当前位置:文档之家› 古典概型与几何概型

古典概型与几何概型

古典概型与几何概型
古典概型与几何概型

古典概型与几何概型

古典概型与几何概型

【知识网络】

1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基

本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、

特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】

[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )

A .

4

9

B .2

9

C .23

D .13

(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),

骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )

A .

6

1 B .

36

5 C .

12

1 D .

2

1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形

的面积介于36cm 2与81cm 2之间的概率为

A .

56

B .

12

C .13

D .

16

(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3

S

”的概率为 .

(5)任意投掷两枚骰子,出现点数相同的概率为 .

[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,

过时即可离去.求两人能会面的概率.

[例4]抛掷骰子,是大家非常熟悉的日常游戏了.

某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.

方案1:总点数是几就送礼券几十元.

方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.

方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.

如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.

【课内练习】

1.某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是()

A.1

5

B.

5

24

C.

10

81

D.

5

12

2.盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P1,第8个人摸出红球的概率是P8,则()

A.P8=1

8

P1 B.P8=

4

5

P1 C.P8=P1 D.P8=0

3. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率

( ) A .1

2 B .13

C .

23

D .

14

4. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都

大于1m 的概率为

A .

12

B .13

C .

14

D .

23

5. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单

位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .

6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生

随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交?AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .

8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在

该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.

(1)共有多少个基本事件?

(2)小曹能乘上上等车的概率为多少?

9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,的概率.

10.正面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“V P -ABC ≥14V ”的事件为X ,求概率P (X );

②设“V P -ABC ≥14V 且V P -BCD ≥1

4

V ”的事件为Y ,求概率P (Y ).

第3题图

C

古典概型与几何概型

A 组

1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为

( )

A .

2π B .2ππ- C

.π D .4

π

2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )

A .12

B .1

3

C .14

D .16

3. 已知椭圆22

221x y a b

+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,

B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;

③△PB 1B 2为钝角三角形的概率为b

a ;

④△PA 1A 2为钝角三角形的概率为b

a ;

⑤△PB 1B 2为锐角三角形的概率为a b

a

-。

A .1

B 。2

C 。3

D 。4

4. 古典概型与几何概型的相同点是 ,不同点是基本事件的 . 5. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.其中“恰有两枚正面向上”

的事件包含 个等可能基本事件.

6. 任取一正整数,求该数的平方的末位数是1的概率.

7. 如图,在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,求使得∠AOC 和 ∠

BOC 都不小于30°的概率.

A

第7题

O

E D C

B

8. 如图,在等腰三角形ABC 中,∠B =∠C =30°,求下列事件的概率:

问题1 在底边BC 上任取一点P ,使BP <AB ; 问题2 在∠BAC 的内部任作射线AP 交线段BC 于P ,使BP <AB .

古典概型与几何概型

B 组

1. 在20瓶饮料中,有2瓶过了保质期,从中任取1瓶,恰好为过期饮料的概率为 ( )

A .

12 B 。110 C 。120 D 。1

40

2. 一个罐子里有6只红球,5只绿球,8只蓝球和3只黄球。从中取出一只球,则取出红

球的概率为 ( )

A .122

B 。522

C 。311

D 。6

11

3. 已知O (0,0),A (30,0),B (30,30),C (0,30),E (12,0),F (30,18),

P (18,30),Q (0,12),在正方形OABC 内任意取一点,该点在六边形OEFBPQ 内的概率为 ( )

A .425

B 。2125

C 。725

D 。16

25

4. 若以连续掷两次骰子分别得到的点数m 、n 作为P 点的坐标,则点P 落在圆x 2+y 2=16

内的概率是_________. 5. 在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是 . 6. 在△AOB 中,∠AOB=60°,OA=2,OB=5,在线段OB 上任取一点C 。试分别求下列

事件的概率: ①△AOC 为钝角三角形; ②△AOC 为锐角三角形; ③△AOC 为锐角三角形。

A C

P

B

第8题

7.在区间[-1,1]上任取两实数a、b,求二次方程x2+2ax+b2=0的两根都为实数的概率.

8.一海豚在水池中自由游弋.水池为长30m,宽20m的长方形,随机事件A记为“海豚嘴尖离岸边不超过2m”.

(1)试设计一个算法(用伪代码表示),使得计算机能模拟这个试验,并估算出事件A发生的概率;

(2)求P(A)的准确值.

参考答案

古典概型与几何概型

【典型例题】 [例1](1)A 。

(2)C .提示:总事件数为36种。而满足条件的(x ,y)为(1,2),(2,4),(3,6),

共3种情形。

(3)D .提示:M 只能在中间6cm~9cm 之间选取,而这是一个几何概型。

(4)作△ABC 的边BC 上的高AD ,取E ∈AD 且ED=13

AD ,过E 作直线MN ∥BC 分别

交AB 于M ,AC 于N ,则当P 落在梯形BCNM 内时,△PBC 的面积小于△ABC 的面积的

1

3

,故P=59BCNM ABC S S ?=梯形.

(5)1

6

。提示:总事件数为6×6=36种,相同点数的有6种情形。 [例2]由方程有实根知:m 2≥4n .由于n ∈N *,故2≤m ≤6.

骰子连掷两次并按先后所出现的点数考虑,共有6×6=36种情形.其中满足条件的有: ①m=2,n 只能取1,计1种情形; ②m=3,n 可取1或2,计2种情形; ③m=4,n 可取1或2、3、4,计4种情形;

④m=5或6,n 均可取1至6的值,共计2×6=12种情形.

故满足条件的情形共有1+2+4+12=19(种),答案为

19

36

. [例3]以x 和y 分别表示甲、乙两人到达约会地点的时间,则两人能够会面的条件是

15x y -≤.在平面上建立直角坐标系如图7,则(x ,y)的

所有基本事件可以看作是边长为60的正方形,而可能会面的时间由图中的阴影部分所表示.故

P(两人能会面) 167

6045602

22=-=. 答 两人能会面的概率为

716

. [例4]由图可知,等可能基本事件总数为36种.

其中点数和为2的基本事件数为1个,点数和为3的基本事件数为2个,点数和为4的基本事件数为3个,点数和为5的基本事件数为4个,点数和为6的基本事件数为5个,点数和为7的基本事件数的和为6个,点数和为8的基本事件数为5个,点数和为9的基本事件数为4个,点数和为10的基本事件数为3个,点数和为11的基本事件数为2个,点数和为12的基本事件数为1个.

根据古典概型的概率计算公式易得下表:

例3答图

由概率可知,当点数和位于中间(指在7的附近)时,

概率最大,作为追求最大效益与利润的老总,当然不能选

择方案2,也不宜选择方案1,最好选择方案3.

另外,选择方案3,还有最大的一个优点那就是,它可造成视觉上与心理上的满足,顾客会认为最高奖(120元)可有两次机会,即点数和为2与12,中次最高奖(100元)也有两次机会,所以该方案是最可行的,事实上也一定是最促销的方案.

我们还可以从计算加以说明.三个方案中,均以抛掷36次为例加以计算(这是理论平均值):

从表清楚地看出,方案3所需的礼券额最少,对老总来说是应优先考虑的决策.

【课内练习】

1. D 。3个人加入6个小组中有36种方法。3人中恰有2人在同一小组的,于是只须加入

两个小组,共有

65

2

?=15种选择,而3人的分组又有6种情形,故答案为156521612?=。

2. C 。提示:虽然摸球的顺序有先后,但只需不让后摸的人知道先摸人摸出的结果,那么各

个摸球者摸到红球的概率都是相等的,并不因摸球的顺序不同而影响到其公平性.∴P 8=P 1。 3. B 。

4. B 。提示:记“彩珠与两端都大于1m ”为事件A ,则P (A )=13

5.

1510053

1000500++=

6. 3394416

?=?

1 2 3 4 5 6 1 2 3 4 5 6

例4答图

第一次抛掷后向上的点

第二次抛

向上

2 3 4 5 6 7

3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 6 7 8 9 10 7 8 9 10 11 11 12 10 9

7.

1

5

。提示:P 点只能在中间一段弧上运动,该弧所对的圆心角为150°-45°-75°,即就是30°,301

1505

=。

8.(1)三类客车分别记为上、中、下.则有如下的基本事件:

①上-中-下;②上-下-中;③中-上-下;

④中-下-上;⑤下-上-中;⑥下-中-上. 因此,基本事件总数为6个.

(2)小曹能乘上上等车的事件记为A ,则A 中包含上述事件中的: ③中-上-下;④中-下-上;⑤下-上-中,故

P (A )=3162

=.

答 共有6个基本事件,能乘上上等车的概率为1

2

9.连结圆心O 与A 点,作弦AB 使∠AOB =120°,这样的点B 有两点,分别记为B 1与B 2,

仅当P 在劣弧?12B B 上取点时,AP

OA ,此时∠B 1OB 2=120°,故所求的概率为

1201

3603

=. 10.①分别取DA 、DB 、DC 上的点E 、F 、G ,并使DE =3EA ,DF =3FB ,DG =3GC ,并连结EF 、FG 、GE ,则平面EFG ∥平面ABC .

当P 在正四面体DEFG 内部运动时,满足V P -ABC ≥

1

4

V ,故P (X )=33327(

)()464D EFG D ABC V DE V DA --===.

②在AB 上取点H ,使AH =3HB ,在AC 上取点I ,

使AI =3IC ,在AD 上取点J ,使AJ =3JD ,则P 在正四面

体AHIJ 内部运动时,满足V P -BCD ≥1

4

V .

结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四

面体EMNJ 内部运动时,同时满足V P -ABC ≥14V 且V P -BCD ≥14

V ,于是

P (Y )=

3311

()()28

J EMN D ABC V JE V DA --===.

古典概型与几何概型

A 组

1. B 。提示:所求概率为圆面积与正方形面积的差值除以圆面积。

2. B 。提示:乙可选3个位置中的一个坐下。 3. D 。提示:①②③⑤是正确的。

④ ⑤ ① ②

I

A 第8题答

A

M D

C

B

J I H

G

F E N

4.基本事件的等可能性;有限性与无限性的区别.

5.3。提示:(正,正,反),(正,反,正),(反,正,正)。

6.一个正整数的平方的末位数字只取决于该正整数的末位数,它必然是0,1,2,…,9中的任意一个,因而基本事件为Ω={1,2,3,…,9},共10个.

正整数的平方的末位数是1的事件A={1,9},共2个.

因为所有这些事件都是等可能基本事件,故由概率的计算公式得

21 ()

105

P A==.

7.记A={作射线OC,使∠AOC和∠BOC都不小于30°},作射线OD、OE使∠AOD=30°,

∠AOE=60°.当OC在∠DOE内时,使∠AOC和∠BOC都不小于30°,则P(A)=301 903

=.

8.问题1,因为点P随机地落在线段BC上,故线段BC为区域D.以B为圆心、BA为半径画弧交BC于M,则P必须落在线段BM内才有BP<BM=BA,于是

()()

2cos30

BM BA BA

P BP AB P BP BM

BC BC BA

=====

o

<<.

问题2,作射线AP在∠BAC内是等可能分布的,在BC上取点M,使∠AMB=75°,则BM=BA,当P落在BM内时,BP<AB.于是所求的概率为

755

1208

=.

B组

1.B。

2.C。

3.D。提示:

2

2

1816

1

3025

-=。

4.

2

9

。提示:基本事件的总数为6×6=36个,记事件A={点P(m,n)落在圆x2+y2=16内},则A所包含的基本事件为(1,1),(2,2),(1,3),(1,2),(2,3),(3,1),(3,2),(2,

1),共8个.

5.

2

3

。提示:被2整除的有45个,被3整除的有30个,被6整除的有15.

6.①0.4;②0.6;③0。

7.方程有实根的条件为⊿=(2a)2-4b2≥0,故|a|≥|b|.点(a,b)的

取值围成如图所示的单位正方形的区域D,随机事件A“方程

有实根”的所围成的区域如图所示的阴影部分.易求得

1

()

2

P A=.

8.(1)建立如图的直角坐标系,并用计算机所产生的随机数x和y组成的有序数组(x,y)来表示海豚嘴尖的坐标.

这里几何区域D所表示的范围为长方形:x∈(-15,

15),y∈(-10,10),事件A

所表示的区域为图中的阴影

第7题答图

第8题答图

部分d :13≤|x |<15,8≤|y |<10. 算法的伪代码表示如下: s ←0 Read n

Fo r I from 1 to n

x ←30×Rnd -15 y ←20×Rnd -10

If 13≤int(x )<15 and 8≤int(y )<10 then s ←s +1 End for

Print “海豚嘴尖离岸边不超过2m 的概率为”&

s n

End

说明 1.实验次数n 由实验者任意输入.

2.∵0<Rnd <1,∴x =30×Rnd -15∈(-15,15),y =20×Rnd -10∈(-10,10). (2)如图7-3-11,所求概率为

3020261623

()302075

d P A D D ?-?====?的测度阴影部分的面积的测度区域的面积.

(完整word版)高中数学必修三 古典概型与几何概型

古典概型与几何概型 1.1基本事件的特点 ①任何两个基本事件都是互斥的; ②任何事件(除不可能事件)都可以表示成基本事件的和. 1.2古典概型 1.2.1古典概型的概念 我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,两个特点的概率模型称为古典概率模型,简称为古典概型. 1.2.2古典概型的概率公式: 如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 n 1 ,如果某个事件A 包含的结果有m 个基本事件,那么事件A 的概率()n m A P = . 1.3几何概型 1.3.1几何概型的概率公式: 在几何概型中,事件A 的概率的计算公式如下: ()积) 的区域长度(面积或体实验的全部结果所构成积) 的区域长度(面积或体构成事件A = A P 1.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( ) A . 2 1 B . 10 3 C . 5 1 D . 5 2 2.甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A . 12 B .13 C . 14 D .16 3.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( ) A . 11 1 B . 33 2 C . 33 4 D . 33 5 4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子 朝上的面的点数分别为X ,Y ,则1log 2=Y X 的概率为( ) A . 6 1 B . 36 5 C . 121 D .2 1

古典概型,几何概型深刻复习知识点和综合知识题

知识点一:变量间的相关系数 1.两变量之间的关系 (1)相关关系——非确定性关系 (2)函数关系——确定性关系 2.回归直线方程:∧ ∧ ∧ +=a x b y ?? ??????? -=--=---=∧∧====∧∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ,)())((1 2 21 121 例题分析 例1:某种产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有一组对应数据如下表所示,变量y 和x 具有线性相关关系: x (百万元) 2 4 5 6 8 y (百万元) 30 40 6 50 70 (1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。 针对练习 1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图右. 由这两个散点图可以判断( )

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( ) (1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数 24 34 39 51 63 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+ 知识点二:概率 一、随机事件概率: 事件:随机事件:可能发生也可能不发生的事件。 确定性事件: 必然事件(概率为1)和不可能事件(概率为0) (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈

古典概型和几何概型练习题

1 古典概型和几何概型 一选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是 A.这100个铜板两面是一样的 B.这100个铜板两面是不同的 C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的 2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是 A .0.42 B .0.28 C .0.3 D .0.7 3.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是 A .至少有一个红球与都是黒球 B .至少有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球 4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是 A .4030 B .4012 C .30 12 D .以上都不对 5.先后抛掷硬币三次,则至少一次正面朝上的概率是 A .81 B . 83 C . 85 D . 8 7 6.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P A .A 与B 互斥 B .A 与B 对立 C.B A ? D. A 不包含B 7.在第1、3、4、5、8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于 A.21 B. 32 C.53 D.5 2 8. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为 A.157 B.158 C.5 3 D.1 9. 从全体3位数的正整数中任取一数,则此数以2为底的对数也是正整数的概率为 A.2251 B.3001 C.450 1 D.以上全不对 10. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是. A.21 B.31 C.4 1 D.不确定 11. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是 A. 101 B.91 C.111 D.8 1 12. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是. A.251 1 B.2491 C.2501 D.2521

古典概型和几何概型专题训练[答案解析版]

古典概型与几何概型专题训练 1.在集合{} 04M x x =<≤中随机取一个元素,恰使函数2log y x =大于1的概率为( ) A .1 B. 14 C. 12 D. 34 答案及解析:1.C 2.考虑一元二次方程2 0x mx n ++=,其中,m n 的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为( ) A. 3619 B.187 C.94 D.36 17 答案及解析:2.A 3.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形, 直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则 小花朵落在小正方形内的概率为 A . 117 B .217 C .317 D .4 17 答案及解析:3.B . 因为大正方形的面积是34,所以大正方形的边长是34,由直角三角形的较短边长为 3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4.所以 小花朵落在小正方形内的概率为42 3417 P = =.故选B . 【解题探究】本题考查几何概型的计算. 几何概型的解题关键是求出两个区间的长度(面积或体积),然后再利用几何概型的概率计算公式 ()= A P A 构成事件的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) 求解.所以本题求小花朵落在小正 方形内的概率,关键是求出小正方形的面积和大正方形的面积. 4.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

2015届高考数学一轮总复习 10-5古典概型与几何概型

2015届高考数学一轮总复习 10-5古典概型与几何概型 基础巩固强化 一、选择题 1.已知α、β、γ是不重合平面,a 、b 是不重合的直线,下列说法正确的是( ) A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件 B .“若a ∥b ,a ?α,则b ∥α”是必然事件 C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件 D .“若a ⊥α,a ∩b =P ,则b ⊥α”是不可能事件 [答案] D [解析] ???? ?a ∥b a ⊥α?b ⊥α,故A 错; ? ??? ?a ∥b a ?α?b ∥α或b ?α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题. 2.(文)4张卡片上分别写有数字1、2、3、4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.1 2 C.2 3 D.3 4 [答案] C [解析] 取出两张卡片的基本事件构成集合Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}共6个基本事件. 其中数字之和为奇数包含(1,2),(1,4),(2,3),(3,4)共4个基本事件, ∴所求概率为P =46=23 . (理)(2013·宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( ) A.112 B.1 18 C.136 D.7108 [答案] A [解析] 连续抛掷三次共有63=216(种)情况,记三次点数分别为a 、b 、c ,则a +c =2b ,所以a +c 为偶数,则a 、c 的奇偶性相同,且a 、c 允许重复,一旦a 、c 确定,b 也唯一确定,故a ,c 共有2×32=18(种),所以所求概率为18216=1 12 ,故选A. 3.(文)(2013·惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案) [例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。 解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴 影部分167 6045602 22=-=P [例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概 率。 解:R AC AB 2||||= =. ∴ 2 1 2== = ? R R BCD P ππ圆周 [例3] 将长为1的棒任意地折成三段,求三段的长度都不超过 2 1 的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件 组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为 2 1。 事件“三段的长度都不超过 21 ”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2 1 1,21,21<--<

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。 解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x 故192 251200 25 41 2 π π= =P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02 =++b ax x 两根均 为正数的概率。 ??? ??>=?>-=+≥-=?000 42 1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2 4 1a b ≤且0b 的数m (4)n m P = (n 为总组数) [例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。 解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合 Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02 << αβπ ,且αβπ +> 2 所以事件A 构成集合 A =+> << {(,)|,,}αβαβπ αβπ 2 02 由图2可知,所求概率为 P A A ()=的面积的面积 Ω==12212 1 422() ππ。 解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

古典概型与几何概型

古典概型与几何概型 基础训练: 1.甲乙两人从{0,1,2,3,4,5}中各取一个数a,b,则“恰有a+b 3”的概率等于______________ 2.箱子中有形状、大小都相同的3只红球和2只白球,先摸出1只球,记下颜色后放回箱子,然后再摸出1只球,则摸到两只不同颜色的球的概率为_____ 3.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 4.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 5.已知甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的 概率为_________ 6.一只口袋装有形状大小都相同的6只球,其中有2只白球,2只红球,2只黄球,从中一次随机摸出2只球,则2只球都是红色的概率为_______,2只球同色的概率为________,恰有一只球是白球的概率为_________ 典型例题: 袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球,(I)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123, ,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率. 9.当A ,B ∈{1,2,3}时,在构成的不同直线Ax -By =0中,任取一条,其倾斜角小于45?的概率是 . 检测与反馈: 1.已知集合{}21503x A x |x ,B x |x -??=-<<=>??-?? ,在集合A 任取一个元素x ,则事件“x A B ∈?”的概率是 ________ . 2.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未被击毁的概率为_______ 3.已知米粒等可能地落入如图所示的四边形内,如果通过 大量的实验发现米粒落入△BCD 内的频率稳定在 附近,那么点和点到直线的距离之比约为 . 4.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的 空白部分都是以正方形的顶点为圆心,半径为2a 的圆弧,某人向此 板投镖,假设每次都能击中木板,且击中木板上每个点的可能性 都一样,则他击中阴影部分的概率是__ ___. 5.分别在区间[1,6]和[2,4]内任取一实数,依次记为m 和n ,则m n >的概率为 ABCD 49A C BD D

古典概型与几何概型

古典概型与几何概型 古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基 本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、 特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6), 骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形 的面积介于36cm 2与81cm 2之间的概率为 ( ) A . 56 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟, 过时即可离去.求两人能会面的概率.

概率论及数理统计 练习题及答案

练习 1.写出下列随机试验的样本空间 (1)把一枚硬币连续抛掷两次.观察正、反面出现的情况; (2)盒子中有5个白球,2个红球,从中随机取出2个,观察取出两球的颜色; (3)设10件同一种产品中有3件次品,每次从中任意抽取1件,取后不放回,一直到3件次品都被取出为止,记录可能抽取的次数;(4)在一批同型号的灯泡中,任意抽取1只,测试它的使用寿命. 解:(1)U={正正正反反正反反} (2)U={白白白红红白红红} (3)U={1,4,5,6,7,8,9,10} (4)U={t>0} 2.判断下列事件是不是随机事件 (1)一批产品有正品,有次品,从中任意抽出1件是正品; (2)明天降雨; (3)十字路口汽车的流量; (4)在北京地区,将水加热列100℃,变成蒸汽; (5y掷一枚均匀的骰子,出现1点. 解:(1)(2)(3)(5)都是随机事件,(4)不是随机事件。 3.设A,B为2个事件,试用文字表示下列各个事件的含义 (1)A+B;(2)AB;(3)A-B;(4)A-AB;(5)AB; (6)AB AB .

解:(1)A ,B 至少有一个发生;(2) A ,B 都发生;(3) A 发生而B 不发生;(4) A 发生而B 不发生;(5)A ,B 都不发生;(6)A ,B 中恰有一个发生(或只有一个发生)。 4.设A,B,C 为3个事件,试用A,B,C 分别表示下列各事件 (1)A ,B ,C 中至少有1个发生; (2)A ,B ,C 中只有1个发生; (3)A ,B ,C 中至多有1个发生; (4)A ,B ,C 中至少有2个发生; (5)A ,B ,C 中不多于2个发生; (6)A ,B ,C 中只有C 发生. 解: (1)A B C, (2)AB C A B C A B C, (3)AB C ABC A B C A B C, (4)ABC ABC ABC ABC AB BC AC, (5)ABC A B C, (6)A B C ++?+??+???++??+??+++++++??或或 练习 1.下表是某地区10年来新生婴儿性别统计情况: 出生年份 1990 1991 1992 1993 1094 1995 1996 1997 1998 1999 总计 男 3 011 2 531 3 031 2 989 2 848 2 939 3 066 2 955 2 967 2 97 4 29 311 女 2 989 2 352 2 944 2 837 2 784 2 854 2 909 2 832 2 878 2 888 28

高考文科数学练习题古典概型与几何概型

时跟踪检测(五十九) 古典概型与几何概型 1.(2019·长沙长郡中学选拔性考试)长郡中学要从师生推荐的参加讲课比赛的3名男教师和2名女教师中,任选2人参加讲课比赛,则选取的2人恰为一男一女的概率为( ) A.25 B.35 C.13 D.23 解析:选B 从3名男教师和2名女教师中任选2人参加讲课比赛,基本事件总数为10,选取的2人恰为一男一女包含的基本事件个数为6,故选取的2人恰为一男一女的概率 为P =m n =610=35 .故选B. 2.(2019·合肥质检)某小组有男生8人,女生3人,从中随机抽取男生1人,女生2人,则男生甲和女生乙都被抽到的概率为( ) A.16 B.18 C.112 D.124 解析:选C 某小组有男生8人,分别记为M 甲,M 2,M 3,M 4,M 5,M 6,M 7,M 8,女生3人,分别记为W 乙,W 2,W 3.从中随机抽取男生1人,女生2人的基本事件为(M 甲,W 乙,W 2),(M 甲,W 乙,W 3),(M 甲,W 2,W 3),…,(M 8,W 乙,W 2),(M 8,W 乙,W 3),(M 8,W 2,W 3),共24个,男生甲和女生乙都被抽到的基本事件为(M 甲,W 乙,W 2),(M 甲,W 乙, W 3),共2个,所以男生甲和女生乙都被抽到的概率为224=112 .故选C. 3.(2019·广西五市联考)在{3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被5整除的概率是( ) A.12 B.13 C.14 D.16 解析:选C 在{3,5}和{2,4}两个集合中各取一个数组成的两位数有:32,34,52,54,23,25,43,45,共8个,其中能被5整除的两位数有:25,45,共2个,故所求概 率P =28=14 ,选C. 4.(2019·成都外国语学校月考)《九章算术》中有如下问题:今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:已知直角三角形的两直角边长分别为8步和15步,问其内切圆的直径为多少步.现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A.3π10 B.3π20 C .1-3π10 D .1-3π20 解析:选D 直角三角形的斜边长为82+152=17, 设内切圆的半径为r ,则8-r +15-r =17,解得r =3. ∴内切圆的面积为πr 2=9π,

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案 一、选择题: 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( ) (A )321A A A ++ (B )323121A A A A A A ++ (C )321321321A A A A A A A A A ++ (D )321A A A 2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( ) (A ) 365 (B )364 (C )363 (D )36 2 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ))()()(B P A P AB P = (C )1)(=+B A P (D )1)(=AB P 4.随机变量X 的概率密度为???<≥=-00 )(2x x ce x f x ,则=EX ( ) (A )21 (B )1 (C )2 (D )4 1 5.下列各函数中可以作为某随机变量的分布函数的是( ) (A )+∞<<∞-+=x x x F ,11)(2 1 (B )?????≤>+=0 001)(2 x x x x x F (C )+∞<<∞-=-x e x F x ,)(3 (D ) +∞<<∞-+=x x x F ,arctan 21 43)(4π 6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度 )(y f Y 为( )

(A ))2(2y f X - (B ))2(y f X - (C ))2 (21y f X -- (D ))2 (2 1y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表 h g p f e d x c b a x p y y y X Y Y j X i 61818121321,且X 与Y 相互独立,则=h ( ) (A )81 (B )8 3 (C )4 1 (D )3 1 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E ( ) (A )3 (B )6 (C )10 (D )12 9.设X 与Y 为任意二个随机变量,方差均存在且为正,若 EY EX EXY ?=,则下列结论不正确的是( ) (A )X 与Y 相互独立 (B )X 与Y 不相关 (C )0),cov(=Y X (D )DY DX Y X D +=+)( 答案: 1. B 2. A 3.D 4.A 5.B 6. D 7. D 8. C 9. A 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C ) (A )321A A A ++ (B )323121A A A A A A ++

几何概型习题

E D O B A C 3.3 几何概型 重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率. 经典例题:如图,60AOB ∠= ,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率. 当堂练习: 1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2 与49 cm 2 之间的概率为( ) A . 310 B . 15 C . 25 D . 45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1 B . 216 C . 3 D . 14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A . 34 B . 38 C . 14 D . 18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13 B . 49 C . 59 D . 710 6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2 π B . 1 π C . 23 D . 13

古典概型与几何概型的区别

古典概型和几何概型的意义和主要区别 在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。 一、古典概型和几何概型的意义 (一).几何概型的定义: 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 1.几何概型的特点: (1)试验中所有可能出现的基本事件有无限多个 ..... (2)每个基本事件出现的可能性相等 ...... 2.几何概型求事件A的概率公式: P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积) (二)古典概型的意义大家都很熟知,此处不在介绍

1. 古典概型的特点: (1)试验中所有可能出现的基本事件只有有限个 .... (2)每个基本事件出现的可能性相等 ...... 2. 古典概型求事件A的概率公式: P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别 几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。 三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模 题组一: 情境1、抛掷两颗骰子,求出现两个“6点”的概率 情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少? 情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?

几何概型的经典题型与答案

几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无 限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2cos x π的值介于0到2 1之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是 区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

区间长度有关,符合几何概型的条件. 解:在区间]1,1 [-上随机取一个数x,即[1,1] x∈-时,要使cos 2 x π 的值介于 0到 2 1 之间,需使 223 x πππ -≤≤-或 322 x πππ ≤≤ ∴ 2 1 3 x -≤≤-或 2 1 3 x ≤≤,区间长度为 3 2 , 由几何概型知使cos 2 x π 的值介于0到 2 1 之间的概率为 3 1 2 3 2 = = = 度 所有结果构成的区间长 符合条件的区间长度 P. 故选A. 例2、如图,A,B两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A与C,B与D之间的距离都不小于10米的 概率是多少? 思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型. 解记 E:“A与C,B与D之间的距离都不小于10米”,把AB三 等分,由于中间长度为30× 3 1 =10米, ∴ 3 1 30 10 ) (= = E P. 方法技巧我们将每个事件理解为从某个特定的几何区域内随机地 取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解. 例3、在半径为R的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于R的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 题中的等可能参数是平行弦的中点,它等可能 地分布在于平行弦垂直的直径上(如图1-1)。 也就是说,样本空间所对应的区域G是一维空 间(即直线)上的线段MN,而有利场合所对 应的区域G A 是长度不小于R的平行弦的中点K 所在的区间。 [解法1].设EF与E 1 F 1 是长度等于R的两条弦, K K K1 图1-2 图1-1 O O E F E F E1F1

古典概型和几何概型的意义和主要区别

专题六作业: 3.在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,是否更有利于从事相应的教学,举例说明; 在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,更有利于从事相应的数学教学。 一、古典概型 1、古典概型的意义 如果随机试验E具有下列性质:(1)E的所有可能结果(基本事件),只有有限多个;(2)E的每一个可能结果(基本事件),发生的可能性大小相等;则称E为有限等可能型随机试验或等可能概型。因为它是概率论发展初期的主要研究对象,所以它被称为古典概型. 2.古典概型的两个基本特点 (1)试验中所有可能出现的基本事件只有有限个,由试验产生随机数。(2)每个基本事件出现的可能性相等. 2、常见的三种古典概型基本模型 (1) 摸球模型;同类型的问题还有 1) 中彩问题; 2) 抽签问题; 3) 分组问题; 4) 产品检验问题; 5) 扑克牌花色问题; 6) 英文单词、书、报及电话号码等排列问题. (2) 分房问题;同类型的问题还有: 1) 电话号码问题 2) 骰子问题 3) 英文单词、书、报等排列问题. (3) 随机取数问题.同类型的问题还有: 1) 球在杯中的分配问题(球→人,杯→房) 2) 生日问题;(日→房,N=365天) ( 或月→房,N=12月) 3) 旅客下站问题;( 站→房) 4) 印刷错误问题;(印刷错误→人,页→房) 5) 性别问题(性别→房,N=2) 在老教材中的古典概型是强调用排列组合的公式计算事件个数,而新教材中的古典概型是强调利用枚举法,画树形图来排出所有的事件个数。 二、几何概型 1 .几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理

概率论套练习题及答案

《概率论与数理统计》 同步练习册 学号________ 姓名________ 专业________ 班级________ 广东省电子技术学校继续教育部 二O一O年四月

练习一 一、选择题 1.设A ,B ,C 表示三个随机事件,则A B C 表示 (A )A ,B ,C 中至少有一个发生; (B )A ,B ,C 都同时发生; (C )A ,B ,C 中至少有两个发生; (D )A ,B ,C 都不发生。 2. 已知事件A ,B 相互独立,且P(A)=0.5,P(B)=0.8,则P (A B )= (A) 0.65 ; (B) 1.3; (C)0.9; (D)0.3。 3.设X ~B (n ,p ),则有 (A )E (2X -1)=2np ; (B )E (2X +1)=4np +1; (C )D (2X +1)=4np (1-p )+1; (D )D (2X -1)=4np (1-p )。 4.X 的概率函数表(分布律)是 xi -1 0 1 pi 1/ 4 a 5/12 则a =( ) (A )1/3; (B )0; (C )5/12; (D )1/4。 5.常见随机变量的分布中,数学期望和方差一定相等的分布是 (A )二项分布; (B )标准正态分布; (C )指数分布; (D )泊松分布。 二、填空题 6.已知:A={x|x<3} ,B={x|2a 有(1)-= -=-2 1)(1)(a F a F ? a dx x p 0 )(; (2)P (1 )(2)-=ξ。

精品教案:古典概型与几何概型

古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事 件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义; 了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的 点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2 与81cm 2之间的概率为 ( ) A . 5 6 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离 去.求两人能会面的概率.

相关主题
文本预览
相关文档 最新文档