当前位置:文档之家› 500KV变电站保护配置及运行维护 交流资料(董双桥)

500KV变电站保护配置及运行维护 交流资料(董双桥)

华中电网公司500kV 变电站

运行人员继电保护培训班

电力系统继电保护的基本知识

一、电力系统继电保护的作用

一)电力系统在运行中,可能由于以下原因,发生故障

1、外部原因:雷击,大风,地震造成的倒杆,线路覆冰造成冰闪,线路污秽造成污闪。

2、内部原因:设备绝缘损坏,老化。

3、系统中运行,检修人员误操作。

二)电力系统故障的类型:

1、单相接地故障D(1)

2、两相接地故障D(1.1)

3、两相短路故障D(2)

4、三相短路故障D(3)

5、线路断线故障

以上故障单独发生为简单故障。不同地点两个或以上同时发生称为复故障。

三)电力系统短路故障的后果

1、短路电流在短路点引起电弧烧坏电气设备。

2、造成部分地区电压下降。

3、使系统电气设备,通过短路电流造成热效应和电动力。

4、电力系统稳定性被破坏,可能引起振荡,甚至鲜列。

四)电力系统不正常工作状态:电力系统中电气设备的正常工作遭到破坏,但未发展成故障。

不正常工作状态有:

1、电力设备过负荷,如:发电机,变压器线路过负荷。

2、电力系统过电压。

3、电力系统振荡。

4、电力系统低频,低压。

五)电力系统事故:电力系统中,故障和不正常工作状态均可能引起系统事故,即系统全部或部分设备正常运行状况遭到破坏,对用户造成非计划停电、少送电、电能质量(频率,电压,波形)达不到标准、设备损坏等。

继电保护的作用:就检测电力系统中各电气设备的故障和不正常工作状态的信息,并作相应处理。

六)继电保护的基本任务:

1、将故障设备从系统中切除,保证非故障设备正常运行。

2、发生告警信号通知运行值班人员,系统不正常工作状态已发生或自行调整使系统恢复正常工作状态。

二、电力系统对继电保护的基本要求:(四性)

1、选择性:电力系统故障时,使停电范围最小的切除故障的方式

2、快速性:电力系统故障对设备人身,系统稳定的影响与故障的持续时间密切相关,故障持续时间越长,设备损坏越严重;对系统影响也越大。因此,要求继电保护快速的切除故障。

电力系统对继电保护快速性的要求与电网的电压等级有关。

35KV及以下保护动作时间工段60-80ms

110KV 工段40-60ms

220KV 纵联保护20-40ms

500KV 纵联保护20-40ms

快速切除故障,可提高重合闸成功率,提高线路的输送容量。

3、灵敏性:继电保护装置在它的保护范围内(一般指末端)发生故障和不正常工作状态的反应能力,用灵敏系数K表示

K=末端故障进入保护装置的电气量/保护装置的整定值(过量动作的保护)K=保护装置的整定值/末端故障进入保护装置的电气量(欠量动作的保护)

4、可靠性:

①保护范围内发生故障时,保护装置可靠动作切除故障,不拒动。

②保护范围外发生故障和正常运行时,保护可靠闭锁,不误动。

在保护四性中:重要的是可靠性,关键是选择性,灵敏性按规程要求,快速性按系统要求。

常用的名词解释:

主保护:满足系统稳定和设备安全的要求,能以最快的速度有选择性的切除电力设备及输电线路故障的保护。

对于220KV及以上线路,变压器,母线,要求主保护全线速动,则其主保护为纵联方向,纵联距离,纵联差动,距离保护不是主保护.

后备保护:当主保护或断路器拒动时,用来切除故障的保护.后备保护可分为远后备保护和近后备保护。

近后备保护:当主保护或断路器拒动时,由本线路其它保护或本电力设备其它保护切除故障,当开关失灵时,由开关失灵保护切除故障。

远后备保护:当主保护或断路器拒动时,由相邻线路保护切除故障.

辅助保护:为补充主保护和后备保护的性能,或当主保护,后备保护退运行时而增设的保护。

如:一个半开关接线的短线保护,运方跳闸保护,过电压保护,

异常运行保护:反应被保护线路和设备异常运行状态的保护。

如:过负荷、过励磁振荡鲜列,低周减负荷等。

振荡鲜列装置:当系统正常运行时,两个系统发生振荡,将两系统分开的装置

500KV变电站继电保护的配置

一、500KV变电站的特点:

1、容量大、一般装750MV A主变1-2台,容量为220KV变电站5-8倍。

2、出线回路数多一般500KV出线4-10回

220KV出线6-14回

3、低压侧装大容量的无功补偿装置(2×120MAR)

4、在电力系统中一般都是电力输送的枢纽变电站。其地位重要,变电站的事故或故障将直接影响主网的安全稳定运行。

5、500KV系统容量大,一次系统时常数大(50-200ms)。保护必须工作在暂态过程中,需用暂态CT。

6、500KV变电站,电压高、电磁场强、电磁干扰严重,包括对一些仪器仪表工作的干扰。

二、500kV变电站主设备继电保护的要求

1、500kV主变、线路、220kV线路,500kV—220kV母线均采用双重化配置。

2、近后备原则

3、复用通道(包用复用截波通道,微波通道,光纤通道)。

三、500kV线路保护的配置

1、500kV线路的特点

a)长距离200-300km ,重负荷可达100万千瓦。

使短路电流接近负荷电流,甚至可能小于负荷电流

例:平式初期:姚双线在双河侧做人工短路试验。

姚侧故障相电流仅1200多A。送100万瓦千负荷电流=1300A

b)500KV线路有许多同杆并架双回线,因其输送容易大,发生区内异名相跨线故障时,不允许将两回线同时切除。否则将影响系统的安全运行,线路末端跨线故障时,首端距离保护,会看成相间故障。

c)500KV一般采用1个半开关接线,线路停电时,开关要合环,需加短线保护。

d)线路输送功率大,稳定储备系数小,要保证系统稳定,要求保护动作速度快,整个故障切除时间小于100ms。保护动作时间一般要≤50ms。(全线故障)

e)线路分布电容大

500KV线路、相间距离为13m、线分裂距离45cm、正四角分裂、相对地距离12m。线路空投时,未端电压高。要加并联电抗器,并联电抗器保护需跳对侧开关,需加远方跳闸保护。。

f)500KV线路一般采用单相重合闸,为限制潜供电流,中性点要加小电抗器

2、配置原则:

a)500kV线路主保护配置原则:

设置两套完整、独立的全线速动保护,其功能满足:

每一套保护对全线路内部发生的各种故障(单相接地、相间短路,两相接地、三相短路、非全相再故障及转移故障)应能正确反映每套保护具有独立的选相相功能,实现分相和三相跳闸,当一套停用时,不影响另一套运行。

b)两套保护的交流电流、电压、直流电源彼此独立

断路器有2组挑圈时,每套保护分别起动一组跳闸线圈

每套主保护分别使用独立的通道信号传输设备,若一套采用专用收发信机,另一套可与通讯复用通道。

2、500kV线路后备保护的配置原则:

500kV线路保护采用近后备方式

每条线路均应配置反映系统D1、D1-1、D2、D3 各种类型故障的后备保护,当双重化的主保护均有完善后备保护时可不另配。

对相间短路,配三段式距离、对接地故障,配三段接地距离和反时限零序保护。

配置三相过电压保护和远方跳闸保护。

3、500kV线路保护的配置

1. 主保护:

1.1 纵联保护:由继电保护和通讯两部分组成

1.1.1纵联方向保护:由线路两侧方向元件分别对故障方向作出判,并将判断结

果通过通道传送给对侧,两侧保护根据方向元件和通道信号进行综合判

断,判定区内、区外故障。根据通道信号在综合判断中的作用,纵联方向

保护可分为允许式和闭锁式。

1.1.1.1纵联闭锁式方向保护500KV线路用得较少(仅行波)

1.1.1.2纵联允许式方向保护:

纵联方向保护中的方向元件:

a)另序方向元件

b)负序方向元件

c)相电压补偿式方向元件

d)工频变化量方向元件

e)行波方向元件

g)阻抗方向元件,

1.1.2 纵联距离保护

1.1.

2.1 纵联闭锁式距离保护

1.1.

2.2 纵联允许式距离保护

1.1.

2.2.1 纵联超范围允许式距离保护1.1.2.2.2 纵联欠范围允许式距离保护

当方向元件由距离元件构成时,其构成方式有两种,由距离

I段发讯的为欠范围允许式POTT。

II III 段发讯的叫超范围允许式PUTT。

POTT K1-3通

PUTT K2-3通

T1 1-8ms 抗干扰延时记忆50ms保证对侧可靠跳闸。

纵联保护的通道:

1.专用通道:

1.1专用载波通道:保护装置自配高频收发机,直接利用电力线载波通道的一相或经分频器与其他保护和稳定装置复用(一般用220KV系统,常用单频制)

1.2专用光纤通道:保护装置与光、接点转换装置如POX-40E,JSJ-900配合,直接利用OPGW的光纤芯传送保护信息(小于60KM的线路)500KV线路保护、远跳公用光、接点转换装置。

2.复用通道:

2.1复用载波通道:一般载波机提供保护装置2个快速命令(A、B)2个慢速命令(C、D)主保护利用A或B命令,远跳利用C命令,稳定装置利用D命令

2.2复用光纤通道:保护装置与光、接点转换装置如POX-40E,zSJ-900配合,利用64K/S经PCM复用SDH或PDH,或利用2M/S复用SDH或PDH,保护、远跳公用光、接点转换装置POX-40E,JSJ-900

1.2相差高频保护:一般500KV线路不用。

1.3导引线差动保护:短线路用。

1.4光纤电流差动保护:比较被保护线路两侧电流的幅值和相位,而两侧电流

的幅值、相位、需用光纤通道传输。

工作原理:

1.1│I m+In│-K│Im-In│≥Io

K制动系数IO最小启动电流

正常运行或外部故障时Im In 相差1800Im+In=0 Im-In=2Im或2In

内部故障Im In 相差00 Im+In较大Im-In较小且乘<1的K值。

1.2│I m+In│-K{│Im│+│In│}≥Io

同步电路:

1)控制两侧三相电流同步采样

2)保证两侧采样同步,补偿信号通信传输延时

两侧采样同步过程:

将线保护一侧设置为参考端(也称主端)另一侧设置为同步端(或从端)。

由同步端,先发一同步请求命令,(内容包含采样标号,数据信息与时间.参考端收到该信息帧,便可计算其到本端一下采样点的时间TM,并返关一帧信息,(含TM值,及发送该帧的时间,收到同步请求帧的时间,同步端收该信息,便可计算,同步端采样点,与参考端采样点之间的时间差△t,和通道延时间TM。并调整本身的采样时间,让其与对侧同步采样。

采集同一时刻的采样值:在进行数据传送时,要传送该帧数据的编号4。

主机在收到其编号后再将它送回,从机在采集第8组数据时,收到主机信号(第3组数据)其中包含本侧送去的编号4。从机便知道主机的第3组信号和本侧第6组信号(4+8)/2=6为同一时刻采样值。

光纤差动保护的时钟方式

1)专用光纤通道

发送数据采用内部时钟,两侧装置发送时钟工作在主一主方式,接收时钟采用从接收数据流中提取时钟。

复用方式:上图中2-3连,1-2断,若复用SDH时,两侧装置发送时钟工作在从一从方式下,数据发送和按收均为同一时钟源,但复用PDH时,应一侧设为主时钟,另一侧设为从时钟。

2. 500KV线路的后备保护

2.1配三段相间距离

2.2配三段接地距离

2.3配三段另序方向或另序反时限

3. 500kV线路的辅助保护

3.1 三相过电压保护,第一时间跳本侧,第二时间跳对侧

3.2 短线保护(合环运行时用)

3.3 远方跳闸保护(加就地判拒)

4. 500kV线路重合闸

4.1 重合闸配置:每个开关仅配一套重合闸,

4.2 重合闸的启动方式:保护启动、开关位置不对应启动。

4.3 重合闸沟三跳问题:仅沟开关本身三跳,不能沟线路保护三跳

4.4 重合闸优先的问题:回路优先、时间优先

4.5 重合闸长、短延时的问题

5. 500kV开关失灵保护:

5.1开关失灵保护配置:按开关配置,每个开关仅配一套,但应跳开关的两

个跳圈。

5.2 相邻开关的含义:

5.3 变压器保护、电抗器保护启动失灵保护的问题:

5.4 断路器死区保护的含义:

5.5 断路器三相不一致保护的问题

线路保护的运行维护:

1、短线保护在线路运行时,应停用出口压板

2、线路保护报TA断线时,应立即向调度申请停用电流差动保护,并仔细TA 二次回路;

3、线路保护报TV断线时,应立即向调度申请停用该套阻抗保护,并仔细TV 二次回路;

4、复用载波通道告警时,除停用主保护外,还应停用远跳保护和安全稳定装

置(一般载波机提供保护接口为4命令,A、B为快速,C、D为慢速)

5、复用载波通道定检后,两侧保护应进行通道调试,特别是分相通道应分相

调试。

6、复用光纤通道告警时,除停用主保护外,还应停用远跳保护和安全稳定装

置(专用光纤通道告警时一样)

7、分相电流差动保护,应在两侧保护A、B、C相通不同的电流应进行调试。

8、复用光纤通道告警时,停用主保护、远跳保护和安全稳定装置后,可在两

保护处进行环路检查,既先将保护的发、收光口用尾纤自环,检查保护本体,再用光连接器将对外收、发的尾纤自环,如不通,可配合通信专业人员利用PCM64K/S电口或2M/S电口对内、对外环路检查。

9、带电封TA二次回路时,应按A、B、C、N的顺序进行、恢复时反之。

母线保护的配置

1、500KV母线保护的特点:

a)母线发生短路的机率比线路少,但母线故障不能迅速可靠切除,对系统的

影响大。

b)500KV母线大多采用一个半开关接线,母线故障,保护动作切除时,可不中断对用户供电,即不怕误动,怕拒动。

c)母线运行方式变化大,在最大运行方式下发生区外故障时,CT可能饱和,不平衡电流大;最小运行方式,区内故障时,短路电流可能较小,灵敏度不够。

2、220kV母线保护的特点:

a) 220kV母线大多采用双母线接线,母线故障,保护拒动或误动对系统的影

响大,应采用双重化防拒动,加复合电压闭锁防误动。

b) 220kV母线保护动作停信、发信的问题

c) 220kV母联开关保护配置的问题

3、500kV母线保护双重化配置

4、220kV母线保护双重化配置

第三部分500kV电力变压器保护的配置

一、500kV变压器保护的特点

1.1 变压器工作电压高(500kV),通过容量大(750MV A/750MV A/180-240MV A)在电网中的地位特别重要。

1.2 变压器故障或其保护误动造成变压的停电,将引起重大经济损失。

1.3 变压器造价高,组装、拆卸工作量大,抢修时间长。

1.4 500kV电力变压器的低压侧,一般装有大容量无功补偿装置(3×60MaV电抗器,2×60Mavr)。大容量的电容器在变压器内部故障时,将提供谐波电流,影响保护动作的正确性。

1.5 高压大电网的出现,大容量机组增加,电力系统短路电流幅值增大,非周期分量衰减慢。短路的暂态时间长,其保护必须在变压器故障的暂态过程中动作,因此,用于主变保护的CT、PT必须适合暂态工作条件。

1.6 500kV变压器体积大(运输尺寸7×4×4m),重量(充氮165t),为了减少重量,提高材料的利用率,降低造价,其工作铁芯磁通密度高(一般在1.7t以上),铁芯采用冷扎硅钢片,磁化曲线硬,变压器过励磁时,励磁电流增加大,过励磁对变压器影响大。

1.7 为保证可靠性,500kV变压器保护采用双重化配置。

二、电力变压器的故障

2.1 油箱内部故障:匝间短路,单相接地短路,相间短路(500kV变压器为单相式,不存在相间短路)。内部故障电流将产生电弧,会烧坏线圈的绝缘和铁芯,引起绝缘油气化使变压器爆炸。

2.2 油箱外部故障:主要是绝缘套管和引出线的故障(包括引线相间短路,单相接地短路等)。

2.3 变压器的异常运行方式:

a)油箱内油位降低;

b)外部短路引起的过流;

c)甩负荷引起的过励磁;

d)过负荷;

e)温度、压力、冷却器全停。

三、变压器保护的配置

3.1 纵联差动保护:(主保护)

3.1.1 基本要求:

1)应能躲过励磁涌流和外部故障的不平衡电流,以免变压器在空载投入或切除外部穿越性故障时,出现励磁涌流误动。

2)在变压器过励磁时,差动保护不误动。

3)在变压器内部故障、CT饱和时,不拒动。

4)在变压器内部故障、短路电流中含有谐波分量时,不拒动。

5)保护应反应区内各种短路故障,动作速度快,一般不大于30ms。

3.1.2 差动保护的构成:

基本原理:基尔霍夫定理:正常运行时或外部短路时,变压器三侧电流的向量和为0(归算到同一侧)。

正常运行或外部故障时

0321=I +I +I =I j '''???

? 内部故障时 ''''?????d j I =I +I +I =I 321

3.1.2.1 差动速断保护:保护变压器内部严重故障产生较大的短路电流,其整定值大于压力磁涌流,一般取大于8e I 即可。

3.1.2.2 比率制动功能:

cb I )I +I +I -K(I +I +I ???????≥''''''321321(门坎)

K 值取0.6-0.8之间。

比率制动回路的几种接法:

a )单侧电源双绕组变压器:一侧制动,制动绕组按负荷侧;

b )双侧电源双绕组变压器:两侧制动,各按一侧电流;

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

变电站课程设计

变电站课程设计

第一章 主变的选择 1、1 设计概念 变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节。它起着变换和分配电能的作用。 变电站的设计必须从全局利益出发,正确处理安全与经济基本建设与生产运行。近期需要与今后发展等方面的联系,从实际出发,结合国情采用中等适用水平的建设标准,有步骤的推广国内外先进技术并采用经验鉴定合格的新设备、新材料、新结构。根据需要与可能逐步提高自动化水平。 变电站电气主接线指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务,变电所的主接线是电力系统接线组成中的一个重要组成部分。 一次主接线的设计将直接影响各个不同电压侧电气设备的总体布局,并影响各进出线的安装间隔分配,同时还对变电所的供电可靠性和电气设备运行、维护的方便性产生很大的影响。主接线方案一旦确定,各进出线间和电气设备的相对位置便固定下来,所以变电所的一次主接线是电气设计的首要部分。 1.2 初步方案选定 1. 2.1负荷分析计算 根据任务书可知初建变送容量MVA S 35001=,且预测负荷增长率%4=W 每年,所以有如下每年的负荷变化量。 MVA S 3501= MVA S W S 364350%)41(1)1(2=?+=+= 2)1(3W S +==1S 350%)41(2?+56.378=MVA 3 )1(4W S +=350%)41(13?+=S 702.393=MVA MVA S W S 450.409350%)41(1)1(544=?+=+= MVA S W S 829.425350%)41(1)1(655=?+=+= MVA S W S 862.442350%)41(1)1(766=?+=+= 576.460350%)41(1)1(877=?+=+=S W S MVA 1.2.2 主变压器台数、容量的确定 (1)台数的确定 根据变电站主变压器容量一般按5——10年规划负荷来选择。根据城市规划、负荷性质、电网结构等综合考虑确定其容量。对重要变电站,应考虑

《220kV变电站电气部分初步设计》开题报告

电气与信息学院 毕业设计(论文)开题报告

《220kV变电站电气部分初步设计》开题报告 一、课题的目的和意义 随着国民经济的迅速发展,电力工业的腾飞,人们对能源利用的认识越来越重视。现在根据电力系统的发展规划,拟在某地区新建一座220KV的变电站。 本次设计是在掌握变电站生产过程的基础上完成的。通过它我不仅复习巩固了专业课程的有关内容,而且拓宽了知识面,增强了工程观念,培养了变电站设计的能力。同时对能源、发电、变电和输电的电气部分有个详细的概念,能熟练的运用有些知识,如短路计算的基本理论和方法、主接线的设计、导体电气设备的选择以及变压器的运行等。 二、文献综述 1 变电站的概述 随着经济的发展,工业水平的进步,人们生活水平不断的提高,电力系统在整个行业中所占比例逐渐趋大。现代电力系统是一个巨大的、严密的整体。各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。电力系统是国民经济的重要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。由于变电站的设计内容多,范围广,逻辑性强,不同电压等级,不同类型,不同性质负荷的变电站设计时所侧重的方面是不一样的。设计过程中要针对变电站的规模和形式,具体问题具体分析。 变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。我国电力系统的变电站大致分为四大类:升压变电站,主网变电站,二次变电站,配电站。我国电力工业的技术水平和管理水平正在逐步提高,对变电所的设计提出了更高的要求,更需要我们提高知识理解应用水平,认真对待。[1] 结合我国电力现状,为国民经济各部门和人民生活供给充足、可靠、优质、廉价的电能,优化发展变电站,规划以220KV、110KV、10KV电压等级设计变电站。从我国目前部分地区用电发展趋势来看,新建变电站应充分体现出安全性、可靠

110kV变电站电气部分设计

毕业设计(论文、作业)毕业设计(论文、作业)题目: 110kV变电站电气部分设计 分校(站、点): 年级、专业: 09秋机械 教育层次:本科 学生姓名: 学号: 指导教师: 完成日期: 2012年5月5日

中文摘要 变电站作为电力系统中的重要组成部分,直接影响整个电力系统的安全与经济运行。本论文中待设计的变电站是一座降压变电站,在系统中起着汇聚和分配电能的作用,担负着向该地区工厂、农村供电的重要任务。该变电站的建成,不仅增强了当地电网的网络结构,而且为当地的工农业生产提供了足够的电能,从而达到使本地区电网安全、可靠、经济地运行的目的。 本论文《110kv变电站一次部分电气设计》,首先通过对原始资料的分析及根据变电站的总负荷选择主变压器,同时根据主接线的经济可靠、运行灵活的要求,选择了两种待选主接线方案进行了技术比较,淘汰较差的方案,确定了变电站电气主接线方案。 其次进行短路电流计算,从三相短路计算中得到当短路发生在各电压等级的母线时,其短路稳态电流和冲击电流的值。再根据计算结果及各电压等级的额定电压和最大持续工作电流进行主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器等)。 最后,并绘制了电气主接线图、电气总平面布置图、防雷保护配置图等相关设计图纸。 关键词电气主接线设计;短路电流计算;电气设备选择;设计图纸 Abstract Power system substation as an important part of the entire power system directly affects the safety and economic operation. To be designed in this paper is a step-down substation substation in the system plays the role of aggregation and distribution of electric energy, charged with the factory to the region, the important task of rural electrification. The completion of the substation will not only strengthen the local power grid network structure, but also for the local industrial and agricultural production provides enough power, so that the regional power grid so as to achieve safe, reliable and economic operation purposes. The paper "110kv substation once part of the electrical design," the first original data through the analysis and selection based on total load of the substation main transformer, the main wiring under both economical and reliable, flexible operation requirements, select the main connection of two programs to be selected A technical comparison, out of poor program to determine the main electrical substation connection program. Second, the short-circuit current calculation, obtained from the three-phase short circuit calculation occurs when short-circuit the voltage level of the bus, its steady-state current and the impact of short-circuit current value. According to the results and the voltage level of voltage and maximum continuous operating current of the main electrical equipment selection and validation (including circuit breaker, disconnecting switch, current transformer, voltage transformer, etc.). Finally, the main draw of the electrical wiring diagram, electrical general layout map, lightning protection and other related design layout plan drawings.

课程设计4:110kV变电站电气主接线及配电装置平面布置图的设计9页

电气工程及其自动化专业 电力系统方向课程设计任务书和指导书 题目: 110kV变电站电气主接线及配电装置平面布置图的设计 指导教师:江静 电气主接线及配电装置平面布置图课程设计任务书 题目: 110kV变电站电气主接线及配电装置 平面布置图的设计 一、课程设计的目的要求 使学生巩固和应用所学知识,初步掌握部分工程设计基本方法及基本技能。二、题目: 110kV变电所电气主接线设计 三、已知资料 为满足经济发展的需要,根据有关单位的决定新建1座降压变电气。原始资料:1变电所的建设规模 ⑴类型:降压变电气 ⑵最终容量和台数:2×31500kV A:年利用小时数:4000h。 2电力系统与本所连接情况 ⑴该变电所在电力系统中的地位和作用:一般性终端变电所; ⑵该变电所联入系统的电压等级为110kV,出线回路数2回,分别为18公里与电力 系统相连;25公里与装机容量为100MW的水电站相连。 ⑶电力系统出口短路容量:2800 MV A; 3、电力负荷水平 ⑴高压10 kV负荷24回出线,最大输送2MW,COSΦ=0.8,各回出线的最小负荷 按最大负荷的70%计算,负荷同时率取0.8,COSΦ=0.85,Tmax=4200小时/年; ⑵24回中含预留2回备用; ⑶所用电率1% 4、环境条件 该所位于某乡镇,有公路可达,海拔高度为86米,土壤电阻系数Р=2.5×104Ω.cm,土壤地下0.8米处温度20℃;该地区年最高温度40℃,年最低温度-10℃,最热月7月份其最高气温月平均34.0℃,最冷月1月份,其最低气温月平均值为1℃; 年雷暴日数为58.2天。 四、设计内容

1、设计主接线方案 ⑴确定主变台数、容量和型式 ⑵接线方案的技术、经济比较,确定最佳方案 ⑶确定所用变台数及其备用方式。 2、计算短路电流 3、选择电气设备 4、绘制主接线图 5、绘制屋内配电装置图 6、绘制屋外配电装置平断面图 五、设计成果要求 1、设计说明书1份 编写任务及原始资料 ⑴编写任务及原始资料 ⑵确定主变压器台数、容量和型式 ⑶确定主接线方案(列表比较) ⑷计算短路电流(包括计算条件、计算过程、计算成果) ⑸选择高压电气设备(包括初选和校验,并列出设备清单)。 2、变电站电气主接线图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。接线按单线图绘制,仅在局部设备配置不对称处绘制三线图,零线绘成虚线。在主母线位置上注明配电装置的额定电压等级,在相应的方框图上标明设备的型号、规范。 3、屋内10kV配电装置图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示开关柜的排列顺序、各柜的接线方案编号、柜内的一次设备内容(数量的规格)及其连接,设备在柜内的大致部位,以及走廊的大致走向等。 4、屋外110kV配电装置平断面图1份 采用75×50 cm方格纸,图形符号必须按国家标准符号绘制,并有图框和标签框,字体采用仿宋体字,用铅笔绘图和书写。该图应能显示各主要设备的布置位置及走廊的大致走向等。 5、编制设计说明书及计算书 六、日程安排 第一天:布置任务、介绍电气设备选择 第二天:电气主接线最佳方案的确定 第三天:短路电流计算 第四、五天:电气设备选择 第六天:绘制电气主接线图 第七天:绘制10kV配电装置订货图

课程设计(变电所)(1)

变电所设计任务书(1) 一、题目220KV区域变电所设计 二、设计原始资料: 1、变电所性质: 系统枢纽变电所,与水火两大电力系统联系 2、地理位置: 本变电所建于机械化工区,直接以110KV线路供地区工业用户负荷为主。 3、自然条件: 所区地势较平坦,海拔800m,交通方便有铁,公路经过本所附近。最高气温十38o C 最低气温-300C 年平均温度十100C 最大风速20m/s 覆冰厚度5mm 地震裂度<6级 土壤电阻率<500Ω.m 雷电日30 周围环境较清洁、化工厂对本所影响不大 冻土深度1.5m 主导风向夏南,冬西北 4、负荷资料: 220KV侧共4回线与电力系统联接 110KV侧共12回架空出线,最大综合负荷

10KV 侧装设TT —30-6型同期调相机两台 5.系统情况 设计学生:________指导教师:____________ 完成设计日期:_______________________ 4╳4╳

变电所设计任务书(2) 一、题目220KV降压变电所设计 二、设计原始资料 1.变电所性质: 本所除与水、火两系统相联外并以110及10KV电压向地方负荷供电2.地理位置: 新建于与矿区火电厂相近地区,并供电给新兴工业城市用电 3.自然条件; 所区地势较平坦,海拔600m,交通方便有铁、公路经过本所附近 最高气温十400C 最低气温—250C 年平均温度十150C 最大风速_20m/s_ 覆冰厚度10mm 地震裂度_6级 土壤电阻率>1000Ω·m 雷电日___40__ 周围环境_空气清洁_建在沿海城市地区,注意台风影响 冻土深度1·0m 主导风向夏东南风、冬西北风 4·负荷资料: 220KV侧共3回线与电力系统联接

Kv变电站课程设计报告

目录 一、前言 (2) 1、设计内容:(原始资料16) (2) 2、设计目的 (2) 3、任务要求 (3) 4、设计原则、依据 (3) 原则:. (3) 5、设计基本要求 (3) 二、原始资料分析 (3) 三、主接线方案确定 (4) 1 主接线方案拟定 (4) 2 方案的比较与最终确定 (5) 四、厂用电(所用电)的设计 (5) 五、主变压器的确定 (6) 六、短路电流的计算 (7) 七、电气设备的选择 (8) 八、设计总结 (11) 附录 A 主接线图另附图 (12) 附录 B 短路电流的计算 (12) 附录C :电气校验 (15)

、尸■、■ 前言 1、设计内容:(原始资料16) 1)待设计的变电站为一发电厂升压站 (2)计划安装两台200MW汽轮发电机机组 发电机型号:QFSN-200-2 U e=15750V cos =0.85 X g=14.13% P e=200MW (3)220KV出线五回,预留备用空间间隔,每条线路最大输送容量200MVA T max=200MW (4)当地最高温度41.7 C,最热月平均最高温度32.5 C,最低温度-18.6 C, 最热月地面下0.8米处土壤平均温度25.3 C。 (5)厂用电率为8%厂用电电压为6KV发电机出口电压为15.75KV。 6)本变电站地处8度地震区。 7)在系统最大运行方式下,系统阻抗值为0.054。 (8)设计电厂为一中型电厂,其容量为2X 200 MW=40MW最大机组容量200 MW 向系统送电。 (9)变电站220KV与系统有5回馈线,呈强联系方式。 2、设计目的 发电厂电气部分课程设计是在学习电力系统基础课程后的一次综合性训练,通过课程设计的实践达到: 1)巩固“发电厂电气部分” 、“电力系统分析”等课程的理论知识。 2)熟悉国家能源开发策略和有关的技术规范、规定、导则等。 3)掌握发电厂(或变电所)电气部分设计的基本方法和内容。 4)学习工程设计说明书的撰写。 (5)培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。

220kV变电站电气一次部分设计

毕业设计(论文)任务书

220kV变电站设计 摘要 本设计书主要介绍了220kV区域变电所电气一次部分的设计内容和设计方法。设计的内容有220kV区域变电所的电气主接线的选择,主变压器、所用变压器的选择,母线、断路器和隔离刀闸的选择,互感器的配置,220kV、110kV、35kV线路的选择和短路电流的计算。设计中还对主要高压电器设备进行了选择与计算,如断路器、隔离开关、电压互感器、电流互感器等。此外还进行了防雷保护的设计和计算,提高了整个变电所的安全性。 关键词:变电站;主接线;变压器

220kV substation design ABSTRACT The design of the book introduces the regional 220kV electrical substation design a part of the content and design. The design of the contents of the electrical substation 220kV main regional cable choice, the main transformer, the transformer used in the choice of bus, circuit breakers and isolation switch option, the configuration of transformer, 220kV, 110kV, 35kV line choice and short-circuit current calculations. The design of the main high pressure also had a choice of electrical equipment and computing, such as circuit breakers, isolating switches, voltage transformers, current transformers and so on. In addition, a lightning protection design and computing, increased the safety of the entire substation. Keywords: substation; main connection; transformer

110kv变电站继电保护课程设计

110kv变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速 地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行; 当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算 的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0 摘 要 .................................................................... 第一章电网继电保护的配置 ............................................... 2 1.1 电网继电保护的作 用 .................................................. 2 1.2 电网继电保护

的配置和原理 ............................................ 2 1.3 35kV线 路保护配置原则 ................................................ 3 第二章3 继电保护整定计算 .................................................2.1 继电保护整定计算的与基本任务及步骤 . (3) 2.2 继电保护整定计算的研究与发展状况 .................................... 4 第三章线路保护整定计 算 ................................................. 5 3.1设计的原始材 料分析 ................................................... 5 3.2 参数计 算 ............................................................ 6 3.3 电流保护的整定计算 .................................................. 7 总结 .. (9) 1 第一章电网继电保护的配置 1.1 电网继电保护的作用 电网在运行过程中,可能会遇到各种类型的故障和不正常运行方式,这些都可 能在电网中引起事故,从而破坏电网的正常运行,降低电力设备的使用寿命,严重的将直接破坏系统的稳定性,造成大面积的停电事故。为此,在电网运行中,一方面要采取一切积极有效的措施来消除或减小故障发生的可能性:另一方面,当故障 一旦发生时,应该迅速而有选择地切除故障元件,使故障的影响范围尽可能缩小,这一任务是由继电保护与安全自动装置来完成的。电网继电保护的基本任务在于: 1(有选择地将故障元件从电网中快速、自动切除,使其损坏程度减至最轻,并 保证最大限度地迅速恢复无故障部分的正常运行。 2(反应电气元件的异常运行工况,根据运行维护的具体条件和设各的承受能 力,发出警报信号、减负荷或延时跳闸。

220kV35KV变电站继电保护课程设计

新疆农业大学机械交通学院 《发电厂电气设备》 课程设计说明书 题目 220kV/35KV变电站继电保护课程设计 专业班级:电气工程及其自动化122班 学号: 123736211 学生姓名:孔祥林 指导教师:李春兰艾海提·塞买提 时间: 2015年12月

目录 概述 (1) 1.电气主接线的设计 (1) 1.1主接线的设计原则和要求 (1) 2 主要电气器件选择汇总表 (2) 3短路电流的计算 (2) 3.1短路电流 (2) 3.1.1短路电流计算的目的 (2) 3.2 各回路最大持续工作电流 (3) 3.3短路电流计算点的确定 (3) 3.3.1 当K1点出现短路时 (5) 3.3.2当K2点出现短路时 (6) 4电保护分类及要求 (7) 5电力继电器继电保护 (8) 5.1电力变压器故障及不正常运行状态 (8) 5.2 电力变压器继电保护的配置原则 (8) 6选用变压器继电保护装置类型 (9) 7选用的母线继电保护装置类型 (9) 8各保护装置的整定计算 (10) 8.1变压器纵差保护整定计算及其校验 (10) 8.1.1差动继电器的选型 (10) 8.1.2纵差动保护的整定计算 (10) 8.1.3差动保护灵敏系数的校验 (11) 8.2变压器过电流保护的整定计算 (12) 8.2.1 DL-21CE型电流继电器 (12) 8.2.2过电流保护整定原则 (12) 8.2.3过电流保护整定的动作时限器 (13) 8.2.4保护装置的灵敏校验 (13) 8.2.5过电流保护整定计算 (13) 8.3过负荷保护 (15) 8.4变压器一次侧零序过电流保护的整定计算 (15) 8.4.2 DS-26E型时间继电器 (15) 8.4.2零序电流的整定计算 (16) 9防雷保护 (17) 10心得体会 (17) 参考文献: (18)

220KV变电站电气设计说明书

220KV变电站电气设计说 明书 第1章引言 1.1 国外现状和发展趋势 (1) 数字化变电站技术发展现状和趋势 以往制约数字化变电站发展的主要是IEC61850的应用不成熟,智能化一次设备技术不成熟,网络安全性存在一定隐患。但2005年国网通信中心组织的IEC61850互操作试验极大推动了IEC61850在数字化变电站中的研究与应用。目前IEC61850技术在变电站层和间隔层的技术已经成熟,间隔层与过程层通信的技术在大量运行站积累的基础上正逐渐成熟。 (2) 当前的变电站自动化技术 20世纪末到21世纪初,由于半导体芯片技术、通信技术以及计算机技术飞速发展,变电站自动化技术也已从早期、中期发展到当前的变电站自动化技术阶段。其重要特点是:以分层分布结构取代了传统的集中式;把变电站分为两个层次,即变电站层和间隔层,在设计理念上不是以整个变电站作为所要面对的目标,而是以间隔和元件作为设计依据,在中低压系统采用物理结构和电器特性完全独立,功能上既考虑测控又涉及继电保护这样的测控保护综合单元对应一次系统中的间隔出线,在高压超高压系统,则以独立的测控单元对应高压或超高压系统中的间隔设备;变电站层主单元的硬件以高档32位工业级模件作为核心,配大容量存、闪存以及电子固态盘和嵌入式软件系统;现场总线以及光纤通信的应用为功能上的分布和地理上的分散提供了技术基础;网络尤其是基于TCP/IP的以太网在变电站自动化系统中得到应用;智能电子设备(IED)的大量应用,诸如继电保护装置、自动装置、电源、五防、电子电度表等可视为IED而纳入一个统一的变电站自动化系统中;与继电保护、各种IED、远方调度中心交换数据所使用的规约逐渐与国际接轨。这个时期国代表产品有CSC系列、NSC系列及BSJ系列。 (3) 国外变电站自动化技术 国外变电站自动化技术是从20世纪80年代开始的,以西门子公司为例,该公司第一套全分散式变电站自动化系统LSA678早在1985年就在德国汉诺威正式投入运行,至1993年初,已有300多套系统在德国和欧洲的各种电压等级的变电站运行。在中国,1995年亦投运了该公司的LSA678变电站自动化系统。LSA678的系统结构有两类,一类是全分散式,另一类是集中和分散相结合,两类系统均由6MB测控系统、7S/7U保护系统、8TK开关闭锁系统三部分构成。 (4) 原始变电站自动化系统存在的问题 资料分目前国际上关于变电站自动化系统和通讯网络的国际标准还没有正式公布,国也没有相应的技术标准出台。标准和规的出台远落后于技术的发展,导致变电站自动化系

220kV变电站电气设计

摘要 随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。 本设计讨论的是220KV变电站电气部分的设计。首先对原始资料进行分析,选择主变压器,在此基础上进行主接线设计,再进行短路计算,选择设备,然后进行防雷接地以及保护、配电装置设计。 关键字:变电站;短路计算;设备选择;防雷保护。

目录 摘要 (1) 引言 (4) 任务书 (5) 第一章主变压器的选择 (6) 1.1主变压器的选择原则 (6) 1.1.1 主变压器容量和台数的选择原则 (6) 1.1.2 主变压器容量的选择 (6) 1.1.3 主变压器型式的选择 (7) 1.1.4 绕组数量和连接形式的选择 (7) 1.2主变压器选择结果 (8) 1.3所用变选择 (8) 第二章电气主接线的设计 (10) 2.1主接线概述 (10) 2.2主接线设计原则 (10) 2.3主接线的选择 (10) 第三章 220KV变电站电气部分短路计算 (14) 3.1变压器的各绕组电抗标幺值计算 (14) 3.210KV侧短路计算 (15) 3.3220KV侧短路计算 (18) 3.4110KV侧短路计算 (20) 第四章导体和电气设备的选择 (22) 4.1断路器和隔离开关的选择 (23) 4.1.1 220KV出线、主变侧 (23) 4.1.2 主变110KV侧 (27) 4.1.3 10KV断路器隔离开关的选择 (29) 4.2电流互感器的选择 (34) 4.2.1 220KV侧电流互感器的选择 (34) 4.2.2 110KV侧的电流互感器的选择 (36) 4.2.3 10KV侧电流互感器的选择 (37) 4.3电压互感器的选择 (38) 4.3.1 220KV侧母线电压互感器的选择 (38) 4.3.2 110KV母线设备PT的选择 (39) 4.3.3 10KV母线设备电压互感器的选择 (39) 4.4导体的选择与校验 (39)

(完整word版)110KV变电站课程设计说明书DOC

成绩 课程设计说明书 题目110/10kV变电所电气部分课程设计 课程名称发电厂电气部分 院(系、部、中心)电力工程学院 专业继电保护 班级 学生姓名 学号 指导教师李伯雄 设计起止时间: 11年 11月 21日至 11年 12 月 2日

目录 一、对待设计变电所在系统中的地位和作用及所供用户的分 析 (1) 二、选择待设计变电所主变的台数、容量、型式 (1) 三、分析确定高、低压侧主接线及配电装置型式 (3) 四、分析确定所用电接线方式 (6) 五、进行互感器配置 (6) 六.短路计算 (9) 七、选择变电所高、低压侧及10kV馈线的断路器、隔离开关 (10) 八、选择10kV硬母线 (13)

一、对待设计变电所在系统中的地位和作用及所供用户的分析 1.1、待设计变电所在系统中的地位和作用 1.1.1 变电所的分类 枢纽变电所、中间变电所、地区变电所、终端变电所 1.1.2 设计的C变电所类型 根据任务书的要求,从图中看,我设计的C变电所属于终端变电所。 1.1.3 在系统中的作用 终端变电所,接近负荷点,经降压后直接向用户供电,不承担功率转送任务。电压为110kV及以下。全所停电时,仅使其所供用户中断供电。 1.2、所供用户的分析 1.2.1 电力用户分类、对供电可靠性及电源要求 (1)I类负荷。I类负荷是指短时(手动切换恢复供电所需的时间)停电也可能影响人身或设备安全,使生产停顿或发电量大量下降的负荷。I类负荷任何时间都不能停电。对接有I类负荷的高、低压厂用母线,应有两个独立电源,即应设置工作电源和备用电源,并应能自动切换;I类负荷通常装有两套或多套设备;I类负荷的电动机必须保证能自启动。 (2)II类负荷。II类负荷指允许短时停电,但较长时间停电有可能损坏设备或影响机组正常运行的负荷。II类负荷仅在必要时可短时(几分钟到几十分钟)停电。对接有II类负荷的厂用母线,应有两个独立电源供电,一般采用手动切换。 I类、II类负荷均要求有两个独立电源供电,即其中一个电源因故停止供电时,不影响另一个电源连续供电。例如,具备下列条件的不同母线段属独立电源:①每段母线接于不同的发电机或变压器;②母线段间无联系,或虽然有联系,但其中一段故障时能自动断开联系,不影响其他段供电。所以,每个I类、II 类负荷均应由两回接于不同母线段的馈线供电。 (3)III类负荷。III类负荷指较长时间(几小时或更长时间)停电也不致直接影响生产,仅造成生产上的不方便的负荷。III类负荷停电不会造成大的影响,必要时可长时间停电。III类负荷对供电可靠性无特殊要求,一般由一个电源供电,即一回馈线供电。 1.2.2 估算C变电所的回路数目 根据上述要求,重要负荷(I类、II类)比例是55%,重要负荷需用双回线,每回10kV馈线输送功率1.5~2MW,经计算,高压侧回路数为2,低压侧回路数为18÷1.5=12。

220kv变电站电气部分设计

220kv变电站电气部分设计

******毕业生论文 题目:220kV降压变电所电气部分设计 系别电力工程系_ 专业供用电技术 班级 ********** 学号*********** _ 姓名

Keywords: main electrical wiring;transformers;short circuit current;lightning protection。 目录 摘要 (2) ABSTRACT (2) 引言 (6) 第一章电气主接线选择 (7) 第1节概述 (7) 第2节主接线的接线方式选择 (6) 第二章主变压器容量、台数及型式的选择 (9) 第1节概述 (9) 第2节主变压器台数的选择 (9) 第3节主变压器容量的选择 (10) 第4节主变压器型式的选择 (10) 第三章短路电流计算 (12) 第1节概述 (14) 第2节短路计算的目的及假设 (15) 第四章电气设备的选择 (18) 第1节概述 (18)

第2节断路器的选择 (19) 第3节隔离开关的选择 (21) 第4节高压熔断器的选择 (23) 第5节互感器的选择 (23) 第6节母线的选择 (25) 第7节支持绝缘子及穿墙套管的选择 (27) 第8节限流电抗器的选择 (29) 第五章电气总平面布置及配电装置的选择 (30) 第1节概述 (30) 第2节高压配电装置的选择 (31) 第六章继电保护配置规划 (33) 第1节变电所主变保护的配置 (37) 第2节 220KV、110KV、10KV线路保护部分 (34) 第七章防雷设计规划 (35) 第1节概述 (35) 第2节防雷保护的设计 (36) 第3节主变中性点放电间隙保护 (37) 结论 (38) 致谢 (38) 参考文献 (38)

110KV变电站课程设计范例(本科课设)

《发电厂电气部分》 课程设计 学生姓名: 学号: 专业班级: 指导教师: 二○年月日

目录(二号字体) 1.课程设计目的 (2) 2.110KV变电站设计题目和要求 (2) 3 主变压器台数、容量、型式的选择 (3) 4 电气主接线方案的确定 (4) 5所用电设计 (8) 6短路电流的计算 (9) 7电气设备的选择 (12)

1课程设计目的 电气主接线是发电厂,变电站电气设计的首要部分,也是构成电力系统的主要环节,而电气设备的选择是电气设计的主要内容之一。本次课设通过110/10kv变电站的设计,对变压器选择,限制短路电流的方法进行分析,通过对电气主接线经济性,灵活性,可靠性的分析,选出最优方案。 2 110KV变电站设计依据和要求 2.1依据 根据设计任务书下达的任务和原始数据设计。 2.2设计内容 为了满足该县负荷发展及电网电力交换的需要,优化该县的电网结构,拟在县城后山设计建设一座110/10的降压变电所,简称110kV变电所。 2.3电力系统概述 本变电所与电力系统联系 1、

说明 110kV变电所通过两回110kV线路接至该变电所,再与电力系统相连。这里将S 取为 j 100MVA,系统侧提供短路电流为22.17kA;按供电半径不大于5kM要求,110kV线路长度定为4.8kM。 110kV变电所在电力系统中的地位和作用 1、根据110kV变电所与系统联系的情况,该变电站属于终端变电所。 2、110kV变电所主要供电给本地区用户,用电负荷属于Ⅱ类负荷。 2.4 110kV变电所各级电压负荷情况分析 2.4.1供电方式 110kV侧:共有两回进线,由系统连接双回线路对110kV变电所供电。 10kV侧:本期出线6回,由110kV变电所降压后供电。 2.4.2负荷数据 1、全区用电负荷本期为27MW,共6回出线,每回按4.5MW计; 远期50MW,14回路,每回按3.572MW设计; 最小负荷按70%计算,供电距离不大于5kM。 =4250小时/年。 2、负荷同时率取0.85,cosφ=0.8,年最大利用小时数T max 3、所用电率取0.1%。 2.4 110kV变电所的自然条件 2.4.1 水文条件 1、海拔80M 2、常年最高温度40.3℃ 3、常年最低温度1.7℃ 4、雷暴日数——62日/年 5、污秽等级为3级 2.4.2 所址地理位置与交通运输情况 地理位置不限制,交通便利。

220kV变电站设计

引言 发电厂及电力系统的毕业设计是培养学生综合运用所学理论知识,独立分析和 解决工程实际问题的初步能力的一个重要环节。 本设计是根据毕业设计的要求,针对220/60KV降压变电所毕业设计论文。本次设计主要是一次变电所电器部分的设计,并做出阐述和说明。论文包括选择变电所 的主变压器的容量、台数和形式,选择待设计变电所所含有的各种电气设备及其各 项参数,并且通过计算,详细的校验了公众不同设备的热稳定和动稳定,并对其选 择进行了详尽的说明。同时经过变压器的选择和变电所所带负荷情况,确定本变电 所电气主接线方案和高压配电装置及其布置方式,同时根据变电所的电压等级及其 在电力网中的重要地位进行继电保护和自动装置的规划设计,最后通过对主接线形 式的确定及所选设备的型号绘制变电所的断面图、平面图、和继电保护原理图,同 时根据所绘制的变电所平面图计算变电所屋外高压配电装置的防雷保护,并绘制屋 外高压配电装置的防雷保护图。

第一篇毕业设计说明书 1 变电所设计原始资料 1.1 设计的原始资料及依据 (1) 待设计变电所建成后主要向工业用户供电,电源进线为220KV两回进线,电压等级为220/60KV。 (2) 变电所地区年平均温度14℃,最高温度36℃,最低温度-20℃。 (3) 周围空气无污染。 (4) 出线走廊宽阔,地势平坦,交通方便。 (5) 变电所60KV负荷表: (重要负荷占总负荷的80%,负荷同时率为0.7,线损率5%,Tmax=5600小时) 表1.1 变电所60kV负荷表 序号负荷名称最大负荷(KW)功率 因数出线 方式 出线 回路数 附注 近期远期 1 建成机械厂18000 25000 0.95 架空 2 有重要负荷 2 化肥厂8000 10000 0.95 架空 2 有重要负荷 3 重型机械厂10000 13000 0.95 架空 2 有重要负荷 4 拖拉机厂15000 20000 0.9 5 架空 2 有重要负荷 5 冶炼厂10000 15000 0.95 架空 2 有重要负荷 6 炼钢厂12000 18000 0.95 架空 2 有重要负荷 (6)电力系统接线方式如图所示: 图1.1 电力系统接线方式图 系统中所有的发电机均为汽轮发电机,送电线路均为架空线,单位长度正序电抗为0.4欧姆/公里

某220kV变电站电气部分设计

某220kV变电站电气部分设计 摘要 本设计的主要内容是对一座220kV变电站的电气部分进行设计。设计要求采用2回220kV进线,110kV出线7回,10kV出线9回。分三期完成,一期完成220kV进线2回,110kV出线3回,10kV出线3回。具体设计项目包括:主变容量选择、电气主接线方案设计、电气总平面布置、短路电流计算、一次设备的选择及校验、各级电压配电装置的布置、二次回路方案的选择及继电保护的整定所用电设计、防雷接地方案的设计。 本设计中所涉及的主要计算包括:短路计算、一次设备校验计算、继电保护整定计算。 关键词:220kV;变电站;设计;短路计算;校验

Design for the electrical part of a 220kV substation Abstract The main target of this design is the electrical part of a 220kV substation. Design requires that using two 220kV back into line, seven to 110kV line and 9 to 10kV line. The whole project is divided into tree periods while two 220kV back into line, three 110kV line and three 10kV line are planed to be accomplished in the first period. This design includes following parts: selection of the capacity of the main transfer, main connection, plane arrangement, short circuit calculation, first side facility selection and verification, plane arrangement for each voltage part, rely protection design, substation-used electricity design, lightning protection design. The main calculation mentioned in this design including: short circuit calculation, verification calculation for first part facility, rely protection calculation. Keyword: 220kV;Substation;Design;Short circuit calculation;verification

相关主题
文本预览
相关文档 最新文档