当前位置:文档之家› 第五章Chapter5-信赖域方法

第五章Chapter5-信赖域方法

最优化方法——信赖域法

信赖域法 董文峰,03,R数学08-1班伊广旭,03,R数学08-1班李超,04,R数学08-1班 一、算法理论

信赖域方法与线搜索技术一样, 也是优化算法中的一种保证全局收敛的重要技术. 它们的功能都是在优化算法中求出每次迭代的位移, 从而确定新的迭代点.所不同的是: 线搜索技术是先产生位移方向(亦称为搜索方向), 然后确定位移的长度(亦称为搜索步长)。而信赖域技术则是直接确定位移, 产生新的迭代点。 信赖域方法的基本思想是:首先给定一个所谓的“信赖域半径”作为位移长度的上界,并以当前迭代点为中心以此“上界”为半径确定一个称之为“信赖域”的闭球区域。然后,通过求解这个区域内的“信赖域子问题”(目标函数的二次近似模型) 的最优点来确定“候选位移”。若候选位移能使目标函数值有充分的下降量, 则接受该候选位移作为新的位移,并保持或扩大信赖域半径, 继续新的迭代。否则, 说明二次模型与目标函数的近似度不够理想,需要缩小信赖域半径,再通过求解新的信赖域内的子问题得到新的候选位移。如此重复下去,直到满足迭代终止条件。 信赖域方法解决无约束线性规划 f(x)R x ∈min 的基本算法结构。设k x 是第k 次迭代点,记)f(x f k k =,)f(x g k k ?=,k B 是Hesse 阵)f(x k 2?的第k 次近似,则第k 次迭代步的信赖域子问题具有如下形式: ,2 1g (d)min T k d B d d q k T k += k d t s ?≤.. 其中k ?是信赖域半径,?是任一种向量范数,通常取2-范数或∞-范数。 定义k f ?为f 在第k 步的实际下降量: ),d f(x f Δf k k k k +=- 定义k q ?对应的预测下降量: ()().-0k k k k d q q q =? 定义他们的比值为: k k k q f r ??= 一般的,我们有0>?k q 。因此,若0

频率域电磁法勘探详解(供时频电磁法勘探参考)

波阻抗相位(FDEM) MT/AMT/CSAMT频率域电磁法勘探反演所用的波阻抗反演方法,测量点必须位于波区(又叫做平面波区或远区)同时测量相互正交的电场分量和磁场分量,电场与磁场的比值具有阻抗的量纲,称为波阻抗,用符号Z来标示,x方向的电场与y方向的磁场比值记为Z xy。 注意: Zxy:是复数 K:波数,是复数 ω:角频率 μ:磁化率 σ:电导率 ρ:电阻率 均匀介质中电场相位角落后于磁场,这个角度就是MT/AMT/CSAMT勘探数据处理过程中所给出的振幅和相位曲线中的相位曲线。 视电阻率计算公式如下:

当平面电磁场垂直入射均匀大地时,即使不知道场源强度,只要测量出大地表面相互正交的一对电场和磁场,便可以确定大地的电阻率,而选用不同的频率可达到不同的勘探深度,这就是天然场源MT/AMT 或人工场源CSAMT的波阻抗反演的理论基础。 大地电磁测深一般要测量相互正交的两个水平电场Ex,Ey和相互正交的两个水平磁场Hx,Hy(MT测量过程中还要测量垂直磁场Hz)。测量两个水平电场是用两对不极化电极,电极距一般为100~200米。因为AMT和MT的天然电磁场信号较弱,应该采取措施避免测量电线晃动切割地球磁场产生的噪声。测量磁场则是用两个相互正交的匝数很多的高导磁芯线圈。 MT/AMT/CSAMT波阻抗反演数据处理流程电磁场的测量是在时间域进行的,再用傅里叶变换将测量信号转换为频率域信号。测量电磁场信号的采样时间间隔应使截止频率高于所需的最高频率,采样时窗宽度应大于所需的最低频率对应的周期。为了避免数据量太大,当需要测量的频带范围较宽时,一般分为几个频段采样,并分段作傅里叶变换。测量电磁场的频率范围应使最高频率对应的穿透深度为所需探测的第一层厚度的几分之一,最低频率对应的穿透深度为最大勘探深度的数倍。为了去除局部电磁场的影响,现在实际测量中采用所谓的“远参考系统”,除测点外,还在距离测点数十公里以外的地方设立一个参考点,同时进行测量。测量数据中属于平面电磁场的信号应该是互相关的,而局部干扰电磁场的信号是互不

圆锥摆模型

一、经典例题 1.将一个半径为的内壁光滑的半球形碗固定在水平地面上,若使质量为的小球贴着碗的内壁在水平面内以角速度做匀速圆周运动,如图所示,求圆周平面距碗底的高度。若角速度增大,则高度、回旋半径、向心力如何变化? 点评:实质是圆锥摆模型:球面的弹力类比于绳的拉力,球面半径类比于绳长 2.一光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,其顶角为60o,如图所示,一条长为的轻绳,一端固定在锥顶点,另一端拴一质量为的小球,小球以速率绕圆锥的轴线做水平面内的匀速圆周运动,求: (1)当时,绳上的拉力多大? (2)当时,绳上的拉力多大? 1

3.圆锥摆模型的特点: 结构特点:一根质量和形变量可以不计的细绳,一端系一个可以视为质点的摆球,使小球在水平面内做匀速圆周运动。 受力特点:只受两个力即竖直向下的重力以及沿摆线方向的拉力。两个力的合力就是摆球做匀速圆周运动的向心力 4.关键求出临界时的速度,判断物体对圆锥体是否有压力。 5.(1)了解圆锥摆及其拓展模型受力特点,合力提供向心力 (2)圆锥摆中弹力与竖直方向成的角可起“桥梁”作用 二、相关练习题 1.如图所示,长为L的细绳一端固定,另一端系一质量为m的小球。给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ。下列说法中正确的是 2

3 A .小球受重力、细绳的拉力和向心力作用 B .细绳拉力在水平方向的分力提供了向心力 C .θ越大,小球运动的周期越大 D .θ越大,小球运动的线速度越大 2.如图所示,两个质量不同的小球用长度不等的细线拴在同一点并在同一水平面内做匀速圆周运动,则它们的( ) A .运动周期相同 B .运动的线速度相同 C .运动的角速度相同 D .向心加速度相同 3.如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .现使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v 时,两段线中张力恰好均为零,若小球到达最高点速率为2v ,则此时每段线中张力为多大?(重力加速度为g )

频率域方法

第五章 频率域方法

第5章频域分析法 基本要求 5-1 频率特性 5-2 典型环节的频率特性 5-3 系统的开环频率特性 5-4 频率稳定判据 5-5 系统闭环频率特性与阶跃响应的关系5-6 开环频率特性与系统阶跃响应的关系

基本要求 1. 正确理解频率特性的概念。 2. 熟练掌握典型环节的频率特性,熟记其幅相特性 曲线及对数频率特性曲线。 3. 熟练掌握由系统开环传递函数绘制系统的开环对 数幅频渐近特性曲线及开环对数相频曲线的方法。 4. 熟练掌握由具有最小相位性质的系统开环对数幅 频特性曲线求开环传递函数的方法。

5. 熟练掌握乃奎斯特稳定判据和对数频率稳定判据及其 它们的应用。 6. 熟练掌握稳定裕度的概念及计算稳定裕度的方法。 7. 理解闭环频率特性的特征量与控制系统阶跃响应的定 性关系。 8. 理解开环对数频率特性与系统性能的关系及三频段的 概念,会用三频段的分析方法对两个系统进行分析与比较。

一、控制系统在正弦信号作用下的稳态输出 5-1 频率特性 ()sin r r t A t ω=输入信号: 2 2)(ω ω+=s A s R 其拉氏变换式

输出 1()n i i i C B D C s s s s j s j ωω==++ -+-∑1 ()() ()() i n s t j t j t i i t s c t C e De Be c t c t ωω-== ++=+∑拉氏反变换得[()]2()2 j j r j A e π φωφω∠-=?22 ()()()2r s j r A D s s j s A j j ω ω φωω φω==?-+=?其中

圆锥摆模型全透视

1 圆锥摆模型全透视 一、圆锥摆模型: 1.结构特点:一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内作匀速圆周运动。 2.受力特点:只受两个力:竖直向下的重力mg 和沿摆线方向的拉力F 。两个力的合力,就是摆球作圆周运动的向心力F n ,如图示。 二、常规讨论: 1. 向心力和向心加速度: 设摆球的质量为m ,摆线长为l ,与竖直方向的夹角为θ,摆球的线速度为v ,角速度为ω,周期为T ,频率为f 。 n n ma F =, θ πθπ θωθθsin )2(sin )2(sin sin tan 2222l f m l T m l m l v m mg ====, θπθπ θωθθsin )2(sin )2(sin sin tan 2222l f l T l l v g a n ===== 2. 摆线的拉力: 有两种基本思路:当θ 角已知时θ cos /mg F =,当θ角未知时 l f m l T m l m F F n 22 2)2()2( sin /ππωθ==== 3. 周期的计算: 设悬点到圆周运动圆心的距离为h ,根据向心力公式有g h g l T π θπ2cos 2==,由此可知高度相同的圆锥摆,周期相同,与θ,,l m 无关。 4.动态分析:当角速度ω增大时,根据θωθsin tan 2 R m mg =有R g 2 cos ωθ= ,ω增大,θ增大, 向心力增大,回旋半径增大,周期变小。 三、典型实例: 例1:将一个半径为R 的内壁光滑的半球形碗固定在水平地面上,若使质量为m 的小球贴着碗的内壁在水平面内以角速度ω做匀速圆周运动,如图,求圆周平面距碗底的高度。若角速度ω增大,则高度、回旋半径、向心力如何变化?

频率域位场处理和转换实验

《重磁资料处理与解释》实验二频率域位场处理和转换实验 学院:地测学院 专业名称:勘查技术与工程 学生姓名: 学生学号: 指导老师: 提交日期:2018年1月9日 二0一八年一月

目录 1 基本原理 (2) 1.1位场的方程 (2) 1.2二维傅里叶变换及卷积性质 (2) (1)傅里叶变换 (2) (2)卷积性质 (2) 1.3频率域位场延拓原理 (3) 2 输入/输出数据格式设计 (3) 2.1 输入数据格式设计 (3) 2.2 输出数据格式设计 (3) 2.3 参数文件数据格式设计 (3) 3 总体设计 (4) 3.1频率域位场处理与转换的一般步骤 (4) 3.2软件总体设计结果流程图 (4) 4 测试结果 (5) 4.1 测试参数 (5) (1)向上延拓 (5) (2)向下延拓 (5) 4.2 测试结果 (6) 5 结论及建议 (7) 附录:源程序代码 (8)

1 基本原理 1.1位场的方程 由场论知识可知,位场方程分为 两大类:有源的Possion 方程()02 ≠?U ,以及无源的Laplace 方程()02 =?U 。 Laplace 方程的第一边值问题()1|f U S =通常为Dirichlet 问题,第二边值问题 ?? ? ??=??2|f n U s 通常称为Nueman 问题。若P 点在S 平面内称为内部问题,反之称为外部问题。由唯一性定理可知,Dirichlet 的内部和外部问题的解是唯一的,而Nueman 内部问题的解不是唯一的,有一常数差,但其外部问题解是唯一的。 外部问题的解的唯一性的原因:。 0; 0=??=∞ →∞ →r r n U U 无源区域位场可以表示为: ds n G W n W G p W ??? ? ?????-??= π41)( (1-1) ()() ()()()[] ()() z y x h W d d z y x W z z y W -=-+-+--=??+∞∞-+∞ ∞ -ξξηεη εξηεξηεπξ,,*,,,,2,,x 2 3 22 2 (1-2) 1.2二维傅里叶变换及卷积性质 (1)傅里叶变换 []??+∞∞-+∞ ∞ -+-= =dxdy y x g y x g F v u G e vy ux i ) (2),(),(),(π (1-3) []? ?+∞∞-+∞ ∞ -+-= =dudv v u G v u G y x g e F vy ux i ) (21 ),(),(),(π (1-4) (2)卷积性质 ()()[]()()v u P v u G y x p y x F ,*,,*,g = (1-5) ()()[]()()y x p y x v u P v u G F ,*,g ,*,1=- (1-6)

新北师大版六年级数学下册《圆锥的认识》公开课教案_14

圆锥的认识 一.学习内容 《义务教育教科书数学》(人教版)六年级下册第31—32页例1。 二.教学目标 1、认识圆锥,建立圆锥的几何模型,能明确指出圆锥的各部分名称及特征。 2、认识圆锥的高,能准确测量圆锥的高,发挥动手操作的能力,逐步形成严谨求学的科学态度。 3、通过动手制作圆锥图形和旋转实验,直观感知平面图形与立体图形之间的联系,发展空间观念。 三、教学重点 建立圆锥的几何模型,能明确指出圆锥各部分名称及特征。 四、教学难点 能准确测量圆锥的高。 五、配套资源 实施资源:《圆锥的认识》名师教学课件、圆锥的模型,尺子等 二、教学设计 (一)课前设计 1.预习任务 (1)回忆我们是从哪些方面来认识圆柱特征的?它的特征是什么?用自己喜欢的方式进行整理。 (2)收集生活中圆锥形的物体,并观察它们有什么共同的特点? (二)课堂设计 1.谈话导入 师:课前大家已经收集一些圆锥形的物体,谁来展示一下? 找1—2名学生展示。 师:老师也收集了一些,请大家欣赏。我收集的与你们收集的这些物体的形状有什么共同的特点? 师:这些物体的形状都是圆锥体,简称圆锥。(课件出示圆锥立体图)

这节我们一起来认识圆锥。板书课题。 2.问题探究 (1)圆锥的特征 ①迁移类比,引发思考 师:我们在认识圆柱的时候,是从哪些方面认识它的? 独立思考后,自由发言。 引导小结:从底面、侧面、高和侧面展开图。 师:现在认识圆锥,它与圆柱有没有相像的地方?你想从哪方面来认识它? 预设:底面、侧面、侧面展开、高等(根据学生发言板书) ②观察操作,认识特征 师:现在借助手中的圆锥实物来认识它? 同桌两人合作。 ③汇报展示,归纳小结 预设1:圆锥的面 生汇报交流。 引导小结:底面是一个圆,侧面是一个曲面,圆锥有一个顶点。 预设2:圆锥高的认识 师:高在哪里?谁愿意指给大家看? 引导学生评价。 师:从圆锥的顶点到底面圆周长上任意一点的距离,是不是圆锥的高?为什么? 学生评价判断。 师:那什么是圆锥的高呢? 学生试着用自己的语言描述。 引导小结:从圆锥的顶点到底面圆心的距离叫做高。 师:圆柱的高有无数条,圆锥的高有几条?为什么? 小结:沿着曲面上的线都不是圆锥的高,圆锥的高只有一条。 课件演示画高,标上字母h。 预设3:圆锥的侧面展开图

频率域变换

数字图像处理

本章包含的主要内容
傅立叶变换 卷积和卷积定理 频率域低通滤波 频率域高通滤波
2

问题1:傅立叶变换

?
空间域/灰度
?
频率域/幅值与频率
4

? 傅立叶变换的预备知识
? 点源和狄拉克函数
一幅图像可以看成由无穷多像素组成,每个像素可以看成 一个点源, 点源可以用狄拉克函数δ表示:
?∞ δ ( x, y ) = ? ?0

x = 0, y = 0 其他
ε
满足
?∞
∫ ∫ δ ( x, y ) dxdy = ∫ ∫ ε δ ( x, y ) dxdy = 1
?
ε为任意小的正数
5

? 狄拉克函数δ具性有的性质
9 δ函数为偶函数
δ ( ? x, ? y ) = δ ( x, y )
∞ ∞
9
位移性 或
f ( x, y ) =
?∞ ?∞
∫∫
f (α , β )δ ( x ? α , y ? β ) d α d β
f ( x, y ) = f ( x, y ) ? δ ( x, y )
9 9
可分性 筛选性
δ ( x, y ) = δ ( x)δ ( y )
f (α , β ) =
∞ ∞ ?∞ ?∞ ∞ ∞
∫∫
f ( x, y )δ ( x ? α , y ? β )dxdy
当α=β=0时
f (0, 0) =
?∞ ?∞
∫∫
f ( x, y )δ ( x, y )dxdy
6

高中物理圆锥摆模型全透视

圆锥摆模型全透视 一. 圆锥摆模型 1. 结构特点:一根质量和伸长可以不计的细线,系一个可以视为质点的摆球,在水平面内做匀速圆周运动。 2. 受力特点:只受两个力即竖直向下的重力mg 和沿摆线方向的拉力F T 。两个力的合力,就是摆球做圆周运动的向心力 F n ,如图1所示。 二. 常规讨论 1. 向心力和向心加速度 设摆球的质量为m ,摆线长为l ,与竖直方向的夹角为θ,摆球的线速度为v ,角速度为ω,周期为T ,频率为f 。 F ma mg m v l n n ===tan sin θθ 2 ===m l m T l m f l ωθπ θπθ2222sin ()sin ()sin a g v l l n == =tan sin sin θθ ωθ2 2 ==( )sin ()sin 222 2πθπθT l f l 2. 摆线的拉力 图1

有两种基本思路:当θ角已知时 F mg T = cos θ ;当θ角未知时 F F m l T n = =sin θω2==()()2222π πT l m f l 3. 周期的计算 设悬点到圆周运动圆心的距离为h ,根据向心力公式有 T l g h g ==22π θπcos ,由此可知高度相同的圆锥摆周期相同与m l 、、θ无关。 4. 动态分析 根据m g ml t a n s i n θωθ =2 有cos θω=2g l ,当角速度ω增大时,向心力增 大,回旋半径增大,周期变小。 三. 典型实例 【例1】将一个半径为R 的内壁光滑的半球形碗固定在水平地面上,若使质量为m 的小球贴着碗的内壁在水平内以角速度ω做匀速圆周运动,如图2所示,求圆周平面距碗底的高度,若角速度ω增大,则高度、回旋半径、向心力如何变化 【解析】本题属于圆锥摆模型,球面的弹力类比于绳的拉 力,球面半径类比于绳长。m g mR t a n s i n θωθ=2 ,故cos θω= g R 2 , 圆周平面距碗底的高度为h R R R g =-=- cos θω 2 。若角速度ω增 图2

化极原理

2 化极原理 空间域位场转换复杂的褶积关系, 在频率域表现为简单的乘积形式. 即由实测异常的傅里叶变换频谱乘上相应的转换因子, 再反变换, 就是需要的转换结果, 其中转换因子可以是单个, 也可以是多种转换因子的组合, 这是频率域处理转换的突出优点例如实际资料的化极计算, 转换因子就应该包括去除高频干扰的滤波因子与化极因子的组合, 这类组合在频率域实现起来非常方便。化极计算涉及到磁化方向转换与测量方向转换, 该方向转换因子一般形式为H(u,v)=─—, ⑴ 其中q k=i(ul k+ vmk)+ nk√u2+ v2,(k=0,1,2,3),i=√-1,u,v为x,y方向的圆频率;lk=cosIk·cosDk,mk=cosIk·sinDk,nk=sinIk为方向余弦,Ik,Dk分别为磁化方向(和测量方向)的倾角和偏角;q0和q1分别为测量方向和磁化强度方向的频率域因子;q2和q3分别为转化后的测量方向和磁化强度方向因子。 当为化极时:I2=I3=90o,q2=q3= u2+ v2,且现在经常测量的是总场磁异常T , 其对应的测量方向是地磁场方向. 假设磁化强度方向与地磁场方向一致( 特别在稍大一点测区, 总是这样考虑) , 因此有q0= q1, 具体化极因子可简化为 用u= rcosθ, v= rsinθ代入( 2) 式, 即得极坐标系下的转换因子H( r,θ ) 为 其中r= u2+ v2, = arctan( u /v ) . 可以清楚看出频率域化极因子H( r, ) 是角度的单一函数, 与频率的高低无关, 因而可写成H(θ) . 上述频率域化极因子为扇形放大因子, 其数值直接依赖于磁倾角. 在I0= 0的极端情况下, 即磁赤道附近, 化极因子为 当θ= D0±90o时, H (θ) →-∞, 其特点见图1所示. 当磁倾角I0较小时, 化极因子的放射状线的极大值近似与磁倾角的平方成反比, 即 在接近该线较窄的扇形区域, 化极因子幅值升幅很快. 由( 5) 式可知, 在θ接近D0±90o时, H (θ) 数值很大, 造成计算结果很不稳定, 表现为化极结果沿磁偏角方向D0条带明显, 这是化极因子在θ= D0±90o方向由低频到高频的放大造成的. 为此, 需要对化极因子进行改造, 压制沿D0±90o方向的放大作用, 使计算稳定, 减少甚至消除条带现象. 然而, 化极因子沿D0±90方向的放大作用是其重要特征,改造得太严重, 就会失去其特征, 同样得不到理想的化极结果. 从理论上讲, 化极因子的所有特征都保留, 对应的必然是理论的化极结果. 但实际计算中,一方面数值必须是有限的, 超过则计算会溢出或误差很大. 另一方面, 数据是有限的、离散的, 其频谱必然与理论谱有误差, 该误差必然会被化极因子传递, 由于化极因子是放大因子, 沿某一方向一定范围内由低频到高频都放大, 计算中的误差就会放大传递, 对计算结果必然带来影响, 有时影响是巨大的.因此, 实际计算过程中应该对化极因子中不致于造成溢出的部分保留( 可逆部分) , 而对会引起数值极度放大的部分( 不可逆部分) 进行压制. 本文为此提出针对性措施压制因子法. 2. 1压制因子法 根据低纬度化极因子的平面、剖面特征( 图1) , θ0= D0±90o为死亡线 ,θ0 ,α0的扇形区域为死亡地带 ,α0为一较小的角度. 为了压制靠近D0±90o附近的过度放大效应, 设计一个压制因子, 该因子在D0±90o附近趋于零, 即压制作用最强; 一定范围以外等于1, 即不压制. 另外要求压制因子足够光滑. 余弦函数具有很好的特点, 对其加以改造, 可以满足上述要求. 为此设计如下压制因子: F( u, v) = F0 ( ) , 那么该滤波因子的特征( 图2) 应有

航磁数据处理资料

航磁数据位场转换处理及效果 航磁T 测量数据是不同深度、不同形态、规模的磁性地质体磁场信息在观测面上的综合反映。由于场的叠加效应,使得某些具有一定地质意义的异常变得复杂,在原始图件上很难识别,给地质解释工作带来了难度。为了提高对航磁异常的分辨能力,突出更多有用信息,根据测区航磁异常特征和地质解释需要,对原始测量数据进行了原平面化极、上延、垂向一阶导数以及剩余异常提取等几种位场转换处理。 第一节位场转换处理及效果 航磁平面网格数据位场转换处理采用表达式简单、运算速度快捷的频率域算法,进行化极、导数换算、解析延拓等处理。频率域转换的过程是:首先对异常资料进行傅立叶正变换,以得到异常资料的频谱;而后把异常的频谱和与转换相应的频率相应函数点积,得到处理后异常的频谱;最后对处理后异常的频谱进行傅立叶反变换,从而得到处理后的异常。 位场转换处理使用的软件是中国国土资源航空物探遥感中心自主开发的 WINDOWS系统下地球物理数据处理解释软件(GeoProbe Mage)及航空物探彩色矢量成图系统( AgsMGis)。 一、原平面化极处理 化极,即化磁极,就是把斜磁化异常转变为垂直磁化异常,相当于在磁北极观测异常。测区处于中纬度地区,由于倾斜磁化的影响,造成磁异常中心不是正好对应在地质体的正上方,而是相对于地质体的中心向南部产生一定的偏移。这对于确定磁性地质体的空间位置、形态、分布范围以及对磁异常的定性定量解释均带来一定的困难。化极可用于消除由于非垂直磁化引起的异常不对称性,在剩磁很小或感磁远大于剩磁且两者方向一致的情况下,将实测的斜磁化异常转化为垂直磁化异常,这样可以较为准确的确定异常的场源位置,提高异常解释的定位精度。从而使异常形态简化,并与磁性体位置保持一致,有利于圈定磁性体边界和走向。 作化极处理时要注意剩磁的影响,化极处理一般都假定磁化方向与地磁场方向一致,对于那些剩磁远远大于感磁且剩磁方向与地磁场方向不一致的磁性体就不符合这一假设条件,特别是测区中的火山岩分布区,由于剩磁较大会出现磁场畸变现象,使用时应注意甄别。从项目组野外物性测量结果看,区内多数岩石以感磁为主,剩磁方向与感磁方向接近,符合化极的前提条件。 全区采用"频率域偶层位变倾角磁方向转换方法"实现磁场全变倾角化极。在观 测面上建立笛卡尔直角坐标系,使x轴志向磁北,z轴垂直向下。假设观测场T是

航磁数据处理

航磁数据位场转换处理及效果 ?测量数据是不同深度、不同形态、规模的磁性地质体磁场信息在观测航磁T 面上的综合反映。由于场的叠加效应,使得某些具有一定地质意义的异常变得复杂,在原始图件上很难识别,给地质解释工作带来了难度。为了提高对航磁异常的分辨能力,突出更多有用信息,根据测区航磁异常特征和地质解释需要,对原始测量数据进行了原平面化极、上延、垂向一阶导数以及剩余异常提取等几种位场转换处理。 第一节位场转换处理及效果 航磁平面网格数据位场转换处理采用表达式简单、运算速度快捷的频率域算法,进行化极、导数换算、解析延拓等处理。频率域转换的过程是:首先对异常资料进行傅立叶正变换,以得到异常资料的频谱;而后把异常的频谱和与转换相应的频率相应函数点积,得到处理后异常的频谱;最后对处理后异常的频谱进行傅立叶反变换,从而得到处理后的异常。 位场转换处理使用的软件是中国国土资源航空物探遥感中心自主开发的WINDOWS系统下地球物理数据处理解释软件(GeoProbe Mager)及航空物探彩色矢量成图系统(AgsMGis)。 一、原平面化极处理 化极,即化磁极,就是把斜磁化异常转变为垂直磁化异常,相当于在磁北极观测异常。测区处于中纬度地区,由于倾斜磁化的影响,造成磁异常中心不是正好对应在地质体的正上方,而是相对于地质体的中心向南部产生一定的偏移。这对于确定磁性地质体的空间位置、形态、分布范围以及对磁异常的定性定量解释均带来一定的困难。化极可用于消除由于非垂直磁化引起的异常不对称性,在剩磁很小或感磁远大于剩磁且两者方向一致的情况下,将实测的斜磁化异常转化为垂直磁化异常,这样可以较为准确的确定异常的场源位置,提高异常解释的定位精度。从而使异常形态简化,并与磁性体位置保持一致,有利于圈定磁性体边界和走向。 作化极处理时要注意剩磁的影响,化极处理一般都假定磁化方向与地磁场方向一致,对于那些剩磁远远大于感磁且剩磁方向与地磁场方向不一致的磁性体就不符合这一假设条件,特别是测区中的火山岩分布区,由于剩磁较大会出现磁场畸变现象,使用时应注意甄别。从项目组野外物性测量结果看,区内多数岩石以感磁为主,剩磁方向与感磁方向接近,符合化极的前提条件。 全区采用"频率域偶层位变倾角磁方向转换方法"实现磁场全变倾角化极。在观 ?是测面上建立笛卡尔直角坐标系,使x轴志向磁北,z轴垂直向下。假设观测场T

信赖域法示例浅析

信赖域法示例浅析 摘要:本文介绍了非单调信赖域算法的基本知识,包括非单调信赖域算法的理论、算法框图及数值运算实例,数值结果表明该算法在求解高维非线性规划问题时比一般算法更有效。 关键词:信赖域法信赖半径Hesse阵Bk 引言 信赖域方法是求解非线性规划问题的常用方法之一,因其具有良好的可靠性和强健的收敛性备受非线性优化领域专家们的关注[1],信赖域方法与线搜索技术一样,也是优化算法中的一种保证全局收敛的重要技术。它们的功能都是在优化算法中求出每次迭代的位移,从而确定新的迭代点。漂亮的收敛性和有效的计算性确定了信赖域算法是一类重要和实用的方法[2]。因此研究约束优化问题的信赖域算法具有重要的意义。 1、算法的基本理论 与线搜索技术相比不同的是:线搜索技术是先产生位移方向(亦称为搜索方向),然后确定位移的长度(亦称为搜索步长)。而信赖域技术则是直接确定位移,产生新的迭代点。信赖域方法的基本思想是:首先给定一个所谓的“信赖域半径”作为位移长度的上界,并以当前迭代点为中心以此“上界”为半径确定一个称之为“信赖域”的闭球区域。然后,通过求解这个区域内的“信赖域子问题”(目标函数的二次近似模型)的最优点来确定“候选位移”。若候选位移能使目标函数值有充分的下降量,则接受该候选位移作为新的位移,并保持或扩大信赖域半径,继续新的迭代。否则,说明二次模型与目标函数的近似度不够理想,需要缩小信赖域半径,再通过求解新的信赖域内的子问题得到新的候选位移。如此重复下去,直到满足迭代终止条件。 2、信赖域方法解决无约束线性规划的基本算法结构 设■是第■次迭代点,记是Hesse阵■的第■次近似,则第■次迭代步的信赖域子问题具有如下形式: 其中■是信赖域半径,■是任一种向量范数,通常取2-范数或∞-范数。定义■为■在第■步的实际下降量: 定义■对应的预测下降量: 定义他们的比值为:。一般的,我们有■。因此,若■,则■,■不能作为下一个迭代点,需要缩小信赖半径重新求解问题。若■比较接近于1,说明二次模型与目标函数在信赖与范围内有很好的相似,此时■可以作为新的迭代点,同时

信赖域方法

信赖域方法 信赖域方法在当前搜索点附近具有一个区域,其中关于局部极小化的二次模型 被"信赖"为正确的,并且步骤被选择留在该区域内. 在搜索的过程中,区域大小根据模型和实际函数计算的符合程度被修改. 非常典型地,信赖域采取的是一个满足的椭圆. 是一个对角缩放(通常采用近似 Hessian 的对角),而是信赖域半径,它在每个步骤被更新. 当基于二次模型的步骤本身位于信赖域之内的时候,那么就认为函数值在变小,因而采用这一步骤. 因此,正如线搜索方法中一样,步控制不会干涉算法在二次模型表现良好的极小值附近的收敛效果. 当基于二次模型的步骤位于信赖域之外时,则采用一个只到边界位置的步骤,以使得该步骤成为二次模型在信赖域边界处的近似极小化步骤. 一旦一个步骤被选择,该函数就在新的点被计算,而实际函数值与通过二次模型预测所得到的值互相对照. 真正计算的是实际与预测减少量的比率. 如果接近1,那么该二次模型是一个相当不错的预测器,该区域的大小可以扩大. 另一方面,如果太小,则该区域的大小就要被降低. 当低于某一阈值时,该步骤被拒绝并重新计算. 您可以使用方法选项"AcceptableStepRatio"->控制这一阈值. 通常情况下,是相当小的,以避免走向极小值的步骤也被拒绝. 然而,如果在一个点获取二次模型相当昂贵(例如,计算Hessian 需要花费相对较长的时间),一个较大值的将降低Hessian 计算的次数,但是它可能增加函数计算的次数. 要开始信赖域算法,需要确定一个初始半径. 默认情况下,Mathematica使用基于受比较宽松的相对步长限制的模型(1) 的步骤的大小. 然而,在某些情况下,这可能使您离开您原来感兴趣的区域,所以您可以使用选项指定一个初始半径 . 该选项在它的名字中包含Scaled,因为信赖域半径使用了对角缩放,所以这不是一个绝对的步长. 这里加载一个包含一些功用函数的程序包. In[1]:= 这里显示在搜索一个与Rosenbrock函数类似的函数的局部极小值的过程中,所采用的步骤和计算,用的是了利用信赖域步控制的牛顿法.

重磁实验二

《重、磁资料处理与解释》上机实验报告 实验二:频率域位场处理和转换实验 姓名: 学号: 专业:地球物理学 指导教师:王万银、纪晓琳 完成时间:2017.1.10

目录 1 基本原理 (3) 2 输入/输出数据格式设计 (3) 2.1 输入/输出数据文件名 (3) 2.2重要变量名 (3) 3 总体设计 (4) 4 测试结果 (4) 5 结论及建议 (5) 附录:源程序代码 (6)

1基本原理 当已知实测平面的异常时,换算场源以外的异常称之为延拓,分为向上延拓和向下延拓。 半空间狄利克莱问题解析解: [][][]),,(),,(),,(),,()(222ζζ??π y x W F e y x W F z v u Y z y x Q F z v u ?=?-=-+- 其中:)(222z v u e -+-?π称为延拓因子,ζ为计算面Z 坐标,Z 轴向下为正方向,[]),,(ζy x W F 为计算面频率域位场,[]),,(z y x Q F 为延拓面的频率域位场。 2 输入/输出数据格式设计 2.1 输入/输出数据文件名 输入数据和输出数据文件名均保存在“parameter.txt ”中。第一行为输入的低高度观测面数据文件;第二行为输出的高高度观测面数据文件;第三行~第四行依次为输入的扩边比例因子和延拓高度。 A20_mag.grd A53_mag.grd 1.5 3.3 2.2重要变量名 filename_Field:低高度观测面数据文件 filename_Conti:高高度观测面数据文件 Field(m,n): 低高度观测面数据 Conti(m,n): 高高度观测面数据 error: 延拓后的均方误差 factor_x: 扩边比例因子(>1.0) height: 延拓高度(>0:向上延拓,<0:向下延拓) Factor_Conti: 延拓因子 point: 点数

关于无约束最优化问题的信赖域解法

关于无约束最优化问题的信赖域解法 一、引言 无约束优化问题是实际工程中最常见的问题之一。这类问题虽然形式比较简单,但是对于某些大规模的或者非线性很强的问题,求解它们仍然是有相当难度的。 无约束问题的算法大致分成两类:一类在计算过程中要用到目标函数的导数,另一类则只要求目标函数值。本文中所讲述的信赖域法,与牛顿法、最速下降法、共轭梯度法一样,同属于第一类方法。 二、信赖域法的主要内容 2.1 信赖域法的基本思想 虽然信赖域法与最速下降法等同属于一大类,但是在基本思想上还是有所不同。其他几种方法的基本策略是:给定点x(k)后,定义搜索方向d(k),再从x(k)出发沿d(k)作一维搜索,信赖域法则不然,下面重点阐述一下其基本思想:首先给定一个所谓的“信赖域半径”作为位移长度的上界,并以当前迭代点为中心以此“上界”为半径确定一个称之为“信赖域”的闭球区域。然后,通过求解这个区域内的“信赖域子问题”(目标函数的二次近似模型) 的最优点来确定“候选位移”。若候选位移能使目标函数值有充分的下降量, 则接受该候选位移作为新的位移,并保持或扩大信赖域半径, 继续新的迭代。否则, 说明二次模型与目标函数的近似度不够理想,需要缩小信赖域半径,再通过求解新的信赖域内的子问题得到新的候选位移。如此重复下去,直到满足迭代终止条件。 2.2 信赖域法的数学分析

三、 运用信赖域法求解具体问题 考虑无约束问题 432 1122min () 45f x x x x x =++-+ 取初点(1)00x ?? =????,信赖域半径r 1=1,取μ=0.25,η=0.75.用信赖域法求解过 程: 1) 将初值代入目标函数求得函数值f(x (1))=5,目标函数的梯度

信赖域方法概论

非线性优化中的信赖域方法及其应用 摘要 信赖域方法是非线性优化的一类重要的数值计算方法它在近二十年来受到了非线性优化研究界非常的重视。特别是最近几年,一直是非线性优化的研究热点。目前,信赖域方法已经和传统的线收索方法并列为非线性规划的两类主要数值方法。 关键词:信赖域法非线性优化约束条件 引言 非线性最优化是20世纪50年代发展起来的,它讨论非线性决策问题的最佳选择之特性,构造寻求最佳解的计算方法,研究这些计算方法的理论性质及实际计算表现。随着电子计算机的发展和应用,非线性最优化理论和方法有了很大发展。目前,它已成为运筹学的一个重要分支,并且在自然科学,工程技术,经济管理,系统工程,特别是“优化设计”等诸多领域得到广泛的应用,成为一门十分活跃的学科。 非线性优化的传统方法几乎都是线搜索类型的方法,即每次迭代时产生一搜索方向,然后在搜索方向上进行精确的或不精确的一维搜索,以得到下一个迭代点。信赖域方法是一类很新的方法,它和线搜索法并列为目前求解非线性规划的两类主要的数值方法。信赖域方法思想新颖,算法可靠,具有很强的收敛性,它不仅能很快地解决良态问题 ,而且也能有效地求解病态(ill-conditioned)的优化问题。因而对信赖域方法的研究是近20年来非线性规划领域的一个重要的研究方向,是当今寻求如何构造新的优化计算方法的主要途径。 信赖域方法的研究起源于Powell 1970 年的工作,他提出了一个求解无约束优化问题的算法,该算法在每次迭代时强制性地要求新的迭代点与当前的迭代点之间的距离不超过某一控制量。引入控制步长是因为传统的线搜索方法常常由于步长过大而导致算法失败,特别是当问题是病态时尤为如此。控制步长实质上等价于在以当前迭代点为中心的一个邻域内对一个近似于原问题的简单模型求极值。这种技巧可理解为只在一个邻域内对近似模型信赖,所以此邻域被称为信赖域(trust region)。利用这一技巧的方法也就被称为信赖域法。信赖域的大小通过迭代逐步调节。一般来说,如果在当前迭代模型较好地逼近原问题,则信赖域可扩大,否则信赖域应缩小。后来,人们发现信赖域方法的基本技巧在一定意义下等价于十分著名的求解非线性最小二乘问题的Levenberg - 2Marquadt方法。 一、算法理论 信赖域方法与线搜索技术一样,也是优化算法中的一种保证全局收敛的重要技术。它们的功能都是在优化算法中求出每次迭代的位移,从而确定新的迭代点.所不同的是: 线搜索技术是先产生位移方向(亦称为搜索方向),然后确定位移的长度(亦称为搜索步长)。而信赖域技术则是直接确定位移,产生新的迭代点。

最优化方法——信赖域法

2012-2013(1)专业课程实践论文 信赖域法 董文峰,03,R数学08-1班 伊广旭,03,R数学08-1班 李超,04,R数学08-1班

一、算法理论 信赖域方法与线搜索技术一样, 也是优化算法中的一种保证全局收敛的重要技术. 它们的功能都是在优化算法中求出每次迭代的位移, 从而确定新的迭代点.所不同的是: 线搜索技术是先产生位移方向(亦称为搜索方向), 然后确定位移的长度(亦称为搜索步长)。而信赖域技术则是直接确定位移, 产生新的迭代点。 信赖域方法的基本思想是:首先给定一个所谓的“信赖域半径”作为位移长度的上界,并以当前迭代点为中心以此“上界”为半径确定一个称之为“信赖域”的闭球区域。然后,通过求解这个区域内的“信赖域子问题”(目标函数的二次近似模型) 的最优点来确定“候选位移”。若候选位移能使目标函数值有充分的下降量, 则接受该候选位移作为新的位移,并保持或扩大信赖域半径, 继续新的迭代。否则, 说明二次模型与目标函数的近似度不够理想,需要缩小信赖域半径,再通过求解新的信赖域内的子问题得到新的候选位移。如此重复下去,直到满足迭代终止条件。 信赖域方法解决无约束线性规划

f(x)R x ∈min 的基本算法结构。设k x 是第k 次迭代点,记)f(x f k k =,)f(x g k k ?=,k B 是Hesse 阵)f(x k 2?的第k 次近似,则第k 次迭代步的信赖域子问题具有如下形式: ,2 1g (d)min T k d B d d q k T k += k d t s ?≤. . 其中k ?是信赖域半径,?是任一种向量范数,通常取2-范数或∞-范数。 定义k f ?为f 在第k 步的实际下降量: ),d f(x f Δf k k k k +=- 定义k q ?对应的预测下降量: ()().-0k k k k d q q q =? 定义他们的比值为: k k k q f r ??= 一般的,我们有0>?k q 。因此,若0

重磁数据处理与解释课程教学大纲

《重磁数据处理与解释》课程教学大纲 课程编号:0801523097 课程名称:重磁数据处理与解释 课程英文名称: 总学时:44 学分:2.5 开课单位:地球物理系 授课对象:勘查技术与工程、固体地球物理专业本科生 前置课程:高等数学、积分变换、计算方法、数学物理方法、计算机科学与技术基础、地质学原理、构造地质学。 一、教学目的与要求 《重磁数据处理与解释》课程是勘查技术与工程(应用地球物理方向)专业的深入提高课,是该专业重磁方向本科生的必修课。其它方向学生的选修课。本教学大纲适用于勘查技术与工程专业的本科教学。 通过本课程教学,使学生掌握重磁异常处理的方法、原理及处理过程。通过实际资料上机处理,学会处理程序的调试使用及成图,并能结合处理图件对异常进行综合解释。 通过本课程的学习,使学生初步学会如何运用所学的专业理论分析解决实际问题的能力,为进一步深入学习掌握位场处理的新方法、新技术打下基础。 二、教学内容 第一章重磁数据处理概述 §1 处理转换的目的及作用 §2 处理转换的主要内容 第二章重磁异常的预处理 §1 缺少物理点数据的插值 §2 数据的网格化 §3 异常的园滑 第三章位场空间转换的基本理论 §1 位场拉氏方程第一边值问题及其解

§2 位场拉氏方程第二边值问题及其解 第四章频率域异常的正反演 §1 异常频谱换算的基本理论(基础知识) 一.研究异常频谱的目的和意义 二.异常的富氏变换对 三.富氏变换的性质 §2 简单规则形体重磁场频谱及其特点 一.频率域的泊松公式 二.球体重磁场的频谱 三.直立矩形棱柱体重磁场的频谱 四.重磁异常频谱的特点 §3 利用平均径向对数能谱求场源深度 一.求深度的表达式 二.深度改正的计算 第五章频率域滤波原理及常规异常处理的频率响应§1 滤波原理 §2 几种异常变换的频率响应 一.解析延拓 二.求导 三.区域场与局部场的分离 1.汉宁窗滤波 2.匹配滤波 四.化磁极 五.磁源重力异常 六.视磁化的计算 §3 频谱分析的方法步骤 第六章重磁异常处理解释的其它方法介绍 §1 界面位场异常的快速正反演 §2 欧拉法确定场源位置和深度 §3 利用磁异常矩谱及导数谱计算磁性介质下介面 §4 归一化总梯度的计算方法及应用 第七章实际资料的处理转换及解释

航磁数据处理资料(20201228083155)

航磁数据位场转换处理及效果 航磁T测量数据是不同深度、不同形态、规模的磁性地质体磁场信息在观测面上的综合 反映。由于场的叠加效应,使得某些具有一定地质意义的异常变得复杂,在原始图件上很难识别,给地质解释工作带来了难度。为了提高对航磁异常的分辨能力,突出更多有用信息,根据测区航磁异常特征和地质解释需要,对原始测量数据进行了原平面化极、上延、垂向一阶导数以及剩余异常提取等几种位场转换处理。 第一节位场转换处理及效果 航磁平面网格数据位场转换处理釆用表达式简单、运算速度快捷的频率域算法,进行化极、导数换算、解析延拓等处理。频率域转换的过程是:首先对异常资料进行傅立叶正变换,以得到异常资料的频谱;而后把异常的频谱和与转换相应的频率相应函数点积,得到处理后异常的频谱;最后对处理后异常的频谱进行傅立叶反变换,从而得到处理后的异常。 位场转换处理使用的软件是中国国土资源航空物探遥感中心自主开发的 WINDOWS系统下地球物理数据处理解释软件(GeoProbe Mage)及航空物探彩色矢量成图系统(AgsMGis) o 一、原平面化极处理 化极,即化磁极,就是把斜磁化异常转变为垂直磁化异常,相当于在磁北极观测异常。测区处于中纬度地区,由于倾斜磁化的影响,造成磁异常中心不是正好对应在地质体的正上 方,而是相对于地质体的中心向南部产生一定的偏移。这对于确定磁性地质体的空间位置、形态、分布范围以及对磁异常的定性定量解释均带来一定的困难。化极可用于消除由于非垂直磁化引起的异常不对称性,在剩磁很小或感磁远大于剩磁且两者方向一致的情况下,将实测的斜磁化异常转化为垂直磁化异常,这样可以较为准确的确定异常的场源位置,提高异常解释的定位精度。从而使异常形态简化,并与磁性体位置保持一致,有利于圈定磁性体边界和走向。 作化极处理时要注意剩磁的影响,化极处理一般都假定磁化方向与地磁场方向一致,对于那些剩磁远远大于感磁且剩磁方向与地磁场方向不一致的磁性体就不符合这一假设条件,特别是测区中的火山岩分布区,由于剩磁较大会出现磁场畸变现象,使用时应注意甄别。从项目组野外物性测量结果看,区内多数岩石以感磁为主,剩磁方向与感磁方向接近,符合化极的前提条件。 全区采川"频率域偶层位变倾角磁方向转换方法"实现磁场全变倾角化极。在观 测面上建立笛卡尔直角坐标系,使X轴志向磁北,Z轴垂直向下。假设观测场T是

相关主题
文本预览
相关文档 最新文档