当前位置:文档之家› 八年级数学期末试卷达标训练题(Word版 含答案)

八年级数学期末试卷达标训练题(Word版 含答案)

八年级数学期末试卷达标训练题(Word版 含答案)
八年级数学期末试卷达标训练题(Word版 含答案)

八年级数学期末试卷达标训练题(Word 版 含答案)

一、八年级数学全等三角形解答题压轴题(难)

1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点

D 作DF D

E ⊥与点

F ,

G 为BE 中点,连接AF ,DG .

(1)如图1,若点F 与点G 重合,求证:AF DF ⊥; (2)如图2,请写出AF 与DG 之间的关系并证明. 【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析. 【解析】 【分析】

(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.

(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出. 【详解】

解:(1)证明:设BE 与AD 交于点H..如图,

∵AD,BE 分别为BC,AC 边上的高, ∴∠BEA=∠ADB=90°. ∵∠ABC=45°,

∴△ABD 是等腰直角三角形. ∴AD=BD. ∵∠AHE=∠BHD, ∴∠DAC=∠DBH. ∵∠ADB=∠FDE=90°, ∴∠ADE=∠BDF. ∴△DAE ≌△DBF.

∴BF=AE,DF=DE.

∴△FDE 是等腰直角三角形. ∴∠DFE=45°. ∵G 为BE 中点, ∴BF=EF. ∴AE=EF.

∴△AEF 是等腰直角三角形. ∴∠AFE=45°.

∴∠AFD=90°,即AF ⊥DF.

(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,

∵点G 为BE 的中点,BG=GE. ∵∠BGM ∠EGD, ∴△BGM ≌△EGD.

∴∠MBE=∠FED=45°,BM=DE. ∴∠MBE=∠EFD,BM=DF. ∵∠DAC=∠DBE,

∴∠MBD=∠MBE+∠DBE=45°+∠DBE. ∵∠EFD=45°=∠DBE+∠BDF, ∴∠BDF=45°-∠DBE. ∵∠ADE=∠BDF,

∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD. ∵BD=AD, ∴△BDM ≌△DAF.

∴DM=AF=2DG,∠FAD=∠BDM. ∵∠BDM+∠MDA=90°, ∴∠MDA+∠FAD=90°. ∴∠AHD=90°. ∴AF ⊥DG. ∴AF=2DG,且AF ⊥DG 【点睛】

本题考查三角形全等的判定和性质,关键在于灵活运用性质.

2.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板

45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)

45(a ≤≤得到ABM ,图()2所示.试问:

()1当a 为多少时,能使得图()2中//AB CD ?说出理由,

()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00

)45(a ≤≤时,探索

DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.

【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析. 【解析】 【分析】

(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;

(2)DBM CAM BDC ∠+∠+∠的大小不变,是105?,由FEM CAM C ∠=∠+∠,

30C ∠=?, EFM BDC DBM ∠=∠+∠, 45M ∠=?,即可利用三角形内角和求出答案.

【详解】

()1当a 为15时,//AB CD ,

理由:由图()2,若//AB CD ,则30

BAC C ∠=∠=,

453015a CAM BAM BAC ∴=∠=∠-∠=-?=?,

所以,当a 为15时,//AB CD . 注意:学生可能会出现两种解法:

第一种:把//AB CD 当做条件求出a 为15, 第二种:把a 为15当做条件证出//AB CD , 这两种解法都是正确的.

()2DBM CAM BDC ∠+∠+∠的大小不变,是105?

证明:

,30FEM CAM C C ∠=∠+∠∠=?,

30FEM CAM ∴∠=∠+?, EFM BDC DBM ∠=∠+∠,

DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,

180,45EFM FEM M M ∠+∠+∠=∠=?,

3045180BDC DBM CAM ∴∠+∠+∠+?+?=?,

1803045105DBM CAM BDC ∴∠+∠+∠=?--=?,

所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.

【点睛】

此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.

3.如图1所示,已知点D 在AC 上,ADE ?和ABC ?都是等腰直角三角形,点M 为EC 的中点.

(1)求证:BMD ?为等腰直角三角形;

(2)将ADE ?绕点A 逆时针旋转45?,如图2所示,(1)中的“BMD ?为等腰直角三角形”是否仍然成立?请说明理由;

(3)将ADE ?绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ?为等腰直角三角形”成立吗?请说明理由.

【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析. 【解析】 【分析】

()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,

90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出

22290BMD BCM ACM BCA ∠∠∠∠=+==即可.

()2延长ED 交AC 于F ,求出12

DM FC =,//DM FC ,DEM NCM ∠=,根据ASA

推出EDM ≌CNM ,推出DM BM =即可.

()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出

MDE ≌MFC ,求

出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出

BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案. 【详解】

()1证明:

ABC 和ADE 都是等腰直角三角形,

45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===

点M 为EC 的中点,

12BM EC ∴=

,1

2

DM EC =, BM DM ∴=,BM CM =,DM CM =,

BCM MBC ∠∠∴=,DCM MDC ∠∠=,

2BME BCM MBC BCE ∠∠∠∠∴=+=, 同理2DME ACM ∠∠=,

22224590BMD BCM ACM BCA ∠∠∠∠∴=+==?=

BMD ∴是等腰直角三角形.

()2解:如图2,

BDM 是等腰直角三角形,

理由是:延长ED 交AC 于F ,

ADE 和ABC △是等腰直角三角形, 45BAC EAD ∠∠∴==,

AD ED ⊥, ED DF ∴=, M 为EC 中点, EM MC ∴=, 1

2

DM FC ∴=

,//DM FC , 45BDN BND BAC ∠∠∠∴===,

ED AB

⊥,BC AB

⊥,

//

ED BC

∴,

DEM NCM

∴=,

在EDM和CNM中

DEM NCM

EM CM

EMD CMN

∠=∠

?

?

=

?

?∠=∠

?

EDM

∴≌()

CNM ASA,

DM MN

∴=,

BM DN

∴⊥,

BMD

∴是等腰直角三角形.

()3BDM是等腰直角三角形,

理由是:过点C作//

CF ED,与DM的延长线交于点F,连接BF,

可证得MDE≌MFC,

DM FM

∴=,DE FC

=,

AD ED FC

∴==,

作AN EC

⊥于点N,

由已知90

ADE

∠=,90

ABC

∠=,

可证得DEN DAN

∠∠

=,NAB BCM

∠∠

=,

//

CF ED,

DEN FCM

∠∠

∴=,

BCF BCM FCM NAB DEN NAB DAN BAD

∠∠∠∠∠∠∠∠

∴=+=+=+=,BCF

∴≌BAD,

BF BD

∴=,DBA CBF

∠∠

=,

90

DBF DBA ABF CBF ABF ABC

∠∠∠∠∠∠

∴=+=+==,

DBF

∴是等腰直角三角形,

点M是DF的中点,

则BMD是等腰直角三角形,

【点睛】

本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.

4.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.

(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;

(2)如图2,若∠AOB=120o,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.

【答案】(1)CF=CG;(2)CF=CG,见解析

【解析】

【分析】

(1)结论CF=CG,由角平分线性质定理即可判断.

(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.

【详解】

解:(1)结论:CF=CG;

证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,

∴CF=CG(角平分线上的点到角两边的距离相等);

(2)CF=CG.理由如下:如图,

过点C作CM⊥OA,CN⊥OB,

∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120o,

∴CM=CN(角平分线上的点到角两边的距离相等),

∴∠AOC=∠BOC=60o(角平分线的性质),

∵∠DCE=∠AOC,

∴∠AOC=∠BOC=∠DCE=60o,

∴∠MCO=90o-60o =30o,∠NCO=90o-60o =30o,

∴∠MCN=30o+30o=60o,

∴∠MCN=∠DCE,

∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,

∴∠MCF=∠NCG,

在△MCF和△NCG中,

CMF CNG

CM CN

MCF NCG

∠=∠

?

?

=

?

?∠=∠

?

∴△MCF≌△NCG(ASA),

∴CF=CG(全等三角形对应边相等);

【点睛】

本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.

5.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.

(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;

(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.

【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或

3

2

(3)9s 【解析】

【分析】

(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出

∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.

(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.

【详解】

(1)当t=1时,AP=BQ=3,BP=AC=9, 又∵∠A=∠B=90°,

在△ACP 与△BPQ 中,AP BQ A B AC BP =??

∠=∠??=?

∴△ACP ≌△BPQ (SAS ), ∴∠ACP=∠BPQ ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°, ∠CPQ=90°,

则线段PC 与线段PQ 垂直. (2)设点Q 的运动速度x,

①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,

912t

t xt =-??

=?

, 解得3

1t x =??=?

, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,

912xt

t t =??

=-?

解得632t x =???=??

综上所述,存在31t x =??=?或6

32t x =??

?=??

使得△ACP 与△BPQ 全等.

(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,

∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点; ∴EB=EA=18cm. 当V Q =1时, 依题意得3x=x+2×9, 解得x=9; 当V Q =

3

2

时, 依题意得3x=3

2

x+2×9, 解得x=12.

故经过9秒或12秒时P 与Q 第一次相遇.

【点睛】

本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.

6.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.

(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.

【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析

【解析】

【分析】

(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;

②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;

(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定

△GAD≌△CAE,得出对应角相等,即可得出结论.

【详解】

(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.

理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,

∴∠BAD=∠CAE.

又 BA=CA,AD=AE,

∴△ABD≌△ACE (SAS)

∴∠ACE=∠B=45°且 CE=BD.

∵∠ACB=∠B=45°,

∴∠ECB=45°+45°=90°,即 CE⊥BD.

故答案为垂直,相等;

②都成立,理由如下:

∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

∴∠BAD=∠CAE,

在△DAB与△EAC中,

AD AE

BAD CAE

AB AC

?

?

∠∠

?

?

?

∴△DAB≌△EAC,

∴CE=BD,∠B=∠ACE,

∴∠ACB+∠ACE=90°,即CE⊥BD;

(2)当∠ACB=45°时,CE⊥BD(如图).

理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,

∵∠ACB=45°,∠AGC=90°﹣∠ACB,

∴∠AGC=90°﹣45°=45°,

∴∠ACB=∠AGC=45°,

∴AC=AG,

在△GAD与△CAE中,

AC AG

DAG EAC

AD AE

?

?

∠∠

?

?

?

∴△GAD≌△CAE,

∴∠ACE=∠AGC=45°,

∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.

7.已知4

AB cm

=,3

AC BD cm

==.点P在AB上以1/

cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()

t s.

(1)如图①,AC AB

⊥,BD AB

⊥,若点Q的运动速度与点P的运动速度相等,当1

t=时,ACP

△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;

(2)如图②,将图①中的“AC AB

⊥,BD AB

⊥”为改“60

CAB DBA

∠=∠=?”,其他条件不变.设点Q的运动速度为/

xcm s,是否存在实数x,使得ACP

△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.

【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =??=?或2

32t x =??

?=??

【解析】 【分析】

(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可. 【详解】

解:(1)当t=1时,AP=BQ=1,BP=AC=3, 又∠A=∠B=90°, 在△ACP 和△BPQ 中,

AP BQ

A B AC BP =??

∠=∠??=?

, ∴△ACP ≌△BPQ (SAS ). ∴∠ACP=∠BPQ ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°. ∴∠CPQ=90°,

即线段PC 与线段PQ 垂直. (2)①若△ACP ≌△BPQ , 则AC=BP ,AP=BQ ,

34t

t xt =-??

=?

, 解得1

1t x =??

=?

, ②若△ACP ≌△BQP , 则AC=BQ ,AP=BP ,

34xt

t t =??

=-?

解得

2

3

2

t

x

=

?

?

?

=

??

综上所述,存在

1

1

t

x

=

?

?

=

?

2

3

2

t

x

=

?

?

?

=

??

使得△ACP与△BPQ全等.

【点睛】

本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.

8.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.

(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)

(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、

BF',探究AF、BF'与AB有何数量关系?并证明.

②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.

【答案】(1)AF=BD,理由见解析;(2)AF=BD,成立;(3)①AF BF AB

'

+=,证明见解析;②①中的结论不成立新的结论是AF AB BF'

=+,理由见解析

【解析】

【分析】

(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可证得BCD ACF

△≌△,然后由全等三角形的对应边相等知AF BD

=.

(2)通过证明BCD ACF

△≌△,即可证明AF BD

=.

(3)①'

AF BF AB

+=,利用全等三角形BCD ACF

△≌△的对应边BD AF

=,同理'

BCF ACD

△≌△,则'

BF AD

=,所以'

AF BF AB

+=;

②①中的结论不成立,新的结论是'

AF AB BF

=+,通过证明BCF ACD

△≌△,则

'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ . 【详解】

(1)AF BD = 证明如下:

ABC 是等边三角形,

BC AC ∴=,60BCA ?∠=.

同理可得:DC CF =,60DCF ?∠=.

BCA DCA DCF DCA ∴∠-∠=∠-∠. 即BCD ACF ∠=∠. BCD ACF ∴△≌△.

AF BD ∴=.

(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,

AF BD =依然成立. (3)①AF BF AB '+=

证明:由(1)知,BCD ACF △≌△.

BD AF ∴=.

同理BCF ACD '△≌△.

BF AD '∴=.

AF BF BD AD AB '∴+=+=.

②①中的结论不成立新的结论是AF AB BF '=+; BC AC =,BCF ACD '∠=∠,F C DC '=,

BCF ACD '∴△≌△. BF AD '∴=.

又由(2)知,AF BD =.

AF BD AB AD AB BF '∴==+=+. 即AF AB BF '=+. 【点睛】

本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.

9.如图,在ABC ?中,5BC = ,高AD 、BE 相交于点O , 2

3

BD CD = ,且AE BE = . (1)求线段 AO 的长;

(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ?的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;

(3)在(2)的条件下,点F是直线AC上的一点且CF BO

=.是否存在t值,使以点

,,

B O P为顶点的三角形与以点,,

F C Q为顶点的三角形全等?若存在,请直接写出符合条件的t值; 若不存在,请说明理由.

【答案】(1)5;(2)①当点Q在线段BD上时,24

QD t

=-,t的取值范围是

1

2

t<<;②当点Q在射线DC上时,42

QD t

=-,,t的取值范围是

1

5

2

t<≤;(3)存在,1

t=或

5

3

.

【解析】

【分析】

(1)只要证明△AOE≌△BCE即可解决问题;

(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2-4t,②当点Q在射线DC 上时,DQ=4t-2时;

(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当

OP=CQ时,△BOP≌△FCQ;

【详解】

解:(1)∵AD是高,∴90

ADC

∠=

∵BE是高,∴90

AEB BEC

∠=∠=

∴90

EAO ACD

∠+∠=,90

EBC ECB

∠+∠=,

∴EAO EBC

∠=∠

在AOE

?和BCE

?中,

EAO EBC

AE BE

AEO BEC

∠=∠

?

?

=

?

?∠=∠

?

∴AOE

?≌BCE

?

∴5

AO BC

==;

(2)∵

2

3

BD CD

=,=5

BC

∴=2

BD,=3

CD,

根据题意,OP t

=,4

BQ t

=,

①当点Q在线段BD上时,24

QD t

=-,

∴21(24)22S t t t t =

-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,

∴21(42)22S t t t t =

-=-,t 的取值范围是1

52t <≤ (3)存在.

①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .

∴CQ=OP , ∴5-4t ═t , 解得t=1,

②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .

∴CQ=OP , ∴4t-5=t , 解得t=

53

. 综上所述,t=1或5

3

s 时,△BOP 与△FCQ 全等. 【点睛】

本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

10.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .

(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;

(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.

(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.

【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.

【解析】

【分析】

(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交

∠=?,因此有BM⊥AN;

AN于点C,得出MCN90

(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;

(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.

【详解】

解:(Ⅰ)结论:BM=AN,BM⊥AN.

理由:如图1中,

∵MP=AP,∠APM=∠BPN=90°,PB=PN,

∴△MBP≌△ANP(SAS),

∴MB=AN.

延长MB交AN于点C.

∵△MBP≌△ANP,

∴∠PAN=∠PMB,

∵∠PAN+∠PNA=90°,

∴∠PMB+∠PNA=90°,

∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,

∴BM⊥AN.

(Ⅱ)结论成立

理由:如图2中,

∵△APM,△BPN,都是等边三角形

∴∠APM=∠BPN=60°

∴∠MPB=∠APN=120°,

又∵PM=PA,PB=PN,

∴△MPB≌△APN(SAS)

∴MB=AN.

(Ⅲ)如图3中,取PB的中点C,连接AC,AB.

∵△APM,△PBN都是等边三角形

∴∠APM=∠BPN=60°,PB=PN

∵点C是PB的中点,且PN=2PM,

∴2PC=2PA=2PM=PB=PN,

∵∠APC=60°,

∴△APC为等边三角形,

∴∠PAC=∠PCA=60°,

又∵CA=CB,

∴∠CAB=∠ABC=30°,

∴∠PAB=∠PAC+∠CAB=90°.

【点睛】

本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.

二、八年级数学轴对称解答题压轴题(难)

11.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).

(1)请运用所学数学知识构造图形求出AB的长;

(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;

(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).

【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.

【解析】

【分析】

(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;

(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;

(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.

【详解】

解:(1)如图,连结AB,作B关于y轴的对称点D,

由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5

(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.

②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.

③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).

(3)不存在这样的点P.

作AB的垂直平分线l3,则l3上的点满足PA=PB,

作B关于x轴的对称点B′,连结AB′,

由图可以看出两线交于第一象限.

∴不存在这样的点P.

【点睛】

本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.

12.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.

(1)求证:△DCE为等腰三角形;

(2)若∠CDE=22.5°,DC=2,求GH的长;

(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.

【答案】(1)证明见解析;(2)

2

2

;(3)CE=2GH,理由见解析.

【解析】【分析】

相关主题
文本预览
相关文档 最新文档