当前位置:文档之家› 项目五 中频感应加热电源.

项目五 中频感应加热电源.

项目五  中频感应加热电源.
项目五  中频感应加热电源.

项目五中频感应加热电源

【学习目标】:

完成本项目的学习后,能够:

1.了解中频感应加热装置的基本原理及应用。

2.掌握中频感应加热装置的组成、各部分电路(三相桥式整流电路、触发电路、并联谐振逆变电路、保护电路)的工作原理。

3.掌握触发电路与主电路电压同步的概念以及实现同步的方法。

4.了解常用的中频感应加热装置的使用注意事项。

5.熟悉中频感应加热装置的安装、调试,简单的故障维修方法。

6.了解三相有源逆变电路工作原理及有源逆变电路的应用

【项目描述】:中频电源装置是一种利用晶闸管元件把三相工频电流变换成某一频率的中频电流的装置,广泛应用在感应熔炼和感应加热的领域。图5-1是常见的感应加热装置。

【相关知识点】:

一、中频感应加热电源概述

1.感应加热的原理

(1)感应加热的基本原理

1831年,英国物理学家法拉第发现了电磁感应现象,

并且提出了相应的理论解释。其内容为,当电路围绕的区

域内存在交变的磁场时,电路两端就会感应出电动势,如

果闭合就会产生感应电流。电流的热效应可用来加热。

例如图5-2中两个线圈相互耦合在一起,在第一个线

圈中突然接通直流电流(即将图中开关S突然合上)或突

然切断电流(即将图中开关S突然打开),此时在第二个线圈所接的电流表中可以看出有某一方向或反方向的摆动。这种现象称为电磁感应现象,第二个线圈中的电流称为感应电流,第一个线圈称为感应线圈。若第一个线圈的开关S不断地接通和断开,则在第二个线圈中也将不断地感应出电流。每秒内通断次数越多(即通断频率越高),则感生电流将会越大。若第一个线圈中通以交流电流,则第二个线圈中也感应出交流电流。不论第二个线圈的匝数为多少,即使只有一匝也会感应出电流。如果第二个线圈的直径略小于第一个线圈的直径,并将它置于第一个线圈之内,则这种电磁感应现象更为明显,因为这时两个线圈耦合得更为紧密。如果在一个钢管上绕了感应线圈,钢管可以看作有一匝直接短接的第二线圈。当感应线圈内通以交流电流时,在钢管中将感应出电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。平常在50Hz的交流电流下,这种感生电流不是很大,所产生的热量使钢管温度略有升高,不足以使钢管加热到热加工所需温度(常为1200℃左右)。如果增大电流和提高频率(相当于提高了开关S的通断频率)都可以增加发热效果,则钢管温度就会升高。控制感应线圈内电流的大小和频率,可以将钢管加热到所需温度进行各种热加工。所以感应电源通常需要输出高频大电流。

利用高频电源来加热通常有两种方法:

①电介质加热:利用高频电压(比如微波炉加热等)

②感应加热:利用高频电流(比如密封包装等)

1)电介质加热(dielectric heating)

电介质加热通常用来加热不导电材料,比如木材、橡胶等。微波炉就是利用这个原理。原理如图5-3.:

图5-3电介质加热示意图

当高频电压加在两极板层上,就会在两极之间产

生交变的电场。需要加热的介质处于交变的电场中,

介质中的极分子或者离子就会随着电场做同频的旋转

或振动,从而产生热量,达到加热效果。

2)感应加热(induction heating)

感应加热原理为产生交变的电流,从而产生交变

的磁场,再利用交变磁场来产生涡流达到加热的效果。如图5-4 。 图5-4感应加热示意图

(2)感应加热发展历史

感应加热来源于法拉第发现的电磁感应现象,也就是交变的电流会在导体中产生感应电

流,从而导致导体发热。长期以来,技术人员都对这一现象有较好了解,并且在各种场合尽

量抑止这种发热现象,来减小损耗。比较常见的如开关电源中的变压器设计,通常设计人员

会用各种方法来减小涡流损耗,来提高效率。然而在19世纪末期,技术人员又发现这一现

象的有利面,就是可以将之利用到加热场合。来取代一些传统的加热方法,因为感应加热有

以下优点:

1)非接触式加热,热源和受热物件可以不直接接触

2)加热效率高,速度快,可以减小表面氧化现象

3)容易控制温度,提高加工精度

4)可实现局部加热

5)可实现自动化控制

6)可减小占地,热辐射,噪声和灰尘

中频电源装置是一种利用晶闸管元件把三相工频电流变换成某一频率的中频电流的装

置,主要是在感应熔炼和感应加热的领域中代替以前的中频发电机组。中频发电机组体积大,

生产周期长,运行噪声大,而且它是输出一种固定频率的设备,运行时必须随时调整电容大

小才能保持最大输出功率,这不但增加了不少中频接触器,而且操作起来也很繁琐。

晶闸管中频电源与这种中频机组比,除具有体积小、重量轻、噪声小、投产快等明显优

点外,最主要还有下列一些优点:

1)降低电力消耗。中频发电机组效率低,一般80%~85%,而晶闸管中频装置的效率可

达到90%~95%,而且中频装置起动停止方便,在生产过程总短暂的间隙都可以随时停机,

从而使空载损耗减小到最低限度(这种短暂的间隙,机组是不能停下来的)。

2)中频电源的输出装置的输出频率是随着负载参数的变化而变化的,所以保证装置始

终运行在最佳状态,不必像机组那样频繁调节补偿电容。

2.中频感应加热电源的用途

感应加热的最大特点是将工件直接加热,工人

劳动条件好、工件加热速度快、温度容易控制等,

因此应用非常广泛。主要用于淬火、透热、熔炼、

各种热处理等方面

(1)淬火 淬火热处理工艺在机械工业和国防工业中得到

1 2

图5-5 螺丝刀口淬火

1——螺丝刀口 2——感应线圈

了广泛的应用。它是将工件加热到一定温度后再快速冷却下来,以此增加工件的硬度和耐磨性。图5-5为中频电源对螺丝刀口淬火。

(2)透热

在加热过程中使整个工件的内部和表面温度大致相

等,叫做透热。透热主要用在锻造弯管等加工前的加热等。中频电源用于弯管的过程如图5-6所示。在钢管待

弯部分套上感应圈,通入中频电流后,在套有感应圈的钢管上的带形区域内被中频电流加热,经过一定时间,温度升高到塑性状态,便可以进行弯制了。

(3)熔炼 中频电源在熔炼中的应用最

早,图5-7为中频感应熔炼炉,线圈用铜管绕成,里

面通水冷却。线圈中通过中频交流电流就可以使炉

中的炉料加热、熔化,并将液态金属再加热到所需温度。

(4)钎焊

钎焊是将钎

焊料加热到融化温度而使两个或几个零件连接在一起,通常的锡焊和铜焊都是钎焊。如图5-8是铜洁具钎焊。主要应用于机械加工、采矿、钻探、木材加工等行业使用的硬质合金车刀、洗刀、刨刀、铰刀、锯片、锯齿的焊接,及金刚石锯片、刀具、磨具钻具、刃具的焊接。其他金属材料的复合焊接,如:眼镜部件、铜部件、不锈钢锅。

3.中频感应加热电源的组成

目前应用较多的中频感应加热电源主要由可控或不可控整流电路、滤波器、逆变器、和一些控制保护电路组成。工作时,三相工频(50Hz )交流电经整流器整成脉动直流,经过滤波器变成平滑的直流电送到逆变器。逆变器把直流电转变成频率较高的交流电流送给负载。组成框图如图5-9所示。

1

2 图5-7 熔炼炉

1——感应线圈 2——金属溶液 1

2

图5-6 弯管的工作过程

1——感应线圈 2——钢管

图5-8 铜洁具钎焊

1——感应线圈 2——零件 1 2

图5-9 中频感应加热电源组成原理框图

(1)整流电路

中频感应加热电源装置的整流电路设计一般要满足以下要求:

1)整流电路的输出电压在一定的范围内可以连续调节。

2)整流电路的输出电流连续,且电流脉动系数小于一定值。

3)整流电路的最大输出电压能够自动限制在给定值,而不受负载阻抗的影响。

4)当电路出现故障时,电路能自动停止直流功率输出,整流电路必须有完善的过电压、过电流保护措施。

5)当逆变器运行失败时,能把储存在滤波器的能量通过整流电路返回工频电网,保护逆变器。

(2)逆变电路

由逆变晶闸管、感应线圈、补偿电容共同组成逆变器,将直流电变成中频交流电给负载。为了提高电路的功率因数,需要调协电容器向感应加热负载提供无功能量。根据电容器与感应线圈的连接方式可以把逆变器分为:

1)串联逆变器:电容器与感应线圈组成串联谐振电路。

2)并联逆变器:电容器与感应线圈组成并联谐振电路。

3)串、并联逆变器:综合以上两种逆变器的特点。

(3)平波电抗器

平波电抗器在电路中起到很重要的作用,归纳为以下几点:

1)续流保证逆变器可靠工作。

2)平波使整流电路得到的直流电流比较平滑。

3)电气隔离它连接在整流和逆变电路之间起到隔离作用。

4)限制电路电流的上升率d i/d t值,逆变失败时,保护晶闸管。

(4)控制电路

中频感应加热装置的控制电路比较复杂,可以包括以下几种:整流触发电路、逆变触发电路、起动停止控制电路。

1)整流触发电路

整流触发电路主要是保证整流电路正常可靠工作,产生的触发脉冲必须达到以下要求:

①产生相位互差60o的脉冲,依次触发整流桥的晶闸管。

②触发脉冲的频率必须与电源电压的频率一致。

③采用单脉冲时,脉冲的宽度应该大与90o,小于120o。采用双脉冲时,脉冲的宽度为25o-30o,脉冲的前沿相隔60o。

④输出脉冲有足够的功率,一般为可靠触发功率的3~5倍。

⑤触发电路有足够的抗干扰能力。

⑥控制角能在0o~170o之间平滑移动。

2)逆变触发电路

加热装置对逆变触发电路的要求如下:

①具有自动跟踪能力。

②良好的对称性。

③有足够的脉冲宽度,触发功率,脉冲的前沿有一定的陡度。

④有足够的抗干扰能力。

3)起动、停止控制电路

起动、停止控制电路主要控制装置的起动、运行、停止。一般由按纽、继电器、接触器等电器元件组成。

(5)保护电路

中频装置的晶闸管的过载能力较差,系统中必须有比较完善的保护措施,比较常用的有阻容吸收装置和硒堆抑制电路内部过电压,电感线圈、快速熔断器等元件限制电流变化率和过电流保护。另外,还必须根据中频装置的特点,设计安装相应的保护电路。

二、整流主电路

1.三相半波可控整流电路

(1)三相半波不可控整流电路

图5-10 三相半波不可控整流电路及波形

为了更好地理解三相半波可控整流电路,我们先来看一下由二极管组成的不可控整流电路,如图5-10(a)所示。此电路可由三相变压器供电,也可直接接到三相四线制的交流电源上。变压器二次侧相电压有效值为U2,线电压为U2L。其接法是三个整流管的阳极分别接到变压器二次侧的三相电源上,而三个阴极接在一起,接到负载的一端,负载的另一端接到整流变压器的中线,形成回路。此种接法称为共阴极接法。

图5—10(b)中示出了三相交流电u u、u v和u w波形图。u d是输出电压的波形,u D是二极管承受的电压的波形。由于整流二极管导通的唯一条件就是阳极电位高于阴极电位,而三只二极管又是共阴极连接的,且阳极所接的三相电源的相电压是不断变化的,所以哪一相的二极管导通就要看其阳极所接的相电压u u、u v和u w中哪一相的瞬时值最高,则与该相相连的二极管就会导通。其余两只二极管就会因承受反向电压而关断。例如,在图5—10(b)中ωt1~ωt2区间,u相的瞬时电压值u u最高.因此与u相相连的二极管VD1优先导通,所以与v相、w相相连的二极管VD2和VD3则分别承受反向线电压u vu、u wu关断。若忽略二极管的导通压降,此时,输出电压u d就等于u相的电源电压u u。同理,当ωt2时,由于v相的电压u v开始高于u相的电压u u而变为最高,因此.电流就要由VDl换流给VD2,VD1和VD3又会承受反向线电压而处于阻断状态,输出电压u d=u v。同样在ωt3以后,因w相电压u w最高,所以VD3导通,VDl和VD2受反压而关断,输出电压u d=u w。以后又重复上述过程。

可以看出,三相半波不可控整流电路中三个极管轮流导通,导通角均为120°,输出电压u d是脉动的三相交流相电压波形的正向包络线,负载电流波形形状与u d相同。

其输出直流电压的平均值U d为

222656d 17.12π63t d sin 2π23U U t U U ===?ωωππ

整流二极管承受的电压的波形如图5-10(b )所示。以VDl 为例。在ωt 1~ωt 2区间,由于VD1导通,所以u D1为零;在ωt 2~ωt 3区间,VD2导通,则VD1承受反向电压u uv ,即u D1=u uv ;在ωt 3~ωt 4区间,VD3导通,则VD1承受反向电压u uw ,即u D1=u uw 。从图中还可看出,整流二极管承受的最大的反向电压就是三相交压的峰值,即

2DM 6U U =

从图5-10(b)中还可看到,1、2、3这三个点分别是二极管VDl 、VD2和VD3的导通起始点,即每经过其中一点,电流就会自动从前一相换流至后一相,这种换相是利用三相电源电压的变化自然进行的,因此把1、2、3点称为自然换相点。

(2)三相半波可控整流电路

三相半波可控整流电路有两种接线方式,分别为共阴极、共阳极接法。由于共阴极接法触发脉冲有共用线,使用调试方便,所以三相半波共阴极接法常被采用。

1)电路结构

将图5-10(a )中三个二极管换成晶闸管就组成了共阴极接法的三相半波可控整流电路。如图5-11(a )所示,电路中,整流变压器的一次侧采用三角形联结,防止三次谐波进入电网。二次侧采用星形联结,可以引出中性线。三个晶闸管的阴极短接在一起,阳极分别接到三相电源。

2)电路工作原理

①0°≤α≤30°

α=0°时,三个晶闸管相当于三个整流二极管,负载两端的电流电压波形如图5-10所示相同,晶闸管两端的电压波形,由3段组成:第1段,VT1导通期间,为一管压降,可近似为u T1=0 第2段,在VT1关断后,VT2导通期间,u T1=u u -u v =u uv ,为一段线电压 第3段,在VT3导通期间,u T1=u u -u w =u uw 为另一段线电压, 如果增大控制角α,将脉冲后移,整流电路的工作情况相应地发生变化,假设电路已在工作,W 相所接的晶闸管VT3导通,经过自然换相点“1”时,由于U 相所接晶闸管VT1的触发脉冲尚未送到,VT1无法导通。于是VT3仍承受正向电压继续导通,直到过U 相自然换相点“1”点30°,晶闸管VT1被触发导通,输出直流电压由W 相换到U 相,如图5-11(b )所示。为α=30°时的输出电压和电流波形以及晶闸管两端电压波形:

图5-11 三相半波可控整流电路及α=30°时的波形

②30°≤α≤150°°

当触发角α≥30°时,此时的电压和电流波形断续,各个晶闸管的导通角小于120°,此时α=60°的波形如图

5-12所示。

图5-12 三相半波可控整流电路α=60°的波形

3)基本的物理量计算

①:整流输出电压的平均值计算:

当0°≤α≤30°时,此时电流波形连续,通过分析可得到:

当30°≤α≤150°时,此时电流波形断续,通过分析可得到: ②:直流输出平均电流

ααωωαπ

απcos 17.1cos π263)(d sin 23

π21226562d U U t t U U ==?++??

????++=??????++==?+)6πcos(16750)6πcos(1π223)(d sin 23π212π6π2d ααωωαU t t U U

对于电阻性负载,电流与电压波形是一致的,数量关系为:

I d = U d/R d

③:晶闸管承受的电压和控制角的移相范围

由前面的波形分析可以知道,晶闸管承受的最大反向电压为变压器二次侧线电压的峰值。电流断续时,晶闸管承受的是电源的相电压,所以晶闸管承受的最大正向电压为相电压的峰值即:

由前面的波形分析还可以知道,当触发脉冲后移到α=150°时,此时正好为电源相电压的过零点,后面晶闸管不在承受正向电压,也就是说,晶闸管无法导通。因此,三相半波可控整流电路在电阻性负载时,控制角的移相范围是0~150°。

(3)三相半波共阳极可控整流电路

图5-13 三相半波共阳极可控整流电路及波形

共阳极可控整流电路就是把三个晶闸管的阳极接到一起,阴极分别接到三相交流电源。这种电路的电路及波形如图5-13所示,工作原理与共阴极整流电路基本一致。同样,需要晶闸管承受正向电压即阳极电位高于阴极电位时,才可能导通。所以三只晶闸管中,哪一个晶闸管的阴极电位最低,哪个晶闸管就有可能导通。由于输出电压的波形在横轴下面,即输出电压的平均值为:

U d=-1.17U2 cosα

上述两种整流电路,无论是共阴极可控整流电路还是共阳极可控整流电路,都只用三只晶闸管,所以电路接线比较简单。但是,变压器的绕组利用率较低。绕组的电流是单方向的,因此还存在直流磁化现象。负载电流要经过电源的零线。会导致额外的损耗。所以,三相半波整流电路一般用于小容量场合。

2

2

2

RM

45

.2

6

3

2U

U

U

U=

=

?

=

2

FM

2U

U=

2.三相桥式全控整流电路

(1)电阻性负载

1)电路组成

三相桥式全控整流电路实质上是一组共阴极半波可控整流电路与共阳极半波可控整流电路的串联,在上一节的内容中,共阴极半波可控整流电路实际上只利用电源变压器的正半周期,共阳极半波可控整流电路只利用电源变压器的负半周期,如果两种电路的负载电流一样大小,可以利用同一电源变压器。即两种电路串联便可以得到三相桥式全控整流电路,电路的组成如图5-14所示。

2)工作原理(以电阻性负载, =0°分析)

在共阴极组的自然换相点分别触发VT1,VT3,VT5晶闸管,共阳极组的自然换相点分别触发VT2,VT4,VT6晶闸管,两组的自然换相点对应相差60°,电路各自在本组内换流,即VT1 VT3 VT5 VT1…,VT2 VT4 VT6 VT2,每个管子轮流导通120°。由于中性线断开,要使电流流通,负载端有输出电压,必须在共阴极和共阳极组中各有一个晶闸管同时导通。

ωt1~ωt2期间,u相电压最高,v相电压最低,在触发脉冲作用下,VT6、VT1管同时导通,电流从u相流出,经VT1负载 VT6流回v相,负载上得到u、v相线电压u uv。从ωt2开始,u相电压仍保持电位最高,VT1继续导通,但w相电压开始比v相更低,此时触发脉冲触发VT2导通,迫使VT6承受反压而关断,负载电流从VT6中换到VT2,以此类推在负载两端的波形如图5-15所示。

导通晶闸管及负载电压如表5-1

表5-1

导通期间ωt1~ωt2ωt2~ωt3ωt3~ωt4ωt4~ωt5ωt5~ωt6ωt6~ωt7

导通VT VT1,VT6 VT1,VT2 VT3,VT2 VT3,VT4 VT5,VT4 VT5,VT6

共阴电压u相u相v相v相w相w相

共阳电压v相w相w相u相u相v相

vu线电压u vu wu线电压u wu wv线电压u wv 负载电压uv线电压u uv uw线电压u uw vw线电压

u vw

①必须有两个晶闸管同时导通才可能形成供电回路,其中共阴极组和共阳极组各一个,

且不能为同一相的器件。

②对触发脉冲的要求:

按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60°共阴极组VT1、VT3、VT5的脉冲依次差120°,共阳极组VT4、VT6、VT2也依次差120°。同一相的上下两个晶闸管,

即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180°。

触发脉冲要有足够的宽度,通常采用单宽脉冲触发或采用双窄脉冲。但实际应用中,为了减少脉冲变压器的铁心损耗,大多采用双窄脉冲。

4)不同控制角时的波形分析:

①α=30°时的工作情况(波形如图5-16)这种情况与α=0°时的区别在于:晶闸管起始导

图5-16 三相全控桥整流电路α=30°的波形

通时刻推迟了30°,组成u d的每一段线电压因此推迟30°从ωt1开始把一周期等分为6段,u d 波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表5-1的规律。变压器二次侧电流i a波形的特点:在VT1处于通态的120°期间,i a为正,i a波形的形状与同时段的u d 波形相同,在VT4处于通态的120°期间,i a波形的形状也与同时段的u d波形相同,但为负值。

②α=60°时的工作情况(波形如图5-17)

图5-17 三相全控桥整流电路α=60°的波形

此时u d的波形中每段线电压的波形继续后移,u d平均值继续降低。α=60°时u

d

出现为零

的点,这种情况即为输出电压u d为连续和断续的分界点。

③α=90°时的工作情况(波形如图5-18)

图5-18

三相全控桥整流电路α=90°的波形

此时u d的波形中每段线电压的波形继续后移,u d平均值继续降低。α=90°时u

d

波形断续,

每个晶闸管的导通角小于120°。

小结:

1.当α≤60°时,u d波形均连续,对于电阻负载,i d波形与u d波形形状一样,也连续。

2.当α>60°时,u d波形每60°中有一段为零,u d波形不能出现负值,带电阻负载时三相桥式全控整流电路α角的移相范围是120°。

(2)电感性负载

1)电路工作原理

①α≤60°时,u d波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压u d波形、晶闸管承受的电压波形等都一样。

两种负载时的区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流i d波形不同。阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。α=0°和α=30°波形如图5-19和图5-20所示。

图5-19 三相桥式全控整流电路阻感负载α=0°波形

图5-20 三相桥式全控整流电路阻感负载α=30°波形

②α>60°时

阻感负载时的工作情况与电阻负载时不同,电阻负载时u d波形不会出现负的部分,而阻感负载时,由于电感L的作用,u d波形会出现负的部分,α=90°时波形如图5-21所示。可见,带阻感负载时,三相桥式全控整流电路的α角移相范围为0°~90°。

图5-21 三相桥式全控整流电路阻感负载α=90°波形

(3)基本的物理量计算

1)整流电路输出直流平均电压

①当整流输出电压连续时(即带阻感负载时,或带电阻负载α≤60°时)的平均值为: 带电阻负载且α>60°时,整流电压平均值为:

2)输出电流平均值为 :I d =U d /R

3)当整流变压器为采用星形接法,带阻感负载时,变压器二次侧电流波形如图5-所示,为正负半周各宽120°、前沿相差180°的矩形波,其有效值为:

晶闸管电压、电流等的定量分析与三相半波时一致。

二、平波电抗器的及简易设计

平波电抗器的简易设计计算步骤

平波电抗器的主要参数是额定电流和电感量,电感量的计算依据为:

1)保证电流连续所需要的电感量。

2)限制电流脉动所需要电感量。

3)抑制环流所需要的电感量。

一般情况下,平波电抗器的计算程序如下:

1)根据给定原始数据L 和I d ,计算I d2L ;

2)根据选用的硅钢片的磁化曲线确定B0,

3)根据选用的导线的绝缘材料和冷却方式,选取电流密度。如选用自然冷却的铜导线,取j=250A/cm2,

αωωααcos 34.2)(d sin 63

π123π2

3π2d U t t U U ==?++??????++==?+)3πcos(134.2)(d sin 6π32π3π2d αωωαU t t U U d d 2d 2d 2816.03

π2π32)(π32π21I I I I I ==??? ???-+?=

4)按优化设计原则计算,要求可能的情况下,最小体积设计。

另外,还有相对气隙,匝数,磁场强度以及电感量等方面。具体设计方法可以参考相关资料。

三、整流触发电路

整流电路的触发电路有很多种,要根据具体的整流电路和应用场合选择不同的触发电路。实际中,大多情况选用锯齿波同步触发电路和集成触发器。

1.锯齿波同步触发电路的组成和工作原理

锯齿波同步触发电路有锯齿波形成、同步移相、脉冲形成放大环节、双脉冲、脉冲封锁等环节和强触发环节等组成。可触发200A的晶闸管。由于同步电压采用锯齿波,不直接受电网波动与波形畸变的影响,移相范围宽,在大中容量中得到广泛应用。

图5-22锯齿波同步触发电路原理图

锯齿波同步触发电路原理图如图5-22所示,下面分环节介绍:

(1)锯齿波形成和同步移相控制环节

1)锯齿波形成

V1、V9、R3、R4组成的恒流源电路对C2充电形成锯齿波电压,当V2截止时,恒

流源电流I c1对C2恒流充电,电容两端电压为

t

C

I

u

2

c1 c2

=

I c1=U v9/(R3+RP2) 因此调节电位器RP2即可调节锯齿波斜率。

当V2导通时,由于R4阻值很小,C2迅速放电。所以只要V2管周期性导通关断,电容C2两端就能得到线性很好的锯齿波电压。

U b4为合成电压(锯齿波电压为基础,再叠加Ub、U c)通过调节Uc来调节α。

2)同步环节

同步环节由同步变压器TS和V2管等元件组成。锯齿波触发电路输出的脉冲怎样才能与主回路同步呢?由前面的分析可知,脉冲产生的时刻是由V4导通时刻决定(锯齿波和U b、U c之和达到0.7V时),由此可见,若锯齿波的频率与主电路电源频率同步即能使触发脉冲与主电路电源同步,锯齿波是由V2管来控制的,V2管由导通变截止期间产生锯齿波,V2管截止的持续时间就是锯齿波的脉宽,V2管的开关频率就是锯齿波的频率。在这里,同步变压器TS和主电路整流变压器接在同一电源上,用TS次级电压来控制V2的导通和截止,从而保证了触发电路发出的脉冲与主电路电源同步。

工作时,把负偏移电压U b调整到某值固定后,改变控制电压U c,就能改变u b4波形与时间横轴的交点,就改变了V4转为导通的时刻,即改变了触发脉冲产生的时刻,达到移相的目的。

电路中增加负偏移电压U b的目的是为了调整U c=0时触发脉冲的初始位置。

(2)脉冲形成、整形和放大输出环节

1)当u b4<0.7V时V4管截止,V5、V6导通,使V7、V8截止,无脉冲输出。

电源经R13、R14向V5、V6供给足够的基极电流,使V5、V6饱和导通,V5集电极⑥点电位为-13.7V(二极管正向压降以0.7V、晶体管饱和压降以0.3V计算),V7、V8截止,无触发脉冲输出。

④点电位:15V ⑤点电位:-13.3V

另外:+15V→R11→C3→V5→V6→-15V对C3充电,极性左正又负,大小28.3V。

2)、当u b4≥0.7V时V4导通,有脉冲输出

④点电位立即从+15V下跳到1V,C3两端电压不能突变,⑤点电位降至-27.3V,V5截止,V7、V8经R15、VD6供给基极电流饱和导通,输出脉冲,⑥点电位为-13.7V突变至2.1V(VD6、V7、V8压降之和)。

另外:C3经+15V→R14→VD3→V4放电和反充电⑤点电位上升,当⑤点电位从-27.3V 上升到-13.3V时V5、V6又导通,⑥点电位由2.1V突降至-13.7V,于是,V7、V8截止,输出脉冲终止。

由此可见,脉冲产生时刻由V4导通瞬间确定,脉冲宽度由V5、V6持续截止的时间确定。所以脉宽由C3反充电时间常数(τ=C3R14)来决定。

(3)强触发环节

晶闸管采用强触发可缩短开通时间,提高管子承受电流上升率的能力,有利于改善串并联元件的动态均压与均流,增加触发的可靠性。因此在大中容量系统的触发电路都带有强触发环节。

图中右上角强触发环节由单相桥式整流获得近50V直流电压作电源,在V8导通前,50V 电源经R19对C6充电,N点电位为50V。当V8导通时,C6经脉冲变压器一次侧、R17与V8迅速放电,由于放电回路电阻很小,N点电位迅速下降,当N点电位下降到14.3V时,VD10导通,脉冲变压器改由+15V稳压电源供电。各点波形如图5-23所示。

图5-23 锯齿波同步触发电路波形图

(4)双脉冲形成环节

生双脉冲有两种方法:内双脉冲和外双脉冲。

锯齿波触发电路为内双脉冲。晶体管V5、V6构成一个“或”门电路,不论哪一个截止,都会使⑥点电位上升到2.1V,触发电路输出脉冲。V5基极端由本相同步移相环节送来的负脉冲信号使V5截止,送出第一个窄脉冲,接着有滞后60°的后相触发电路在产生其本相第一个脉冲的同时,由V4管的集电极经R12的X端送到本相的Y端,经电容C4微分产生负脉冲送到V6基极,使V6截止,于是本相的V6又导通一次,输出滞后60°的第二个脉冲。

对于三相全控桥电路,三相电源U、V、W为正相序时,六只晶闸管的触发顺序为VT1VT2→VT3→VT4→VT5→VT6彼此间隔60°,为了得到双脉冲, 块触发电路板的X、Y可按图5-24所示方式连接。

图5-24 触发电路实现双脉冲连接的示意图

(5)其他说明

在事故情况下或在可逆逻辑无环流系统,要求一组晶闸管桥路工作,另一组桥路封锁,这时可将脉冲封锁引出端接零电位或负电位,晶体管V7、V8就无法导通,触发脉冲无法输出。串接VD5是为了防止封锁端接地时,经V5、V6和VD4到-15V之间产生大电流通路。

2.集成触发器介绍

随着晶闸管变流技术的发展,目前逐渐推广使用集成电路触发器。由于集成电路触发器的应用,提高了触发电路工作的可靠性,缩小体积,简化了触发电路的生产与调试。集成触发器应用越来越广泛。正获得广泛应用的有以下几种:

(1)KC04移相集成触发器(还有KJ系列触发器)

此触发电路为正极性型电路,及控制电压增加晶闸管输出电压也增加。主要用于单相或三相全控桥装置。

其主要技术数据如下:

电源电压:DC正负15V。

电源电流:正电流小于15mA,负电流小于8mA

移相范围:170 o

脉冲宽度:15o-35o。

脉冲幅度:大于13V

最大输出能力:100mA

KC09是KC04的改进型,二者可互换使用。

它与分立元件组成的锯齿波触发电路一样,由同步信号、锯齿波产生、移相控制、脉冲形成和放大输出等环节组成。

该电路在一个交流电周期内,在1脚和15脚输出相位差180 o的两个窄脉冲,可以作为三相全控桥主电路同一相所接的上下晶闸管的触发脉冲,16脚接+15V电源,。8脚接同步电压,但由同步变压器送出的电压须经微调电位器 1.5kΩ、电阻5. 1 kΩ和电容1μF 组成的滤波移相,以达到消除同步电压高频谐波的浸入,提高抗干扰能力。4脚形成锯齿波,9脚为锯齿波、偏移电压、控制电压综合比较输入。13、14脚提供脉冲列调制和脉冲封锁控制端。KC04引出脚各点波形如图5-25(a)所示。

高频淬火原理及工艺解析

高频淬火含义与原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、含义 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 二、原理 利用电流的集肤效应,在零件表面形成电流进而加热工件,实现心部和表面不同的热处理状态; 其中根据电流频率的不同分为工频、中频和高频。分别针对不同的淬硬深度和工件大小。高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热

零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。 产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个趋肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

中频计算公式

中频炉系列透热炉构造: 中频透热炉一般由感应器、中频电源、变压器、电容等组成。 中频透热炉特点: (1)加热速度快、生产效率高、氧化脱炭少、节省材料与锻模成本 由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。不必担心由于停电或设备故障引起的煤炉已加热坯料的浪费现象。由于该加热方式升温速度快,所以氧化极少,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克,其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um。 (2)工作环境优越、提高工人劳动环境和公司形象、无污染、低耗能 感应加热炉与煤炉相比,,工人不会再受炎炎烈日下煤炉的烘烤与烟熏,更可达到环保部门的各项指标要求,同时树立公司外在形象与锻造业未来的发展趋势。感应加热是电加热炉中最节能的加热方式由室温加热到1100℃的吨锻件耗电量小于360度。 (3)加热均匀,芯表温差极小,温控精度高 中频透热炉功率估算公式: P=(C×G×T)/(0.24×t×∮) 公式说明:P—设备功率(KW);C—金属比热,其中钢铁比热系数是0.17 G—加热工件重量(kg);T—加热温度(℃);t—工作节拍(秒); ∮—设备综合热效率,一般可取0.5—0.7,异型件取0.4左右。 例如:某锻造厂有锻件坯料为Φ60×150mm,工作节拍为12秒/件(包括辅助时间),初锻温度以1200℃。则需要GTR中频电炉功率的计算如下:P=(0.17×3.3×1200)/(0.24×12×0.65)=359.61KW 根据以上计算,可以配置额定功率为400KW的GTR感应加热设备。感应加热其热量在工件内自身产生所以加热均匀,芯表温差极小。应用温控系统可实现对温度的精确控制提高产品质量和合格率。 中频炉加热装置具有体积小,重量轻、效率高、热加工质量优及有利环境等优点正迅速淘汰燃煤炉、燃气炉、燃油炉及普通电阻炉,是新一代的金属加热设备。 中频炉是铸造锻造及热处理车间的主要设备,其工作的稳定性、可靠性及安全性是流水作业的铸造锻造及热处理生产线正常稳定工作的保证。中频炉在热加工领域有着很好的发展前景如。国内专业的生产中频电炉的厂家东莞市正鑫中频电炉厂是这一领域佼

中频感应加热设备的设计(doc 42页)

摘要 感应加热电源具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点,目前已在金属熔炼、工件透热、淬火、焊接、铸造、弯管、表面热处理等行业得到了广泛的应用。 本设计研究了中频感应加热及其相关技术的发展、现状和趋势,并在较全面的论述基础上,对2.5kHz/250kW可控硅中频感应加热电源的整流电路以及控制电路进行了设计。本文设计的电源电路可用于大型机械热加工设备的感应加热电源。整流电路采用三相桥式全控整流电路,其电路结构简单,使电源易于推广;控制策略选用双闭环反馈控制系统,改善了信号迟滞的缺点,为以后研制大功率、超音频的感应加热电源打下了基础。 关键词:可控硅中频电源;感应加热;逆变;保护电路

Design of Induction heating power of medium frequency Abstract Induction heating power is equipped with lots of advantages such as high heating efficiency, fast speed ,good controllability, which is prone to make heating of high and partial temperature ,and realize mechanization and automation. At present metal melting, work piece heat penetration, quenching, welding, casting, elbow piece, surface heating processing has been widely applied. Induction heating of medium frequency and development, current situation, and tendency related technology has been studied,and have made quite comprehensive and in the profound elaboration foundation, this article has carried on the design to main circuit and the inversion control of the 2.5kHz/250kW silicon-controlled rectifier intermediate frequency induction heating power. This design is used for big facility of mechanical heating processing. Structure of rectification circuit is easy, which makes power popularized easily. Three-phase bridge rectification circuit is used in Rectification circuit. Rectification circuit uses feedback control of two closed loop, improving the disadvantages. The foundation for inventing induction heating power of big power and super audio is made. Key words:Controllable silicon medium power Induction heating Inverter Protect circuit

高频电路原理与分析试题库

1、图1所示为一超外差式七管收音机电路,试简述其工作原理。(15分) 图1 解:如图所示,由B1及C1-A 组成的天线调谐回路感应出广播电台的调幅信号,选出我们所需的电台信号f1进入V1基极。本振信号调谐在高出f1一个中频(465k Hz )的f2进入V1发射极,由V1三极管进行变频(或称混频),在V1集电极回路通过B3选取出f2与f1的差频(465kHz 中频)信号。中频信号经V2和V3二级中频放大,进入V4检波管,检出音频信号经V5低频放大和由V6、V7组成变压器耦合功率放大器进行功率放大,推动扬声器发声。图中D1、D2组成1.3V±0.1V 稳压,提供变频、一中放、二中放、低放的基极电压,稳定各级工作电流,保证整机灵敏度。V4发射一基极结用作检波。R1、R4、R6、R 10分别为V1、V2、V3、V5的工作点调整电阻,R11为V6、V7功放级的工作点调整电阻,R8为中放的AGC 电阻,B3、B4、B5为中周(内置谐振电容),既是放大器的交流负载又是中频选频器,该机的灵敏度、选择性等指标靠中频放大器保证。B6、B7为音频变压器,起交流负载及阻抗匹配的作用。(“X”为各级IC 工作电流测试点). 15’ 2、 画出无线通信收发信机的原理框图,并说出各部分的功用。 答: 上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。发射部分由话筒、音频放大器、调制器、变频

器、功率放大器和发射天线组成。接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。 低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过上变频,达到所需的发射频率,经小信号放大、高频功率放大后,由天线发射出去。 由天线接收来的信号,经放大后,再经过混频器,变成一固定中频已调波,经放大与滤波的检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。 3、对于收音机的中频放大器,其中心频率f0=465 kHz .B0.707=8kHz ,回路电容C=200 PF ,试计算回路电感和 QL 值。若电感线圈的 QO=100,问在回路上应并联多大的电阻才能满足要求。 答:回路电感为0.586mH,有载品质因数为58.125,这时需要并联236.66k Ω的电阻。 4、 图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和Ct 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 解: 022 612 0622 11244651020010100.5864465200f L f C mH πππ-===????=≈??2由()03 03 4651058.125810 L L 0.707f Q f Q B =?===?0.707由B 得: 9 003120000 0000010010171.222465102001024652158.125 1171.22237.6610058.125 L L L L L L L Q R k C C C Q Q R g g g R Q Q R R R k Q Q Q ΩωππωωΩ∑ -===≈??????=== ++=-==?≈--因为:所以:( ),t C C C ∑ =+??=?????== 33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组16051053510

中频感应加热

ZD系列中频感应加热电源说明书 一、概述 ZD系列中频加热电源是江苏油田工程院的专利产品。(专利号为97220550. 0) ZD系列中频加热电源应用了现代电力电子技术,重量轻,效率高,具有过流、短路等自动保护功能,并且输出功率由温度控制传感器进行自动调节。采用该中频电源的电加热系统通过对输出电压和频率的调节,可以对最大加热长度范围内的任意长度的负载进行加热,具有使用寿命长,效率高,体积小、重量轻等优点。ZD系列中频加热电源可以应用于地面集输管线感应加热和井下空心抽油杆加热。 二、工作原理 中频电源首先将三相380V交流电整流成直流电,并滤波。然后再运用电力电子器件IGBT,把直流电逆变成频率和占空比连续可调的单相中频交流电。最后通过隔离变压器,将单相中频交流电输送给加热负载。 三、型号说明 Z D -□ 额定容量(kVA) 电源 中频 四、使用条件 1、环境温度:-15℃~+40℃ 2、空气相对湿度不大于90%

3、使用场所无严重的振动,周围环境无灰尘、腐蚀性气体 4、输入电压:三相四线交流电50Hz,380V±10%,机壳接零 五、技术数据(仅供参考) 型号 ZD-10 ZD-20 ZD-35 ZD-50 额定容量 10kVA 20kVA 35kVA 50kVA 输入电压 380V±10% 380V±10% 380V±10% 380V±10% 输入电流 5~15A 10~30A 15~55A 20~75A 输出电压 0~240V 0~300V 0~400V 0~500V 装置重量 50kg 80kg 110kg 150kg 加热长度<200米<400米<700米<1000米 六、安装方法 1、中频感应加热电源与油井的距离R≥15m,对轻烃气含量高的油井要求R≥20 m。 2、中频感应加热电源室内安装时,电源装置左右两侧对墙体的距离应≥1m,电源装置后面对墙体的距离应≥0.5m,不得倾斜。 3、中频感应加热电源室外安装时,应放置在一个相应的防雨外壳内,防雨外壳上下通风,不得倾斜,防雨外壳对其它设备的距离应≥1m。 4、中频电源上部接线柱用四芯铜电缆外接三相380V电网,电源装置机壳用接地线可靠接地; 5、中频电源下部的两个接线柱用单芯铜电缆分别引至加热负载; 中频电源型号四芯输入铜电缆规格接地线规格 相线零线 ZD-10 4 mm2 2.5 mm2 2.5 mm2 ZD-20 6 mm2 4 mm2 4 mm2 ZD-35 10 mm2 6 mm2 6 mm2 ZD-50 16 mm2 10 mm2 10 mm2

电力电子技术课程设计中频加热电源主电路设计

电力电子技术课程设计 题目中频加热电源主电路设计 学院 专业班级 学号 学生姓名 指导老师

目录 1 设计内容和设计要求 (3) 1.1 设计内容 1.2 设计要求 2 中频加热电源 (4) 2.1 中频加热电源基本原理 2.2 中频加热电源基本结构 3 整流电路的设计 (6) 3.1 整流电路的选择 3.2 三相桥式全控整流电路 3.3 整流电路参数计算 4 逆变电路的设计 (10) 4.1 逆变电路的选择 4.2逆变电路参数计算 5 保护电路的设计 (14) 5.1过电压保护 5.2 过电流保护 6 设计结果分析 (18) 6.1 仿真结果 6.2 主电路原理图 6.3 结果分析 7 设计心得体会 (23) 8 参考文献 (24)

1 设计内容和设计要求 1.1 设计内容 1) 额定中频电源输出功率PH=100kw,极限中频电源输出功率 P HM=1.1 P H=110kW; 2) 电源额定频率f =1kHz; 3) 逆变电路效率h=95% 4) 逆变电路功率因数:cosj =0.866,j =30o; 5) 整流电路最小控制角amin =15o; 6) 无整流变压器,电网线电压UL=380V; 7) 电网波动系数A=0.95~1.10。 1.2 设计要求 1) 画出中频感应加热电源主电路原理图; 2) 完成整流侧电参数计算; 3) 完成逆变侧电参数计算; 4) 利用仿真软件分析电路的工作过程; 5)编写设计说明书,设计小结。

2 中频加热电源 2.1 中频加热电源基本原理 感应加热利用导体处于交变的电磁场中产生感应电流,即涡流,所形成的热效应使导体本身发热。根据不同的加热工艺的要求,感应加热采用的电源的频率有工频(50HZ),中频(60-10000HZ),高频(高于10000HZ)。感应加热本身的物体必须是导体,感应加热能在被加热物体内部直接生热,因而热效率高,升温速度快,容易实现整体均匀加热或局部加热。 感应加热利用交流电建立交变磁场涡流对金属工件进行感应加热,基本工作原理如图1,A为感应线圈,B为被加热工件,若线圈A 中通以交流电流i1,则线圈A内产生随时间变化的磁场,置于交变磁场中的被加热工件B要产生感应电动势e2,形成涡流i2,这些涡流使金属工件发热,因此,感应加热是靠感应线圈把电能传递给要加热的金属工件,然后在金属工件内部转换成热能,感应线圈与被加热工件不直接接触,能量是通过电磁感应传递的。

中频感应电源

普传科技PI7800MF系列中频感应加热电源的应用 【前言】 普传科技股份有限公司根据冶金和石油行业特殊用途,基于公司产品研发战略,在成功开发冶金行业电磁搅拌器专用电源基础上,开发生产了新一代数字化控制高性能特殊电源——PI7800MF中频感应加热电源,主要应用领域有:金属熔炼、透热、钎焊、晶体生长、稀有金属加工及石油工业的感应电加热采油(稠油井的空心抽油杆电加热)、石油集输管道的感应加热等设备,还可以应用于集输管道加热和其它类型的中频电源相比,在结构、性能及可靠性方面,具有非常明显的优势,控制电路采用高性能专用32位DSP及大规模数字专用集成电路,IGBT/IPM功率器件,整流控制、逆变控制、功率调节、操作接口、保护等部分均集成在一块控制板上,调试、维护方便,可靠性提高,节能效果好。 在石油工业应用上,由于中频电源涡流感应加强,导致集肤效应更强,漏磁减少,因此电加热效果大大好于工频电源。该设备可替代现有的工频加热电源,节能效果达到30%以上,大大地降低了采油生产能源的消耗。本专用电源对电网没有污染,与同类产品相比,提高了电源的可靠性,减少了因停机造成的生产损失。 一、电源基本框图及原理 1.1 电路基本构成如下: TI DSP 1.2 原理:中频加热电源主电路为AC-DC-AC变频结构,由整流电路、滤波、逆变电路和保护电路组成。其工作原理是将三相50Hz工频交流电经过三相全控整流桥整流成电压可调的脉动直流,再通过电容将脉动的直流电滤波变成光滑平稳的直流电送到单相 逆变桥,最后通过逆变桥将直流电变成单相频率可调的中频交流电供给负载。采用三 相全控桥式整流电路,它的输出电压调节范围大,而移相控制角的变化范围小,有利于系统的自动调节,输出电压的脉动频率较高,可以减轻直流滤波环节的负担。 逆变电路是由全控器件IGBT构成的串联谐振式逆变器:核心部分逆变器由大功率

高频感应加热原理与应用

高频感应加热原理与应用 您能想象的到,一根铁棒一二秒钟就可以被加热红起来吗?任何金属都可以被很快地加热到其熔化吗?这就是一种人类目前能够做到和掌握的最快捷的直接加热方法——高中频感应加热。 通常人们对物体的加热,一是利用煤、油、气等能源的燃烧产生热量;二是利用电炉等用电器将电能转换成热量。这些热量只有通过热传递的方式(热传导、热对流、热辐射),才能传递到需要加热的物体上,也才能达到加热物体的目的。由于这些加热方式,被加热的物体是通过吸收外部热量实现升温的。因此,它们都属于间接加热方式。 我们知道,热量的自然传递规律是:热量只能从高温区向低温区,高温体向低温体,高温部分向低温部分自然的传递。因此,只有当外部的热量、温度明显多于、高于被加热物体时,才能将其有效地加热。这就需要用很多的能量来建立一个比被加热物体所需要的热量多的多、温度高的多的高温区。如炉,烘箱等。 这样,不但这些热量中只有少部分能够传递到被加热体上,造成很大的能源浪费。而且加热时间长,在燃烧、加热的过程中,还会产生大量的有害性物质和气体。它们既会对被加热体造成腐蚀性的损害,又会对大气造成污染。即便是使用电炉等电能加热方式,虽然无污染,但仍然存在着效率低、成本高、加热速度慢等缺点。 科学的进步与发展,使我们今天无论是对金属物体加热还是对非金属物体加热,都可以采用高效、快速,且十分节能和环保的方式加热.这就是直接加热方式。 对于非金属物体,可采用工作频率约240MHZ及以上,能使其内部分子、原子每秒振动、磨擦上亿次之多的微波加热。 也可以采用低频感应加热,如工频50HZ等。 中频、高频感应加热,是将工频(50HZ)交流电转换成频率一般为1KHZ至上百KHZ,甚至频率更高的交流电,利用电磁感应原理,通过电感线圈转换成相同频率的磁场后,作用于处在该磁场中的金属体上。利用涡流效应,在金属物体中生成与磁场强度成正比的感生旋转电流(即涡流)。由旋转电流借助金属物体内的电阻,将其转换成热能。同时还有磁滞效应、趋肤效应、边缘效应等,也能生成少量热量,它们共同使金属物体的温度急速升高,实现快速加热的目的。 高频电流的趋肤效应,可以使金属物体中的涡流随频率的升高,而集中在金属表层环流。这样就可以通过控制工作电流的频率,实现对金属物体加热深度的控制。既能提高加工工艺,又使能量被充分地利用。当用于红冲、热煅及工件整体退火等透热时,它们需要的加热深度大,这时可以将工作频率降低;当用于表面淬火等热处理时,它们需要的加热深度小,这时则可以将工作频率升高。另一方面,对于体积较小的工件或管材、板材,选用高频加热方式,对于体积较大的工件,选用中频加热方式。 由于感应加热时间短、速度快,并且还是非接触式(加热物体不需要与感应圈接触)的加热。所以,比其它的加热方式氧化轻微,必要时易于进行气体保护。 电子技术的飞速发展,使电子元器件无论是质量方面、效能方面, 还是可靠性方面,都有了很大的进步.在体积方面也更为小型化、微型化。这为感应加热技术提供了更好的发展条件与空间。在小信号生成与处理,控制与保护,调节与显示等方面,都更多地运用了可靠性更高、稳定性更好、抗干扰能力更强的数字电路。在功率元件上,更是从耗能大、效率低、工作电压高、辐射量较大的电子管,一代代地经晶闸管、场效应管(MOSFET),发展到了IGBT(绝缘栅双极晶体管)。整机的电源利用率已经提高到百分之九十五以上(电子管电源利用率只有约百分之六十),冷却水比电子管产品节约了约百分之六十。并且可以实现24小时不间断的连续工作。这样不但可以在白天正常使用,还可以在用电低峰电费折扣期的夜间工作。 由于感应式加热,具有耗能少,用电省,加热速度快,无污染、无噪声、无需预热、不易氧化、便于气体保护、可自动控制、具备多项智能保护、安全可靠、易于操作,可不间断地连续工作等优点。

项目五 中频感应加热电源.

项目五中频感应加热电源 【学习目标】: 完成本项目的学习后,能够: 1.了解中频感应加热装置的基本原理及应用。 2.掌握中频感应加热装置的组成、各部分电路(三相桥式整流电路、触发电路、并联谐振逆变电路、保护电路)的工作原理。 3.掌握触发电路与主电路电压同步的概念以及实现同步的方法。 4.了解常用的中频感应加热装置的使用注意事项。 5.熟悉中频感应加热装置的安装、调试,简单的故障维修方法。 6.了解三相有源逆变电路工作原理及有源逆变电路的应用 【项目描述】:中频电源装置是一种利用晶闸管元件把三相工频电流变换成某一频率的中频电流的装置,广泛应用在感应熔炼和感应加热的领域。图5-1是常见的感应加热装置。 【相关知识点】: 一、中频感应加热电源概述 1.感应加热的原理 (1)感应加热的基本原理 1831年,英国物理学家法拉第发现了电磁感应现象, 并且提出了相应的理论解释。其内容为,当电路围绕的区 域内存在交变的磁场时,电路两端就会感应出电动势,如 果闭合就会产生感应电流。电流的热效应可用来加热。 例如图5-2中两个线圈相互耦合在一起,在第一个线 圈中突然接通直流电流(即将图中开关S突然合上)或突

然切断电流(即将图中开关S突然打开),此时在第二个线圈所接的电流表中可以看出有某一方向或反方向的摆动。这种现象称为电磁感应现象,第二个线圈中的电流称为感应电流,第一个线圈称为感应线圈。若第一个线圈的开关S不断地接通和断开,则在第二个线圈中也将不断地感应出电流。每秒内通断次数越多(即通断频率越高),则感生电流将会越大。若第一个线圈中通以交流电流,则第二个线圈中也感应出交流电流。不论第二个线圈的匝数为多少,即使只有一匝也会感应出电流。如果第二个线圈的直径略小于第一个线圈的直径,并将它置于第一个线圈之内,则这种电磁感应现象更为明显,因为这时两个线圈耦合得更为紧密。如果在一个钢管上绕了感应线圈,钢管可以看作有一匝直接短接的第二线圈。当感应线圈内通以交流电流时,在钢管中将感应出电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。平常在50Hz的交流电流下,这种感生电流不是很大,所产生的热量使钢管温度略有升高,不足以使钢管加热到热加工所需温度(常为1200℃左右)。如果增大电流和提高频率(相当于提高了开关S的通断频率)都可以增加发热效果,则钢管温度就会升高。控制感应线圈内电流的大小和频率,可以将钢管加热到所需温度进行各种热加工。所以感应电源通常需要输出高频大电流。 利用高频电源来加热通常有两种方法: ①电介质加热:利用高频电压(比如微波炉加热等) ②感应加热:利用高频电流(比如密封包装等) 1)电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材、橡胶等。微波炉就是利用这个原理。原理如图5-3.: 图5-3电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产 生交变的电场。需要加热的介质处于交变的电场中, 介质中的极分子或者离子就会随着电场做同频的旋转 或振动,从而产生热量,达到加热效果。 2)感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变

高频电路原理与分析

高频电路原理与分析期末复习资料 陈皓编 10级通信工程 2012年12月

1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0 =10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻? 解:(1)求L 和Q e (H )= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 题2图 12min 12max ,22(1210) 22(26010)3 3根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑ --=+? ?== ??+?? ??== ??+?

3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为 4650.51 5.928()40 e z e Q kH =≈?= (2)每个回路允许最大的Q e 为 4650.5123.710 e e Q =≈?= 4.图示为一电容抽头的并联振荡回路。谐振频率f 0 =1MHz ,C 1 =400 pf ,C 2= 100 pF 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

中频加热电源

PI7800MF 系列中频感应加热电源 大连普传科技股份有限公司 深圳市普传科技有限公司 企划部/工程部 https://www.doczj.com/doc/2a13480764.html, 第一部分感应加热与变频电源

普传科技变频技术应用系列—中频电源 一、基本原理 1、集肤效应及感应加热 1.1集肤效应:当交流电流通过导线时,在导线周围产生交变的磁场,处在交变磁 场中的整块导体的内部会产生感应电流,由于这种感应电流在整块导体内部自成闭合回路,形似水的旋涡,称做涡流。 在直流电路内,均匀导线的横截面上的电流密度是均匀的,而当交流电通过导线时,由于交变磁场的作用,在导线截面上各处电流分布不均匀,中心处电流密度小,而越靠 近表面电流密度越大,这种电流分布不均匀的现象称为集肤效应(也称趋肤效应)。交 流电的频率越高,则集肤深度越深,同时其交流阻抗也变大,因此在相同数值的电流作 用下,负载所获得的能量也越高,而电流及线路损耗相应地也会变小,从而提高了加热 效率,同时还可起到节约电能的目的。变频加热电源正是基于这一原理,利用变频技术,可将运行频率提高到工频的数倍,加热效果会明显提高。 1.2感应加热:1831 年法拉第发现电磁感应规律、1868 年福考特提出涡流理论、1840 年焦耳-楞茨确定了电阻发热的关系式Q=I2Rt,构成感应加热之理论基础。 交变的电流产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。感应 加热的加热效率高、速度快、可控性好,易于实现高温和局部加热。随着电力电子技术 的不断成熟,感应加热技术得到了迅速发展。 在金属加工上,感应加热热处理用感应电流使工件局部加热的表面热处理工艺。这 种热处理工艺常用于表面淬火、局部退火或回火,有时也用于整体淬火和回火。 将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生 交变磁场,交变磁场的电磁感应作用使工件内产生封闭的感应电流,感应电流在工件截 面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小,工件表层高密度电流的 电能转变为热能,使表层的温度升高,即实现表面加热。电流频率越高,工件表层与内 部的电流密度差则越大,加热层越薄。在加热层温度超过钢的临界点温度后迅速冷却, 即可实现表面淬火。 2、感应加热的作用及应用 感应加热早期主要用于有色金属熔炼和热处理工艺,其加热效率高、速度快、可控 性好及易于实现自动化等优点,广泛应用于金属熔炼、透热、热处理和焊接等工业生产 过程中,成为冶金、国防、机械加工等部门及铸、锻和船舶、飞机、汽车制造业等不可 缺少的技术手段。如表 1 所列。 感应加热的广泛应用,究其原因,主要是它本身相对于别的加热方式所具有的一些 独特性。 1)加热速度快,可节能。感应加热是从金属内部,透入深度层开始加热,大大节 省了热传导时间。其它加热是从外到内,导热时间长。据实验,加热同一坯料到一定温度,感应加热只需火焰炉加热时间的1/10。 2)加热温度高,是非接触式的电磁感应加热。 3)可进行局部加热,容易控制加热部位。被加热产品质量稳定,加热工件的质量 再现性与重复性好,各种参数容易控制。 4)控制温度的精度高,可保证温差在±0.5%~1%范围内。 5)感应加热的热效率高,一般可达50%-70%,而火焰炉的热效率一般只有30%左右。 6)容易实现自动化控制。

感应加热电源的控制与驱动电路

感应加热电源的控制与驱动电路 感应加热电源中电力电子控制电路的构成,显现出多样化组成方式,其控制方案主要是根据感应电源调功方式、加热负载特性要求等不同,控制电路的结构会有所不同。 感应加热电源的功率控制调节方式总体上可分为直流侧调功和逆变侧调功两种。直流侧调功又分为三相全控整流器调功和直流斩波器调压调功。逆变侧调功的控制电路方案根据加热工艺特性要求,可以采用的控制方式更灵活, 常用的有调频功(PFM )、移相调功(PSM)、脉宽调制恒频调功(PWM )、脉冲密度调制调功(PDM )、调宽调制加调频调功(PWM+PFM )、脉宽调制加脉冲密度调制调功(PWM+PDM )等各种调功方式。 下面就感应加热电源控制电路的基本组成和原则作简单叙述,其具体内容将在相关章节中介绍。 (1)控制方式根据感应加热电源负载特性不同,调功方法不同,通常可采用电压反馈控制、电流反馈控制。 1)采用电压控制,其目的是保证输出直流母线电压恒定,也就是说加在感应加热绕组的端电压恒定。控制采样可以取自直流母线电压或逆变器电感绕组或谐振补偿电容上的电压。取样一般采用隔离式电压传感器(TV),经道算、比较处理,控制品闸管的导通角或逆变器开关管PWM 驱动脉冲的相移或脉宽,达到改变直流输出到逆变器直流母线上的电压或改变逆变器输出电压的平均值(或有效值),最终因闭环负反馈的作用维持输出电压恒定。输人电压的波动,对加热电源的输出功率也就是对工件的加热温度产生较大影响,将直接影响到加热工件的产品工艺质量要求。 加热电源的输出功率为P =u 2/Z,在负载不变的条件下,功率P 与电压组或谐振补偿电容上的电压。u 的平方成正比。也就是说,加热温度与电压的平方成正比。如果电压不稳定,加热温度就不均匀,对于毛坯工件加热、淬火要求温度稳定性较高的场合,必须要有自动稳压功能,否则产品质單得不到保证。 2)采用电流控制,其目的是保证输出直流或高频输出电流恒定。控制采样可取自直流母线电流或逆变器感应加热绕组中的电流。取样一般采用隔离式电流传感器感(TA ),电流反馈信号控制的对象同电压控制,目的是达到输出电流的变化,也就是输出功率P 的变化、加热温度的 变化。这是因为P=IU u z u z u =?? ? ??=2,因此可以看出,电压U 或负载阻抗Z 的变化,会引起电流I 的变化,即功率或加热温度的变化。 3)采用功率控制,其目的是为了保证感应加热电源的恒功率输出。采样信号同时取样电压和电流信号,经乘法器处理后,经PI 调节器输出与功率给定相比较,控制晶闸管的导通角或逆变器驱动脉冲信号的宽度、相移,或采用动态阻抗匹配法控制电源侧的等效阻抗与负载相等,达到功率的恒定,保证加热温度在给定的功率下恒定,满足工件加热工艺特性和质量要求。 (2)采用直流侧调月i 调功方案的感应加热电源,其控制电路需要有锁相频率自动跟踪系统。无.论是逆变器采用脉宽调制(PwM)控制技本调功,还是采用移相(PSM)调功等,如果逆变侧不进行频率自动照際,会出现两大问题:①逆变器的开关功率器件不能很好地工作在软开关状态,开关器件承受的电压和电流应力大,除了危及器件安全外,开关损耗也增大;②因为逆变器工作频率与谐振电路的固有谐振频率不相等,逆变器回路或者说开关器件中流过较大的无功电流,而且功率因数下降,达不到最大功率输出,逆变器的效率降。频率跟踪的目的是保证逆变器的开关频

高频感应加热电源工作原理

高频感应加热电源工作原理【大比特导读】高频感应加热电源在工作原理方面,也与普通的加热电源有 着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 感应加热电源的研发在最近几年呈现出专业化和快速的趋势,高频感应加热电源凭借着加热速度快、加热均匀等优势,被广泛的应用在工业及生活领域。高频感应加热电源在工作原理方面,也与普通的加热电源有着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 高频感应加热电源与普通的感应加热模块一样,也是采用了导体磁束加热的模式。用交流电流流向被卷曲成环状的导体,这种导体通常情况下会采用铜管这种材料,由此产生磁束。将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生涡电流,也就是大家所熟悉的旋转电流,于是感应电流在涡电流的影响下产生发热,用这样的加热方式就是感应加热。由此,对金属等被加热物体在无需直接接触的状态下就能获得加热效果。 此时,窝电流将会在线圈接近的物体上集中,感应加热表现出在物体的表面上较强里边较弱的特点,用这样的原理来对被加热体的必要的地方集中加热,达到瞬间加热的效果,从而提高生产效率和工作量等。 当然了,使用高频感应加热电源进行加热的成功与否,直接取决于感应线圈设置是否合理,以及加热体的大小、形状、间距等等。感应线圈是要做到均匀加热、加热效果好,并且要有强度和准确度。感应线圈是一般用一圈或数圈的铜管来做,一般采用水冷的方式对线圈进行冷却。 结语: 高频感应加热电源的感应线圈是高效加热的关键所在,而无需直接触碰就可以快速加热 的优势,也让这个感应加热电源的家族新成员迅速获得了生产商的认可。

中频感应加热设备介绍及应用

中频感应加热设备介绍及应用 设备简介 中频感应加热设备采用的串联谐振,即电压型谐振频率跟踪。因此效率较高、功率因数较高。所以有明显的中频感应加热电炉节电效果,加热每吨棒料用电341度。中频感应加热设备前级不可控全桥整流,不会在整流段引起波形的变形,没有关断角的削波现象,并且用大电容滤波,因此谐波数小对电网的干扰小。 工作原理 中频感应加热设备的工作原理是把一根金属圆柱体放在有交变中频电流的感应圈里,金属圆柱体没有与感应线圈直接接触,通电线圈本身温度已很低,可是圆柱体表面被加热到发红,甚至熔化,而且这种发红和熔化的速度只要调节频率大小和电流的强弱就能实现。 中频优势 随着我国工业化进程的飞速发展,感应加热领域也再快速发展.由于环保要求以及煤炭涨价,用焦煤加热不仅不符合环保要求,而且在价格和经济上也非常的不合算.另一方面,目前工业加热还大量使用着KGBS以可控硅为主器件的中频加热设备.功率因数低耗费着大量的电能.随着金融危机的曼延,节能降耗,缩减成本已经成为中小企业非常迫切的问题.于是我们利用近20年的感应加热经验,成功研制出JZ(IGBT)系列节能型中频。 设备特点 1.生产操作简单、进出料灵活、自动化程度高,可实现在线式生产; 2.工件加热速度快、氧化脱碳少,效率高,锻件质量好; 3.工件加热长度、速度、温度等可精确控制; 4.工件加热均匀、芯表温差小,控制精度高; 5.感应器可按客户要求精心制作; 6.全方位节能优化设计,能耗低、效率高,比烧煤生产成本低; 7.符合环保要求,污染小,同时还减少了工人的劳动强度。 设备优势 节约特点 加热速度快、生产效率高、氧化脱炭少、节省材料与锻模成本由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。不必担心由于停电或设备故障引起的煤炉已加热坯料的浪费现象。由于该加热方式升温速度快,所以氧化极少,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克,其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um。 环保特点 工作环境优越、提高工人劳动环境和公司形象、无污染、低耗能感应加热炉与煤炉相比,,工人不会再受炎炎烈日下煤炉的烘烤与烟熏,更可达到环保部门的各项指标要求,同时树立公司外在形象与锻造业未来的发展趋势。感应加热是电加热炉中最节能的加热方式由室温加热到1100℃的吨锻件耗电量小于360度。 精准特点 加热均匀,芯表温差极小,温控精度高感应加热其热量在工件内自身产生所以加热均匀,芯表温差极小。应用温控系统可实现对温度的精确控制提高产品质量和合格率。

中频感应加热设备

中频加热设备的电流密度都很高,一定采用异型铜管绕制成各种形状的线圈,铜管通水冷却,工件与线圈之间有耐温炉衬,相互组装在一起。 (1) 铜管必须由优质铜材构成,导电性能优良,其杂质越小越佳,在退火状态柔软,不易折断。 (2) 耐火炉衬通常为石英砂组成,Al203含量越高,其耐温性能越高,耐温性好,热传导性越差,热效率也就高,耐温性好,炉衬厚度可以减薄,可以提高电效率,则综合效率也就高。小直径的能耗不低的一个很重要的因素是炉衬厚度不可能做得很薄,在同一个感应炉内加热不同直径的工件,总是直径大时能耗低,直径小者能耗高。 (3) 中频感应加热设备的端板采用铜质,主要是作用是防止电的散射,并开口减少铜端板的损耗。 (4) 其结构由于电流同时流过线圈和工件,因此它们相互间的电动力是相当大,工件在线圈上的炉衬中移动又要承受工件的压力,因此必须使线圈匝与匝之间紧固,防止移动和线圈间的短路,这个紧固必须是牢固的,否则产生低频振动造成噪声,所以线圈匝间要绝缘紧固,必须与端板夹紧固定,似一个完整固体。

往往工频感应加热炉常用玻璃纤维带和其他绝缘复合材料带将线圈铜管包扎起来,并浸漆处理,目的使线圈匝间结构紧密,不产生低频振动。匝间距越小,效率也越高。 (5) 线圈的水路要有足够的水路数,以水在水管中流通成紊流为原则,水路不要有直角弯,它会降低水流流量与速度,降低冷却效果。判断方法以每一个支路水有一定的水温,且每一路流量水温都差不多。如果一路水温偏高,恐怕有焊渣或运行中有杂质堵塞,所以感应炉对每一支路要进行温度监测与控制。每一支路的水温控制在50℃为宜,过高温度冷却水在铜管内侧面汽化将会大大降低冷却效果,过高温度要结垢,最终炉子线圈过温而损坏。 (6) 炉衬材料要防止跌落和开裂,造成的原因是原材料不过关,炉衬材料一般为耐火水泥,水泥一旦吸潮过性,成形为粉末状,成块脱落。工艺不到位,耐火水泥与普通建筑水泥相似,要保养,时间不能少,这个保养是在潮湿环境下的保养,保养时间约48h,不能出现流浆,保养时间不够或流浆,必然会开裂,炉衬有烘干与不烘二种方法。要炉子寿命长,炉衬烘干很重要,核心是慢速烘干,在低温长时间36h的烘干,初始升温要很慢。 (7) 中频感应加热设备的每一个支路的分接头水路支路的焊接为银铜焊,确保焊接牢固不渗水,水路为橡胶管,不用塑料管,塑料管密封性能不佳。 (8) 一般配有通水导轨,导轨寿命长短取决于堆焊材料与厚度。不推荐用喷涂法堆耐磨材质,因为喷涂耐磨粉配方通常为单一不锈钢,不及高温耐磨的焊条,堆焊条的配方成分全面。

感应加热电源常见问题解读

感应加热电源常见问题解读 在感应加热电源的设备调试和日常使用过程中,工程师常常需要临时解决其出现的突发情况,这就需要工程师结合感应加热电源的设计方案和理论知识,及时进行处理。在今天的文章中,我们为大家总结了三种在平时比较常遇到的问题并进行解读,下面就让我们一起来看看这些问题都有哪些吧。 常见问题一:感应加热电源的烟气问题应该怎么处理比较稳妥? 对于感应加热电源来说,想要正确处理其烟气问题,我们可以从两个方面来入手,即通常所说的烟气净化或设置烟气捕集装置。先来看烟气净化方式,想要实现对感应加热设备的烟气净化,只有靠除尘器来实现,而除尘器选择的优劣直接影响到除尘系统的捕集效果、除尘电耗以及整个系统能否长期稳定、可靠运行、除尘器的形式繁多,各有利弊。关键在于如何扬长避短,与系统工艺及粉尘组成相适应以获得最佳效果。而设置烟气捕集装置则相对来说繁琐一些,其设置的内容主要包括回转式伞顶吸罩、低阻、大流量管道+调温电动蝶阀、 离线气管式脉冲除尘器、锅炉引风机等。这两种方法的选择,需要工程师依据实际情况进行判断。 常见问题二:感应加热电源在开机工作时有哪些问题需要特别注意一下? 通常情况下,在感应加热电源的工作过程中,有三类问题需要我们特别注意,分别是水资源短缺、电压过高和电气接地阴极电容设置。先来看水资源短缺问题,在长期使用感应加热设备的过程中,可能会出现因冷却水管水垢或阻塞电容而引起的电力电容器过热和燃烧问题,因此,我们应特别注意在水流量的排放情况,一旦发现排放不正常,则应该使用适当的措施。电气接地阴极电容也是需要特别注意的,电绝缘电容一旦发生损坏,很容易造成故障,因此需要工程师及时排查问题,及时处理故障的电容柜绝缘点。电压过高的情况也同样需

相关主题
文本预览
相关文档 最新文档