断绝并且脱离后皱缩。在细胞质中, 内质网肿胀积液形成液泡。在细胞核内, 染色质逐渐凝集成新月状, 附

在核膜周边,嗜碱性增强。最终细胞核裂解为由核膜包裹的碎片。在细胞膜上, 细胞结点不再相连, 细胞膜变得更活跃进而发生内陷。这些变化都将导致细胞裂解为由细胞膜包裹细胞内容物的凋亡小体。在生理条件下, 细胞膜上发生特定的调节作用, 这可以使吞噬细胞识别并吞噬凋亡小体。在细胞发生凋亡的过程中不会伴有细胞内容物渗漏和炎症反应。此外, 与细胞凋亡相比, 细胞坏死将导致细胞器的崩解、细胞膜破损,大量细胞内容物渗漏。但在体外培养的细胞中, 坏死的细胞能导致大量细胞凋亡, 这为具有吞噬功能的细胞发挥吞噬功能创造了条件,

这一机制被认为是对缺乏专业吞噬细胞的一种有力补充。在体内, 正在死亡的细胞( dying cell) 是很难被观察到的, 这是由于凋亡细胞被其邻近的细胞在无任何

明显征兆的情况下吞噬和消化。为了保持细胞内环境的稳定, 细胞群落依靠凋亡机制在增殖与消减之间保持着严格的平衡[2]。

2 细胞凋亡的三条主要途径

细胞凋亡的三条主要通路分别是死亡受体介导的凋亡途径或外在途径(dea- th receptor- mediated pathway 或extrinsic pathway)和线粒体凋亡途径或内在途径(mitochondrial pathway 或intrinsic pathway) 以及内质网途径(endoplasmic retucul- um pathway)。虽然三条凋亡通路的上游事件( up- stream activation)不同[3],但是

它们最终都要激活共同的凋亡效应物, 即特异的胱冬酶( caspase)。Caspase属白介素-1β转化酶家族,目前已发现的cspases有14种之多,分别记作Caspase1~14。Caspases在胞质中以不活化的前体形式存在,大多通过蛋白裂解得化。Caspase-8、caspase-9、caspase-3位于凋亡通路上的3个关键因素。Caspase-8对来自细胞外的

凋亡诱导因子的刺激作出应答,以启动细胞解体。Caspase-9对各种药物和损伤

引起的刺激作出应答,启动细胞色素C从线粒体中释放,并与dATP、凋亡蛋白酶

活化因子1和细胞色素C一起形成复合物,以启动细胞解体。Caspase-3能放大caspa- se-8和caspase-9的信号,引起细胞全面自杀性解体。Caspase-8、caspase-9都可以通过蛋白水解片断活化caspase-3,而caspase-3则反过来使细胞内许多重要的蛋白质(包括其余的caspase成分)水解而得以活化。聚ADP核糖聚合酶是细胞凋亡中第

1个被鉴定的由caspase3水解的DNA修复相关酶[4]。DNA修复功能的丧失,使基

因组的稳定不能维系,从而间接促使细胞凋亡。

2.1 死亡受体信号途径

细胞凋亡的死亡受体(death receptor, DR) 途径是一条主要的细胞凋亡途径。细胞表面特定的死亡受体接受胞外的死亡信号而激活细胞内的凋亡机制,从而诱导细胞凋亡[5]。

死亡受体是一类跨膜蛋白,属肿瘤坏死因子(TNF) 受体基因家族成员, 其胞外有一段富含半胱氨酸的区域,胞质区有一段高度同源性的氨基酸残基组成的结构, 有蛋白水解功能,称为“死亡域(death domain ,DD)”。“死亡域”使死亡信号得以进一步传递启动凋亡。肿瘤坏死因子受体(TN F-R s) 是具有代表性的最大的死亡受体家族,主要包括TNFR1(p 55,CD120a)、TNFR2 (p75,CD120b) 、Fas(CD95, Apo21) 、DR3、DR4(TRAL -R1)和DR5(TRAL -R2)。其中其中最典型的死亡受

体有CD95(称Fas或Apo1)和TNFR1(称p55或CD120a) [6]。CD95是一种广泛表达的糖基化的细胞表面分子,含有335个氨基酸残基。CD95的表达细胞因子如干扰素

和TNF刺激,并可由淋巴细胞活化,它通过与其天然配基CD95L结合来诱导细胞凋亡。

2.1.1 Fas 介导的凋亡信号转导途径

Fas是一种广泛表达的糖基化的细胞表面分子,含有335个氨基酸残基。Fas 的表达可由细胞因子如干扰素和TN F刺激,并由淋巴细胞活化,通过与其然配

基FasL 结合来诱导细胞凋亡。这个过程的发生是因为Fas是一个同源三聚体分子,可诱导Fas三聚体化,导致Fas分子胞质区位于C末端的死亡结构域(death domain ,DD )与一种具有死亡域的Fas相关蛋白FADD (Fas-associated protein with death d- omain) 结合,FADD通过自身的DD与Fas作用,而其位于N末端的死亡结构域DED (death effector domain )则与caspase-8或caspase-10作用,由于Fas的寡聚化导致了DISC (death-inducing signaling complex) [7]的形成及caspase-8、10的寡聚化。

Caspase-8、10通过自身剪接作用被激活,从而又可使caspase-3和caspase-7 被激

活[8],接下去caspase-3又可激活caspase-6,如此启动caspase 的级联反应,最终导致细胞凋亡。Sun等[9]报道了磷脂酶- D能有效阻止胱冬酶- 3、- 8 前体的剪切活化,这将使外在凋亡通路无法发挥生物学效应,细胞将不断分裂增殖。

2.1.2 TNFR1 介导的凋亡信号转导途径

TNF-α通过与细胞膜上肿瘤坏死因子受体(tumor necrosis factor receptor,TNF- R)结合,实现其细胞毒性、抗病毒、免疫调节等生物学功能。无论是跨膜形式TNF-α前体还是可溶性TNF-α都是以三聚体的形式发挥作用[10]。TNF与TNFR1结合后可激活转录因子NF-κB和AP-1,诱导促炎因子和免疫调节因子的表达。在一些细胞中,TNF也可以通过与TNFR1结合诱导细胞凋亡。但是,与Fas不同的

是TNF只有在蛋白合成被阻断的情况下才可以诱导凋亡,表明细胞中预先存在的一些细胞因子,可以抑制TNF产生的凋亡信号。这些抑制蛋白的表达可能是由

NF-κB和JNK/AP-1调控的[11]。

在TNFR1 介导的凋亡通路中,三聚化的TNFR1可汇聚接头蛋白TRADD (TNFR -associated death domain) ,TRADD 通过自身的DD使FADD汇聚并导致caspase-8前体的寡聚化,最终导致caspase级联反应来诱导细胞凋亡的发生。Fas 不能活化NF-κB,而TNFR1途径中,接头蛋白RIP ( receptor-interacting protein )分子也具有与TRADD相互结合的DD区,一旦TRADD结合的不是FADD而是RIP,便激活了TNFR相关因子(TRAF-2),形成TRADD-RIP-TRAF-2复合物,于是通过磷酸化作用激活NF-κB诱导激酶(NF-κB inducing kinase ,NIK),继而活化I-κB 激酶(inhibitor ofκB kinase complex, IKK),I-κB上游激酶IKK活化后,可使I-κB 的N端丝氨酸磷酸化,赖氨酸泛素化,继而在26S蛋白酶体作用下,导致I-κB降

解从而失去对NF-κB的抑制,NF-κB转位至细胞核发挥激活转录的作用,主要激活一些抗凋亡基因如c-IAP1等的转录,继而通过抑制caspase-8的活化等途径发挥抗凋亡作用[12]。因此TNFR可能参与凋亡及抗凋亡两种截然相反的信号转导途径,但TNFR活化后细胞究竟去向何处,是生存还是死亡则决定于双方信号水平的强弱及时机的不同。

2.1.3 DR3 介导的信号转导途径

DR3(death receptor 3)是一个含有死亡结构域的细胞因子受体, 由于其氨基

酸序列与TNFR1高度同源,与TNFR1类似,DR3可以与连接分子TRADD结合,激活一系列下游信号。DR3还可引起与TNFR1类似的NF-κB激活和细胞凋亡反应,同样与TNFR1类似,DR3通过TRADD、TRAF2和RIP激活NF-κB,也可通过TRAD-

D、FADD和caspase-8诱导细胞凋亡[13]。

2.2 线粒体信号通路

线粒体途径机制的主要过程是细胞凋亡分子细胞色素C、Smac/(Diablo)蛋白、凋亡诱导因子和核酸内切酶从线粒体中释放,然后产生级联反应使细胞凋亡。细胞线粒体细胞色素C及其他凋亡分子的释放,受Bc1-2蛋白家族的调控。其中的促凋亡亚族(Bax)是p53激活转录的产物,可以促进或诱导线粒体凋亡因子的释放从而促进凋亡。在正常情况下这些蛋白定位于细胞的非线粒体组分,一旦细胞受到凋亡因子的诱导,它们就以线粒体作为靶细胞器而向线粒体转位,对凋亡进行调控。线粒体通透孔道(PT)是位于线粒体内外膜之间的多蛋白复合物,包括多种酶,PT通过调节线粒体基质中的Ca2+、酸碱度(pH)和电荷,保证氧化磷酸化道路通畅,对凋亡控制具有重要作用[14]。各种刺激诱导细胞凋亡时,线粒体膜通透性增强,线粒体内的各种蛋白被释放出来,包括细胞色素C。细胞色素C进入细胞质中与凋亡蛋白激活因子Apaf-1及Caspase-9前体形成凋亡小体,在细胞质中存在的脱氧三磷酸腺苷(dATP)的共同作用下,活化caspase-9前体,被激活的caspa- se-9能激活其它的caspase如caspase-3等,caspase-3又激活DNA断裂因子,导致静息状态的核酸内切酶激活,最终引起DNA断裂[15-16]。

此外,Smac/Diabo ( the second mitochondrial-derived activator of caspase) 在细胞凋亡时也被释放出来, 它与细胞色素C 一起释放到胞浆, 通过与LA P s(inh- hibitor of apoptosis)、XIAP作用从而成为线粒体途径的一部分。它本身不能诱发细胞凋亡,只是解除凋亡抑制。

2.3 内质网途径

内质网对细胞凋亡的作用表现在两个方面:一是内质网对Ca2+的调控, 二是凋亡酶在内质网上的激活。Ca2+ 是真核细胞内重要的信号转导因子, 它的动态平衡在细胞正常生理活动中起着举足轻重的作用。因此, 作为细胞内重要的钙库, 内质网对胞质中Ca2+浓度的精确调控可影响细胞凋亡的发生。大量试验表明, 许多细胞在凋亡早期会出现胞质内Ca2+浓度迅速持续的升高[17-18],相对高浓度

Ca2+一方面可以激活胞质中的钙依赖性蛋白酶,另一方面可以作用于线粒体,影响其通透性的改变,进而促进凋亡。位于内质网上的抑凋亡蛋白Bcl-2则可以调节内质网腔中的游离Ca2+浓度,使胞质中的Ca2+维持在合适的中等浓度水平,从而起到抑制凋亡的作用。研究发现caspase家族中的caspase-12定位于内质网, 当内质网钙离子动态平衡破坏或过多蛋白积聚时内质网可激活caspase-12,活化的caspase-12可进一步剪切caspase-3而参与内质网途径引起的细胞凋亡。

3 凋亡的基因调控

细胞凋亡是在基因的调控下进行的,其相关基因很多,存在着三类与细胞凋亡相关的基因:(1) 促细胞凋亡基因;(2) 抑制细胞凋亡基因;(3) 细胞凋亡过程中表达的基因。据目前研究的结果,调节细胞凋亡的基因主要有以下几种。

3.1 Bcl-2基因家族

Bcl-2(B-cell lymphoma/leukemia-2) 即细胞淋巴瘤/白血病-2基因是研究最早的与凋亡有关的基因,是一种凋亡抑制基因,它可使DNA受损的细胞能长期生存,又称长寿基因,是维持癌细胞无限制生长的主要基因。Bcl-2家族包括Bcl-2、Bax、Bcl-X、Bcl-w、Bak、Bad、A1、NR-13和Mcl-1,其中Bax、Bak、Bcl-Xs 是促凋亡因子,其余为抗凋亡因子。Bcl-2对细胞周期无明显影响,而对细胞死亡的干扰有选择性,阻止了细胞死亡的最后途径,包括核苷酸内切酶对DNA的降解。Bax是Bcl-2的一种同源蛋白,最近发现Bax既可以形成同聚体,又可与Bcl-2形成异二聚体(Bcl-2/ Bcl-2、Bcl-2/bax、bax/bax),通过它们之间的不同比例来调节细胞凋亡[19]。例如,有研究发现去甲斑蝥素(NCTD)作用于Ca9-22和SAS细胞凋亡过程时,分别与Bcl-2、Bcl-xl表达下调有关[20]。

3.2 p53基因

p53基因定位于17p13. 1上,是人类多种恶性肿瘤中突变频率最高的抑癌基因并与细胞凋亡有密切的关系。正常的P53基因,即野生型P53基因(wtP53)与突变型P53基因均参与细胞凋亡的调节,但二者的作用不同,wtP53对凋亡具有促进作用,而突变型P53则对凋亡有抑制作用[21]。故P53基因的功能状态是影响细胞凋亡的主要因素,野生型P53是某些细胞内DNA损伤无法修复时导致细胞凋亡发生的重要调控基因,而突变型P53不仅失去正常的肿瘤抑制基因的作用,而且部分出现癌基因的促进细胞增殖的作用,使突变细胞逃避凋亡途径而发生肿瘤。此

外,Diane等[22]发现,p53通过一种依赖损伤调控的自噬调节剂(damage- regulated autophagy modulator,DRAM) 诱导细胞自我吞噬,并且当只有DRAM发生过表达时会导致最小限度的细胞凋亡,即DRAM是p53介导的细胞凋亡的关键因子。3.3 c-myc 基因

C-myc基因是细胞凋亡调控中又一个重要的相关基因,其表达产物既可推进细胞周期,促使细胞转化,抑制细胞分化,又可介导细胞凋亡的发生。C-myc诱导的细胞凋亡发生在细胞周期的不同时期,并与细胞的种类、细胞的生长条件以及引起c-myc不当表达的原因等有关,并不为所有类型的细胞凋亡所必需。C-myc 原癌基因编码一种DNA结合蛋白,是转录因子,具有双重效应,常与其他细胞凋亡调控蛋白一起对细胞的凋亡起调控作用。通常,c-myc基因表达与其他促癌条件共存时,起促细胞增殖的作用;与其他抑癌条件共存时,就反过来导致细胞走向死亡。蔡辉等[23]观察了c-myc反义寡核苷酸(ASODN)对胃癌MKN-45细胞株的生物学影响。结果显示c-myc基因反义寡核苷酸能明显抑制胃MKN-45细胞增殖、诱导细胞凋亡和下调c-myc蛋白水平。

3.4 P16和Rb基因

P16和Rb也是机体内重要的抑癌基因,P16基因编码的蛋白质是一种肿瘤抑制因子;P16与细胞周期素D竞争结合CDK4,从而特异性抑制CDK4的活性,导致抑癌基因RB的产物对转录因子的抑制作用,阻止细胞从G0期进入G1期,使细胞生长停滞。Rb基因编码的蛋白质Rb蛋白磷酸化修饰对细胞生长、分化起着重要调节作用。GF作用于HepA细胞后,细胞抑癌基因Rb和p16表达显著增强,表明GF 对抑癌基因和有激活作用[24]。

4 结语

细胞凋亡是有核细胞死亡的生理性通道,通过凋亡清除不必要的、损伤的或病毒感染的细胞,维持机体内环境的稳定。细胞凋亡的失调被认为在自身免疫性疾病、病毒感染、AIDS、心血管疾病、骨质疏松症、老化、肿瘤形成、神经退行性疾病(帕金森氏病)中发挥重要作用。因此,有关细胞凋亡机制在未来的研究还将进一步深入,所取得的进展将为这些疾病发病机理的阐述提供理论依据,也使通过调节凋亡过程治疗这些疾病成为可能。

参考文献

[1]Ito M, Minamiya Y, Kawai H, et al. P-056 Primary tumor-derived TGF-B1 induces dendritic

cell apoptosisin sentinel lymph nodes of patients with non-small cell lung cancer[J]. Lung Cancer, 2005, 49 (2):129.

[2]Danial N N, Korsmeyer S J. Cell death: critical control points[J]. Cell, 2004, 116: 205.

[3]Ferrington D A, Tran T N, Kathleen L. Different death stimuli evoke apoptosis iva multiple

pathways in retinal pigment epithelial cell [J]. Exp Eye Res, 2006, 83: 638.

[4]Song Jae J, Lee Yong J. Differential cleavage of Mst1 by caspase-7/-3 is resp- onsible for

TRAIL-induced activation of the MAPK superfamily [J]. Cellular Signaling, 2008, 20

(5):892.

[5]Chaudhry P, Srinivasan R, Patel FD ,et al. Serum soluble Fas levels and prediction of respon-

se to platinum-based chemotherapy in epithelial ovarian cancer[J].Int Cancer,2008,122(8): 1716

[6]刘京梅,金伯泉.肿瘤坏死因子受体超家族成员死亡受体在病毒感染中的作用[J].免疫学

杂志,2005,21(3):4.

[7]Pelli N, Floreani A, Torre F, et al. Soluble apoptosis molecules in primary biliary cirrhosis:

analysis and commitment of the Fas and tumor necrosis factor-related apoptosis-inducing ligand systems in comparison with chronic hepatitis C[J]. Clin Exp Immunol,2007,148(1):85.

[8]Yang BF, Xiao C, Li H, Yang SJ, et al. Resistance to Fas-mediated apoptosis in malignant

tumours is rescued by KN-93 and cisplatin via down regulation of c-FLIP expression and phosphorylation [J]. Clin Exp Pharmacol Physiol, 2007, 34 (12): 1245.

[9]Sun Young Lee, Ja Woong Kim, Jun O Jin. Delayed apoptosis and modulation of phospholi-

pase D activity by plasmid containing mammalian cDNA in human neutrophils [J]. Biochem Biophys Res Commun, 2006, 347: 1039.

[10]Nair B, Raval G, Mehta P.TNF-alpha inhibitor etanercept and hematologic malignancies:

report of a case and review of the literature [J].Am J Hematol, 2007, 82(11): 1022.

[11]Tephly LA, Carter AB. Differential expression and oxidation of MKP-1 modulates

TNF-alpha gene expression [J].Am J Respir Cell Mol Biol, 2007, 37(3): 366.

[12]Higuchi Y, Chan TO, Brown MA, et al. Cardioprotection afforded by NF-kappaB ablation is

associated with activation of Akt in mice overexpressing TNF-alpha[J].Am J Physiol Heart

Circ Physiol, 2006, 290(2): H590.

[13]Gadsby K, Deighton C. Characteristics and treatment responses of patients satisfying the

BSR guidelines for anti-TNF in ankylosing spondylitis [J].Rheumatology(Oxford), 2007 46(3): 439.

[14]Olav A Gressner, Birgit Lahme, Axel M Gressner. Gc-globulin (vitamin D binding protein) is

synthesized and secreted by hepatocytes and internalized by hepatic stellate cells through Ca2+-dependent interaction with the megalin/gp330 receptor [J].Clinica Chimica Acta, 2008, 390(1): 28.

[15]Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c

binds to ino-sitol(1,4,5) trisphosphate receptors,amplifying caldum-dependent apoptosis. Nat Cell Biol, 2003, 5: 1051.

[16]Boehning D, van Roswm DB, Patterson RL, et al. A peptide inhibitor of rytochrome

c/inositol 1,4,5-risphosphate receptor binding blocks intrinsic and ex-trinsic cell death path ways .Proc Natl Acad Scl U S2005:102:1466.

[17]Weaver L i H, Yuan J Y. Deciphering the pathways of life and death [J ].Curr Op in Cell Bio

l,1999,11: 261.

[18]Berridge M J ,L ipp P, Bootman M D. The versatility and universal ity of calcium signaling

[J ]. Nature, 2000, 1: 11.

[19]Cyprian V, Liu Shi-Ping. Differentially expressed pro-and anti-apoptogenicgenes in response

to benzene exposure: Immunohistochemical localization of p53,Bag,Bad,Bax,Bcl-2,and Bcl-w in lung epithelia[J]. Experimental and Toxicologic Pathology, 2008, 59(5): 265. [20]Kok SH, Cheng SJ, Hong CY, et a1.Norcant haridin induced apoptosis in oral cancer cells is

associated with anincrease of increase of proapoptotlc to antiapoptoticprotein ratio [J].Cancer Lett, 2005, 217(1): 43.

[21]Roberta Vitali, Vincenzo Cesi, Barbara Tanno, et al. Activation of p53-dependent responses

in tumor cells treated with a PARC-interacting peptide[J].Biochemical and Biophysical Research Communications,2008, 368(2): 350.

[22]Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53- induced modulator of autophagy,is

critical for apoptosis [J].Cell, 2006, 126: 121.

[23]蔡辉,苏河,马云涛,等.C-myc反义寡核苷酸对胃癌MKN-45细胞株生物学影响的研究

[J].中华肿瘤防治杂志,2007,14(24):1 860.

[24]Iee Y H, Cheng C M, Chang Y F, et a1.ApoptinT1O8 phosphorylation is not required for its

tumorspecific nuclear localization but partially affect its apoptoticactivity [J]. Biochem Biophys Res Commun, 2007, 354(2): 391.

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

信号转导

信号转导 061M5007H 学期:2015-2016学年秋| 课程属性:| 任课教师:谢旗等 教学目的、要求 本课程为细胞生物学专业研究生的专业基础课,同时也可作为相关专业研究生的选修课。细胞信号转导是细胞生物学学科进展最快的研究领域之一,信号转导的概念已经开始深入到生命科学的各个领域。本课程内容涵盖动植物受体、G蛋白、环核苷酸第二信使、质膜磷脂代谢产物胞内信使、酶活性受体、蛋白质可逆磷酸化、泛素蛋白化及其对基因表达的调控、信号转导途径的多样性、网络化和专一性等方面的研究现状和进展。 预修课程 生物化学、分子生物学 教材 生命科学学院 主要内容 第一章绪论(3学时,教师:谢旗)细胞信号转导的研究对象和研究意义,细胞信号的主要种类,细胞化学信号分子与信号传递途径的特征。真核生物的蛋白激酶,蛋白磷酸酶,蛋白质可逆磷酸化对信号转导的调节方式,蛋白质可逆磷酸化与基因表达调控,蛋白质可逆磷酸化在细胞信号中的意义。蛋白质稳定性与信号转导。第二章植物免疫的表观遗传调控(3学时,教师:郭惠珊)表观遗传调控包含RNA干扰、DNA修饰、组蛋白翻译后修饰和染色质重塑等各种过程互相交叠,共同调控基因组表观修饰的动态平衡;除了影响生长和发育,表观遗传调控的另一重要功能是抗病免疫作用。本讲将着重介绍植物表观遗传途径及其抗病免疫信号的调控作用。第三章MicroRNA介导的信号(3学时,教师:郭惠珊)microRNA 广泛存在于生物体内,是生物体保守机制RNA沉默过程产生并具有序列特异性调控功能的一类非编码小分子RNA。本课程主要讲授植物microRNA的产生、加工、特性及其调控作用的基本生物学过程;以及植物miRNAs和其他小分子RNA参与植物生长素信号途径和其他植物生理性状的调控作用。第四章钙离子通道及信号转导(3学时,教师:陈宇航)钙离子是生命活动的必需元素,基本分布和内稳,代谢平衡和疾病;钙离子发挥重要生物学功能,简述历史发现,作为第二信使的化学基础,功能调控的基本模式,以钙结合蛋白为例子展开介绍钙离子发挥功能调控的分子结构基础等;介绍钙离子信号转导系统的组成,

TCR细胞通路研究进展

TCR信号通路研究新进展 T细胞相关免疫疗法在近期的癌症研究中大放异彩,“主力部队”是CAR-T和TCR-T这两种技术。相对于 CAR-T细胞疗法,TCR-T疗法的关注度相对低些,但是这两种细胞疗法都属于利 用患者自身的 T淋巴细胞治疗癌症的前沿基因疗法。研究发现,在实体瘤治疗方面,TCR疗 法可能比CAR疗法更有优势。 T细胞在免疫系统中具有重要作用,可以攻击病原体和肿瘤细胞。T细胞受体(TCR)能识别 不同的广泛亲和力的配体,参与激活多种生理过程。TCR细胞疗法定制功能性TCR,具有最 佳的抗原识别特性,利用人体免疫系统来对抗癌症。那么,这种疗法的分子机制是什么呢? 与之相关的TCR信号通路的分子调控机制有怎样的研究进展呢?本文将对这些问题进行综 合性讲述。 TCR蛋白结构 图一TCR复合物结构 T细胞作为适应性免疫应答的主要组成部 分,其抗原识别受体结构以被证实,克隆获得的TCR 由α-链和β-链构成异源二聚体。TCR异源二聚体主要与CD3的多个信号转导亚基结合,如 图所示,CD3γ、CD3δ和CD3ε异源二聚体以及CD3δ同源二聚体。在CD3的不同亚基含 有免疫受体酪氨酸的活化基序-ITAM,但是每个亚基的数量不 同,CD3γ、CD3δ和CD3ε分 别含有一个,而CD3δ含有三个串联的ITAM,这样就使的每个T细胞受体可以产生10个ITAM。酪氨酸磷酸化的ITAM可以使TCR与胞内信号转导通路发生偶联,向TCR募集含有SH2结构 域的蛋白质,如酪氨酸激酶ZAP70。但是现在还没有解决为什么TCR复合物包含这么多的信 号转导亚基和ITAM的问题,主要有两种假说,一种是CD3分子或单独的ITAM可能通过募 集独特的效应分子,执行不同的信号转导功能;另一种是 多个ITAM的主要功能是放大TCR 信号。 TCR识别与抗原递呈细胞(APC)呈递的可以结合MHC分子(pMHC)的肽。单独的TCR能够识别具有广泛亲和力的不同配体(自身肽和外来 肽)。TCR参与触发不同的功能输出。在 胸腺中,pMHC与TCR信号结合强度决定了细胞发育与分化过程。当结合力在最小值到最大 值之间时,促进胸腺细胞的存活,并转化 成CD4+CD8-或CD4-CD8+的成熟阶段;如果TCR与pMHC太低或太高,细胞会发生凋亡。在外围,自体pMHC对TCR的低亲和力结合提供了维

第15章--细胞信号转导习题

第十五章细胞信号转导 复习测试 (一)名词解释 1. 受体 2. 激素 3. 信号分子 4. G蛋白 5. 细胞因子 6. 自分泌信号传递 7. 蛋白激酶 8. 钙调蛋白 9. G蛋白偶联型受体 10. 向上调节 11. 细胞信号转导途径 12. 第二信使 (二)选择题 A型题: 1. 关于激素描述错误的是: A. 由内分泌腺/细胞合成并分泌 B. 经血液循环转运 C. 与相应的受体共价结合 D. 作用的强弱与其浓度相关 E. 可在靶细胞膜表面或细胞内发挥作用 2. 下列哪种激素属于多肽及蛋白质类: A. 糖皮质激素 B. 胰岛素 C. 肾上腺素 D. 前列腺素 E. 甲状腺激素 3. 生长因子的特点不包括: A. 是一类信号分子 B. 由特殊分化的内分泌腺所分泌 C. 作用于特定的靶细胞 D. 主要以旁分泌和自分泌方式发挥作用 E. 其化学本质为蛋白质或多肽 4. 根据经典的定义,细胞因子与激素的主要区别是: A. 是一类信号分子 B. 作用于特定的靶细胞 C. 由普通细胞合成并分泌 D. 可调节靶细胞的生长、分化 E. 以内分泌、旁分泌和自分泌方式发挥作用 5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:

A. 形成动作电位 B. 使离子通道开放 C. 与受体结合 D. 通过胞饮进入细胞 E. 自由进出细胞 6. 受体的化学本质是: A. 多糖 B. 长链不饱和脂肪酸 C. 生物碱 D. 蛋白质 E. 类固醇 7. 受体的特异性取决于: A. 活性中心的构象 B. 配体结合域的构象 C. 细胞膜的流动性 D. 信号转导功能域的构象 E. G蛋白的构象 8. 关于受体的作用特点,下列哪项是错误的: A. 特异性较高 B. 是可逆的 C. 其解离常数越大,产生的生物效应越大 D. 是可饱和的 E. 结合后受体可发生变构 9. 下列哪项与受体的性质不符: A. 各类激素有其特异性的受体 B. 各类生长因子有其特异性的受体 C. 神经递质有其特异性的受体 D. 受体的本质是蛋白质 E. 受体只存在于细胞膜上 10. 下列哪种受体是催化型受体: A. 胰岛素受体 B. 甲状腺激素受体 C. 糖皮质激素受体 受体 D. 肾上腺素能受体 E. 活性维生素D 3 11. 酪氨酸蛋白激酶的作用是: A. 使蛋白质结合上酪氨酸 B. 使含有酪氨酸的蛋白质激活 C. 使蛋白质中的酪氨酸激活 D. 使效应蛋白中的酪氨酸残基磷酸化 E. 使蛋白质中的酪氨酸分解 12. 下列哪种激素的受体属于胞内转录因子型: A. 肾上腺素 B. 甲状腺激素 C. 胰岛素 D. 促甲状腺素 E. 胰高血糖素

细胞信号转导练习题集

细胞信号转导练习题 选择题:正确答案可能不止一个 1. NO直接作用于(B) A.腺苷酸环化酶 B.鸟苷酸环化酶 C.钙离子门控通道D.PKC 2.以下哪一类细胞可释放NO( B) A.心肌细胞 B.血管内皮细胞 C.血管平滑肌细胞 3.硝酸甘油作为治疗心绞痛的药物是因为它( C) A.具有镇痛作用 B.抗乙酰胆碱 C.能在体内转换为NO 4.胞内受体(A B) A.是一类基因调控蛋白 B.可结合到转录增强子上 C.是一类蛋白激酶 D.是一类第二信使 5.受体酪氨酸激酶RPTK( A B C D) A.为单次跨膜蛋白 B.接受配体后发生二聚化 C.能自磷酸化胞内段 D.可激活Ras 6. Sos属于(B) A.接头蛋白(adaptor protein) B.Ras的鸟苷酸交换因子(GEF) C.Ras的GTP酶活化蛋白(GAP)D:胞内受体 7.以下哪些不属于G蛋白(C)

A.Ras B.微管蛋白β亚基 C.视蛋白 D. Rho 8. PKC以非活性形式分布于细胞溶质中,当细胞之中的哪一种离子浓度升高时,PKC转位到质膜内表面(B) A.镁离子 B.钙离子 C.钾离子 D.钠离子 9.Ca2+载体——离子霉素(ionomycin)能够模拟哪一种第二信使的作用(A) A.IP3 B.IP2 C.DAG D.cAMP 10.在磷脂酰肌醇信号通路中,质膜上的磷脂酶C(PLC-β)水解4,5-二磷酸磷脂酰肌醇(PIP2),产生哪两个两个第二信使(A B) A.1,4,5-三磷酸肌醇(IP3) B.DAG C.4,5-二磷酸肌醇(IP2) 11.在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是(B) A.腺苷酸环化酶 B.磷脂酶C-β C.蛋白激酶C D. 鸟苷酸环化酶 12.蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,cAMP能够与酶的哪一部分结合?(B) A.催化亚基 B.调节亚基 13.在cAMP信号途径中,环腺苷酸磷酸二酯酶(PDE)的作用是 (C) A.催化ATP生成cAMP B.催化ADP生成cAMP C.降解cAMP生成5’-AMP 14.在cAMP信号途径中,G蛋白的直接效应酶是(B)

植物激素信号转导途径简介

植物生长发育的各个阶段, 包括胚胎发生、种子萌发、营养生长、果实成熟、叶片衰老等都受到多种植物激素信号的控制。人们对植物激素的生物合成途径、生理作用已有大量阐述,在生产上的应用也已取得很大进展,但对其信号转导途径的认识并不是很全面。今天小编和大家聊一聊,9大类植物激素信号转导途径。 1.生长素 与生长素信号转导相关的三类蛋白组分是:生长素受体相关SCF复合体(SKP1, Cullin and F-box complex)、发挥御制功能的生长素蛋白(Aux/IAA)和生长素响应因子(ARF)。早期响应基因有Aux/IAA基因家族、GH1、GH3、GH2/4、SAUR基因家族、ACS、GST。生长素信号转导通路主要有4条: TIR1/AFBAux/IAA/TPL-ARFs途径、T MK1-IAA32/34-ARFs途径、TMK1/ABP1-ROP2/6-PINs或RICs 途径和SKP2AE2FC/DPB途径。 2.细胞分裂素

细胞分裂素信号转导途径是基于双元信号系统(TCS),通过磷酸基团在主要组分之间的连续传递而实现。双元信号系统主要包含3类蛋白成员及4次磷酸化事件: (ⅰ)位于内质网膜或细胞膜的组氨酸受体激酶(histidine kinases, HKs)感知细胞分裂素后发生组氨酸的自磷酸化;(ⅱ)将组氨酸残基的磷酸基团转移至自身接受区的天冬氨酸残基上;(ⅲ)受体天冬氨酸残基上的磷酸基团转移至细胞质的组氨酸磷酸化转移蛋白(His-containing phosphotransfer protein, HPs)的组氨酸残基上;(ⅳ)磷酸化的组氨酸转移蛋白进入细胞核并将磷酸基团转移至A类或B类响应调节因子(response regulators, ARR s)。在拟南芥中已知的细胞分裂素受体有AHK2、AHK3和AHK4 3个,AHP有6个(AHP1?6),A类和B类ARR分別有10个和1 2个,它们是细胞分裂素信号转导通路的主要组成部分。

细胞凋亡的信号通路

山东农业大学学报(自然科学版),2015,46(4):514-518VOL.46N0.42015 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2015.04.007 细胞凋亡的信号通路 谢昆,李兴权 红河学院生命科学与技术学院,云南蒙自661199 摘要:细胞凋亡是细胞程序性死亡的一种方式,与自噬和坏死有明显的区别。细胞凋亡的信号途径比较复杂,在凋亡诱导因子的刺激下经历不同的信号途径。本文就细胞凋亡的三条信号通路——线粒体途径、内质网途径和死亡受体途径做一综述,以便为人们进一步了解细胞凋亡发生的机制,从而对癌症及其他一些相关疾病的治疗奠定基础。关键词:细胞凋亡;信号通路;线粒体途径;内质网途径;死亡受体途径 中图法分类号:R329.2+8文献标识码:A文章编号:1000-2324(2015)04-0514-05 The Signal Pathway of Apoptosis XIE Kun,LI Xing-quan Department of Life Science and Technology/Honghe University,Mengzi661199,China Abstract:Apoptosis is a process of programmed cell death which distinguishes from autophagy and necrosis.The signal pathways of apoptosis are complex and different under apoptosis induced factor stimulating.Three kinds of signal pathways of apoptosis including Mitochondrial pathway,Endoplasmic Reticulum pathway and Death Receptor pathway were summarized in this review in order to make people further comprehend the mechanism of apoptosis,so that it should make a basis for us all to treat cancer and other related diseases. Keywords:Apoptosis;signal pathway;Mitochondrial pathway;Endoplasmic Reticulum pathway;Death Receptor pathway 细胞凋亡是细胞程序性死亡(Program cell death,PCD)中特有的一种细胞死亡方式,是细胞在一系列内源性基因调控下发生的自然或生理性死亡过程。Kerr等1972年最早提出了凋亡(apoptosis)和坏死(necrosis)的概念[1],随后Paweletz等对其进行了详细的描述[2,3]。在形态学上,凋亡表现为核浓缩、细胞质密度增高、染色质凝聚、核膜破裂、核内DNA断裂、细胞集聚成团、形成凋亡小体(Apoptosome)等特征,这些凋亡小体最终被巨噬细胞清除,但不会引起周围细胞的炎症反应,另外,凋亡发生在单个细胞之间[4,5]。坏死,通常是由相邻的多个细胞之间发生细胞肿胀,细胞核溶解,细胞膜破裂,细胞质流入到细胞间质中,并伴发一系列的炎症反应,从而与凋亡表现为本质性区别[6,7]。 目前认为,凋亡发生的途径分为三种。第一种是线粒体途径,也称为内源性途径,该途径包括两类,第一类需要通过激活Caspase通路促进凋亡,在一序列凋亡诱导因素刺激下,线粒体中的Cyt C(细胞色素C)释放至细胞质中,从而与Apaf-1(Apoptosis protease activating factor1,凋亡蛋白酶活化因子1)结合形成多聚体,形成的多聚体再进一步与凋亡起始分子Caspase-9结合形成凋亡小体,凋亡小体激活Caspase-9,从而激活下游的凋亡执行分子Caspase-3,Caspase-6和Caspase-7等诱导细胞凋亡的级联反应;第二类是不依赖于Caspase途径的,通过线粒体释放AIF(Apoptosis induce factor,凋亡诱导因子)直接诱导凋亡的发生。但是在细胞内,直接检测AIF比较困难,而且AIF的变化不一定能代表凋亡发生的程度,因为引起凋亡发生的途径不一。第二种是死亡受体途径(也称为外源性途径),经由死亡受体(如TNF,Fas等)与FADD的结合而激活Caspase-8和caspase-10,进一步激活凋亡执行者caspase-3,6,7,从而促进凋亡的发生;第三条途径是内质网途径,内质网应激(蛋白质错误折叠或未折叠、内质网胁迫)会导致细胞内钙超载或钙离子稳态失衡一方面激活caspase-12,caspase-12进一步激活caspase-9而促进凋亡的发生,另一方面诱导Bcl-2(B细胞淋巴瘤蛋白)家族中促凋亡蛋白Bax和Bak的激活诱导凋亡[8]。 1凋亡的线粒体途径 在哺乳动物中,由于凋亡的激活需要线粒体中细胞色素C(CytC)的释放,因此CytC由线粒体膜间隙释放到细胞质中的多少可以作为判断凋亡发生强弱的指标之一。有研究认为,CytC的释放是通过Bcl-2家族调控线粒体膜透化(Mitochondrial outer membrane permeabilization,MOMP),科学 收稿日期:2013-03-07修回日期:2014-09-11 基金项目:云南省科技厅应用基础研究面上项目(2010ZC151) 作者简介:谢昆(1975-),男,云南富民人,博士研究生,研究方向为动物生物化学与分子生物学.E-mail:xk_biology2@https://www.doczj.com/doc/268246780.html, 数字优先出版:2015-06-03https://www.doczj.com/doc/268246780.html,

(完整word版)细胞凋亡过程

细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似2)细胞色素C释放和Caspases激活的生物化学途径线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C 释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征:1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。3)末端具有一个小的或大的原结构域。参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。

TCR细胞通路研究进展

T C R细胞通路研究进展标准化管理部编码-[99968T-6889628-J68568-1689N]

T C R信号通路研究新进展 T细胞相关免疫疗法在近期的癌症研究中大放异彩,“主力部队”是CAR-T和TCR-T这两种技术。相对于CAR-T细胞疗法,TCR-T疗法的关注度相对低些,但是这两种细胞疗法都属于利用患者自身的T淋巴细胞治疗癌症的前沿基因疗法。研究发现,在实体瘤治疗方面,TCR疗法可能比CAR疗法更有优势。 T细胞在免疫系统中具有重要作用,可以攻击病原体和肿瘤细胞。T细胞受体(TCR)能识别不同的广泛亲和力的配体,参与激活多种生理过程。TCR细胞疗法定制功能性TCR,具有最佳的抗原识别特性,利用人体免疫系统来对抗癌症。那么,这种疗法的分子机制是什么呢?与之相关的TCR信号通路的分子调控机制有怎样的研究进展呢?本文将对这些问题进行综合性讲述。 TCR蛋白结构 图一TCR复合物结构 T细胞作为适应性免疫应答的主要组成部分,其抗原识别受体结构以被证实,克隆获得的TCR由α-链和β-链构成异源二聚体。TCR异源二聚体主要与CD3的多个信号转导亚基结合,如图所示,CD3γ、CD3δ和CD3ε异源二聚体以及CD3ζ同源二聚体。在CD3的不同亚基含有免疫受体酪氨酸的活化基序-ITAM,但是每个亚基的数量不同,CD3γ、CD3δ和CD3ε分别含有一个,而CD3ζ含有三个串联的ITAM,这样就使的每个T细胞受体可以产生10个ITAM。酪氨酸磷酸化的ITAM可以使TCR与胞内信号转导通路发生偶联,向TCR募集含有SH2结构域的蛋白质,如酪氨酸激酶ZAP70。但是现在还没有解决为什么TCR复合物包含这么多的信号转导亚基和ITAM的问题,主要有两种假说,一种是CD3分子或单独的ITAM可能通过募集独特的效应分子,执行不同的信号转导功能;另一种是多个ITAM的主要功能是放大TCR信号。 TCR识别与抗原递呈细胞(APC)呈递的可以结合MHC分子(pMHC)的肽。单独的TCR能够识别具有广泛亲和力的不同配体(自身肽和外来肽)。TCR参与触发不同的功能输出。在胸腺中,pMHC与TCR信号结合强度决定了细胞发育与分化过程。当结合力在最小值到最大值之间时,促进胸腺细胞的存活,并转化成CD4+CD8-或CD4-CD8+的成熟阶段;如果TCR与pMHC太低或太高,细胞会发生凋亡。在外围,自体pMHC对TCR的低亲和力结合提供了维持初始T细胞所必需的强直性存活信号,并且还可以促进其与外来抗原高亲和力遭遇时的完全激活。 图二TCR结合强度对胸腺细胞的影响 TCR信号强度对于产生合适的应答T细胞至关重要。TCR信号传导应答指导 CD4+T细胞分化成功能不同的T辅助细胞亚群,对特定T细胞亚群(如调节性T 细胞)也起着关键作用。TCR细胞的强度和持续时间与记忆T细胞分化相关,也是诱导T细胞无能或耗竭的基本决定因素。TCR信号受到生化及分子机制的调控,导致信号放大或衰减。调控TCR的机制复杂多样,不过可以分为三个基本层面:早期信号转导效应分子(如关键激酶和磷酸酶的调节);信号分子发育阶段(特异性表达调控);以及TCR信号强度的动态调控。 TCR信号通路概述 图三:TCR信号通路概述

细胞凋亡信号转导途径及调控的研究进展

细胞凋亡信号转导途径及其调控的研究 进展 学科:基础兽医学 专业:药理毒理学 姓名:ma cai hui 学号:13203023

细胞凋亡信号转导途径及其调控的研究进展 摘要目的:为了研究抗肿瘤药物促使细胞凋亡的作用机理,探讨细胞凋亡的信号转导途径以及相关基因对其的调控。方法:查阅近年的国内外相关文献,归纳整理细胞凋亡的信号转导途径和相关的调控基因。结果:介绍了细胞凋亡存在三条主要通路:线粒体通路、内质网通路和死亡受体通路,各通路间互相联系,共同调节细胞凋亡。以及调控凋亡的主要基因,Bcl-2、p53、c-myc、P16、Rb。结论:研究抗肿瘤药物的作用机理应从以上三条凋亡途径和相关调控基因出发。 关键词细胞凋亡;信号转导途径;基因调控;caspase Progress study on signal transmission pathways and regulation of cell apoptosis Wang Saiqi School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 Key words : cell apoptosis; signal transmission pathways; gene regulation; caspase Abstract Aim : To check the mechanism of apoptosis induced by anticarcinogen and research the cell apoptosis signal transmission pathways and related genes on its regulation. Methods: Signal transmission pathways and related genes were concluded by referring to related papers at home and abroad in recent years. Results: Three main signal transmission pathways, death receptor-mediated pathways, mitochondrial pathway, endoplasmic reticulum pathway and several main regulator genes,Bcl-2,p53, c-myc,P16,Rb were introduced. Conclusions: Research on the mechanism of anticarcinogen should start from the said signal transmission pathways and genes. 1 细胞凋亡概述 细胞凋亡,又名细胞程序性死亡,是诱导性的细胞自杀过程,它使生物体可以有序地清除受损伤或无用的细胞。自从1927年John Kerr第一次提出凋亡这一概念后,人们发现它在多细胞生物的基本生命活动中起着十分重要的作用。它对于

细胞信号转导

植物Ca2+信号的研究进展 摘要 为了适应环境,调节自身代谢和生长, 在植物的生长发育过程中,需要对各种外界环境刺激以及植物内部生理信息做出反应,因此,植物产生了自己的信号系统。Ca2+作为一种信号分子,它几乎参与了生命体所有的生理生化活动,在植物细胞的信号系统中也起着举足轻重的作用。钙是植物生长发育必需的大量元素之一,在细胞水平上, 钙在细胞分裂、极性形成、生长、分化、凋亡等过程中均有重要的调节功能, 能维持细胞壁, 细胞膜及膜结合蛋白的稳定性并参与调节和控制植物的许多生理生化反应, 是植物代谢的重要调节者。针对国内外对植物Ca2+信号的研究情况,综述了Ca2+信号的产生、Ca2+信号参与的各种植物生理过程、Ca2+信号的检测以及其研究的最新进展。 关键词:植物; Ca2+信号; 检测; 研究进展

钙元素广泛存在于自然界和各种生物体内, 而游离态的Ca2+更是在生命活动中扮演着举足轻重的角色, 它几乎参与了生命体所有的生理生化活动。作为一种信号分子, Ca2+在受精、胚胎发育、基因表达、细胞分化、组织形成、代谢调控等过程中都有参与, 可以说, Ca2+信号无处不在[1]。1967年, Ridg-wang和Ashley通过向藤壶肌纤维中微注射水母发光蛋白, 第一次测定静息态胞内钙离子浓度[Ca2+]以来, 对于Ca2+信号的研究即风生水起。虽然植物Ca2+信号的研究起步较动物细胞晚, 但依然取得了一些成果。对植物Ca2+信号的研究, 不但能揭示生命的奥秘, 同时能帮助我们更加清楚地了解各种生命活动。为此, 针对国内外对植物Ca2+信号的研究情况, 笔者对Ca2+信号的生理功能、信号的产生、Ca2+信号参与的各种植物生理过程、以及其研究的最新进展进行了综述。 1.Ca2+的功能 Heilbrunn在1937~1952年发表的著作中, 提出了Ca2+在生物系统中复杂和多功能性的观点。认为利用Ca2+是所有活细胞的基本特征。在他提出的“细胞刺激理论”中认为:当细胞受到各种刺激时, 细胞内原来浓度很低的Ca2+水平明显增高。Heilbrunn提出Ca2+的一些细胞效应有:(1)促进细胞黏合和胞间通讯;(2)影响酶活性, 如ATP酶酯酶等;(3)调节细胞分裂;(4)控制细胞的代谢活动;(5)调节细胞溶质中溶胶-凝胶状态转变;(6)高浓度Ca2+可能造成细胞死亡, 溶质中Ca2+浓度如果太高, 会与细胞内的磷酸根产生沉淀, 而磷酸根是细胞能量及物质代谢所必须的;(7)调节细胞膜的透性。钙在维持细胞膜方面有着重要作用, 电镜观察表明, 缺钙导致细胞膜解体, 加钙又恢复常态。可见钙有稳定细胞膜结构, 防止细胞膜损伤的作用。有机酸是植物代谢的中间产物, 钙能和有机酸结合成为可溶性的钙盐结晶, 其中最为普遍的就是草酸钙。据报道, 在外源Ca2+诱导下, 细胞内可形成草酸钙结晶移去外源Ca2+, 结晶会消失。草酸钙的形成有以下生理作用:(1)消除有机酸在植物体内的过多积累。(2)草酸钙的形成过程是可逆的,植物体内钙离子过多形成草酸钙, 消除过量钙对植物的伤害, 当钙离子浓度不能满足植物需要时,草酸钙释放出Ca2+以满足植物的需要。 2.植物Ca2+信号的产生和终止 高度区域化的植物细胞内结构中, 在质膜液泡膜内质网膜上都存在着跨膜的钙离子电化学梯度, 细胞质和细胞核内游离钙离子也呈现不均匀分布, 这些梯度分布在静止状态是相对稳定的, 在受到刺激时会发生变化。钙离子梯度是钙信号产生的基础,即植物细胞Ca2+空间分布的不均衡性是产生Ca2+信号的生物基础。植物细胞中, 静息态的胞内Ca2+浓度([Ca2+] i)为100~200nM, 而细胞外(细胞壁)和细胞内(内质网、液泡、线粒体、高尔基体、细胞核)钙离子库中钙离子浓度却是胞内的数十倍, 达到了1~10mM[2,3]。当细胞受到信号刺激时, Ca2+从钙离子库中释放, 使胞内Ca2+浓度瞬间升高,激活Ca2+依赖蛋白和激酶CPKs引起细胞代谢以及基因表达的改变。当Ca2+重新进入细胞内钙离子库或流出细胞进入胞外钙离子库时, 信号得以终止。钙离子浓度的调节是通过各种钙离子通道, 钙离子泵和钙离子转运来实现的[4]。 3.植物Ca2+信号的多样性 Ca2+信号几乎参与了各种植物生理过程, 包括花粉管生长、细胞分裂、受精等;同时, Ca2+信号还参与植物的抗逆反应和对光线的感知。由此可见, Ca2+

细胞受体及重要的细胞信号转导途径

细胞受体类型、特点 及重要的细胞信号转导途径 学院:动物科学技术学院 专业:动物遗传育种与繁殖 姓名:李波

学号:2015050509

目录 1、细胞受体类型及特点 (4) 1.1离子通道型受体 (4) 1.2 G蛋白耦联型受体 (4) 1.3 酶耦联型受体 (5) 2、重要的细胞信号转导途径 (5) 2.1细胞内受体介导的信号传递 (5) 2.2 G蛋白偶联受体介导的信号转导 (6) 2.2.1激活离子通道的G蛋白偶联受体所介导的信号通路 (7) 2.2.2激活或抑制腺苷酸环化酶的G蛋白偶联受体 (7) 2.2.3 激活磷脂酶C、以lP3和DAG作为双信使 G蛋白偶联受体介导的信号通 路 (8) 2.2 酶联受体介导的信号转导 (9) 2.2.1 受体酪氨酸激酶及RTK-Ras蛋白信号通路 (10) 2.2.2 P13K-PKB(Akt)信号通路 (10) 2.2.3 TGF-p—Smad信号通 (11) 2.2.4 JAK—STAT信号通路 (12)

1、细胞受体类型及特点 受体(receptor)是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体问的作用具有3个主要特征:①特异性;②饱和性;③高度的亲和力。 根据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细胞表面受体(cell surface receptor)。细胞内受体介导亲脂性信号分子的信息传递,如胞内的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,膜表面受体主要有三类:①离子通道型受体(ion—channel—linked receptor);②G蛋白耦联型受体(G—protein —linked receptor);③酶耦联的受体(enzyme—linked recep—tor)。第一类存在于可兴奋细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋白质的逐级磷酸化,借此使信号逐级传送和放大。 1.1离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(1igand—gated channel),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道。 1.2 G蛋白耦联型受体 三聚体GTP结合调节蛋白(trimeric GTP—binding regulatory protein)简称G蛋白,位于质膜胞质侧,由a、p、-/三个亚基组成,a和7亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当a亚基与GDP结合时处于关闭状态,与GTP结合时处于开启状态,“亚基具有GTP酶活性,能催化所结合的ATP 水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS(regulator of G protein signaling)增强。RGS也属于GAP(GTPase activating protein)。 G蛋白耦联型受体为7次跨膜蛋白(图10—6),受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内

细胞信号转导课程作业资料

专业文献综述 题目: 脱落酸在植物细胞信号转导中的作用姓名: 学院: 专业: 班级: 学号: 指导教师: 职称:

摘要:脱落酸(ABA)是一种重要的植物激素,受到生物胁迫和非生物胁迫的调控,在植物对胁迫环境抗逆性中发挥重要作用。当植物受到外界条件影响后会导致植物体内ABA含量上升,调节气孔的开度,防止植物体进一步失水,维持细胞渗透平衡;参与相关抗逆基因的表达调控,产生抗逆分子;通过延长种子休眠期等以适应逆境;通过一些调节因子调节植物细胞内环境稳定。本文介绍了脱落酸的合成、调控、作用机制及其在植物逆境胁迫中的作用。 关键词:脱落酸;合成;作用机制;胁迫

细胞信号转导是在特定时空条件下将外界生长、发育、分化等信息通过一定的途径转移至细胞内并调控相关基因表达的过程。细胞的一切生命活动都与信号转导有关。细胞信号转导系统具有调节细胞增殖、分化、代谢、应激、防御、凋亡和胀亡等作用[1]。脱落酸(ABA)是一种重要的植物激素,参与植物胚胎发育、种子休眠、果实成熟以及逆境胁迫等许多方面,对植物生长发育起着调节作用[2]。植物接受胁迫信号,影响基因的表达,引起植物体内ABA水平上调,从而增加植物的抗逆性。ABA在植物干旱、高盐、低温等逆境胁迫反应中起重要作用,它是植物的抗逆诱导因子,因而被称为植物的“胁迫激素”。本文介绍了脱落酸的合成、调控、作用机制及其在植物逆境胁迫中的作用。 1 脱落酸的合成与调控 ABA主要在叶绿体中合成,然后转移到其他组织中积累起来。研究发现不仅植物的叶片,立体的根系,特别是根尖也能合成大量的脱落酸。进一步研究发现,植物的其他器官,特别是花、果实、种子也能合成脱落酸。 脱落酸是C15化合物,在植物体内有两条合成途径,一是直接途径:3个异戊烯单位聚合成C15前体—法呢焦磷酸(FPP),由FPP经环化和氧化直接形成15碳的ABA。另一个是高等植物中的C40间接途径:质体内的MEP途径,由C40的类胡萝卜素转化形成[3]。迄今为止,脱落酸生物合成中几乎全部基因都已经被克隆。进一步的研究发现,在脱落酸代谢途径中有多个步骤受到差异调控,从而在转录和转录后水平对脱落酸含量进行精细调控。 在非胁迫条件下脱落酸可能在维管组织中合成,然后被运送到气孔等目标部位,有研究表明脱落酸在凋亡的叶片和子叶的保卫细胞中也有所表达。脱落酸的代谢调控并不仅仅局限于生物合成途径中的某一部分,而是一个多位点的协调过程。MEP途径中的DXP合成酶、类胡萝卜素代谢中参与其合成的八氢番茄红素去饱和酶和参与其转化的ZEP都能够在种子和幼苗中引起脱落酸的积累[4]。除了代谢途径自身的酶基因外,脱落酸的生物合成也依赖于内部和外部的各种信号,以及发育阶段、组织和器官的特异性等等。在胚的发育早期,脱落酸促进胚的生长;而在发育晚期则通过与赤霉素相拮抗而抑制胚的生长[5]。 2 脱落酸的作用机制 现在研究认为,在干旱、高盐或低温等逆境胁迫条件下,可能存在的机制是:逆境胁迫条件促使植物体内脱落酸的积累,脱落酸诱导ABA响应元件基因表达,从而产生对逆境抗性[6]。从胁迫刺激到植物作出反应是一系列复杂的信息传递过程,包括三个环节:一是感受细胞或组织对原初信号(环境刺激)的感知传导和反应,产生胞间信号;二是胞间信使在细胞或组织间的传递,并最终到达受体细胞的作用位点;三是受体细胞对胞间信使的接受、转导和反应,使受体组织中生理生化和功能的最优化组合,最终体现为植物对环境刺激或逆境的适应或抗性[7]。从这个角度来说脱落酸在植物体内产生作用主要表现在3个方面:通过受体作用、通过基因表达作用、通过信号因子作用。 2.1 通过受体作用 ABA信号转导研究最突出的进展之一是ABA受体PYR/PYL/PCAR蛋白的鉴定

相关主题
文本预览
相关文档 最新文档