当前位置:文档之家› 第5章概率与概率分布

第5章概率与概率分布

第5章概率与概率分布
第5章概率与概率分布

第5章 概率与概率分布

一、思考题

、频率与概率有什么关系 、独立性与互斥性有什么关系

、根据自己的经验体会举几个服从泊松分布的随机变量的实例。 、根据自己的经验体会举几个服从正态分布的随机变量的实例。

二、练习题

、写出下列随机试验的样本空间:

(1)记录某班一次统计学测试的平均分数。

(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。

、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。

、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是3

1

,A 发生且B 不发生的概率是

9

1

,求B 发现的概率。 、设A 与B 是两个随机事件,已知P(A)=P(B)=

31,P(A |B)= 6

1

,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。

、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少

、某种品牌的电视机用到5000小时未坏的概率为

43,用到10000小时未坏的概率为2

1。现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少

、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少

、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。

、考虑抛出两枚硬币的试验。令X 表示观察到正面的个数,试求X 的概率分布。

、某人花2元钱买彩票,他抽中100元奖的概率是%,抽取10元奖的概率是1%,抽中1元奖的概率是20%,假设各种奖不能同时抽中,试求: (1)此人收益的概率分布。 (2)此人收益的期望值。

、设随机变量X 的概率密度为:

F(x)=

3

2

X ,0

(1) 已知P(X>1)=

8

7

,求θ的值。 (2) 求X 的期望值与方差。

、一张考卷上有5道题目,同时每道题列出4个备选答案,其中有一个答案是正确的。某学生凭猜测能答对至少4道题的概率是多少

设随机变量X 服从参数为的泊松分布,且已知P {X=1}= P {X=2},求P {X=4}。

、设随机变量X 服从参数为λ的泊松分布:

P {X=k }=!

k k λe λ

-

问K 取何值时P {X=k }最大(λ为整数时)

、设X ~N (3,4),试求: (1)P {|X |>2}。 (2)P {X>3}。

、一工厂生产的电子管寿命X (以小时计算)服从期望值 =160的正态分布,若要求P {120

、一本书排版后一校时出现错误处数X 服从正态分布N (200,400),试求: (1)出现错误处数不超过230的概率。 (2)出现错误处数在190~210之间的概率。

三、选择题

1、一项试验中所有可能结果的集合称为( )。

A. 事件

B.简单事件

C. 样本空间

D.基本事件 2、每次试验可能出现也可能不出现的事件称为( )。

A. 必然事件

B.样本空间

C. 随机事件

D.不可能事件 3、随3枚硬币,用0表示反面,1表示正面,其样本空间Ω=( )。 A. {000,001,010,100,011,101,110,111} B. {1,2,3} C. {0,1} D. {01,10} 4、随机抽取一只灯泡,观察其使用寿命t ,其样本空间Ω=( )。 A. {t=0} B. {t<0} C. {t>0}D. {t } 5、观察一批产品的合格率p ,其样本空间为Ω=( )。 A. {0

6、抛掷一枚硬币,观察其出现的是正面还是反面,并将事件A 定义为:事件A=出现正面,

这一事件的概率记作P(A)。则概率P(A)=1/2的含义是()。

A. 抛掷多次硬币,恰好有一半结果正面朝上

B.抛掷两次硬币,恰好有一次结果正面朝上

C. 抛掷多次硬币,恰好正面的次数接近一半

D.抛掷一次硬币,出现的恰好是正面

7、若某一事件取值的概率为1,则这一事件被称为()。

A. 随机事件

B.必然事件

C. 不可能事件

D.基本事件

8、抛掷一枚骰子,并考察其结果。其点数为1点或2点或3点或4点或5点或6点的概率为()。

A. 1 6 C. 1/4 2

9、一家计算机软件开发公司的人事部分做了一项调查,发现在最近两年离职的公司职员中有40%是因为对工资不满意,有30%是因为对工作不满意,有15%是因为他们对工资和工作都不满意。设A=员工离职是因为对工资不满意;B=员工离职时因为对工作不满意。则两年内离职的员工中,离职原因是因为对工资不满意,或者对工作不满意,或者两者皆有的概率为()。

A. C. D.

10、一家超市所作的一项调查表明,有80%的顾客到超市是来购买食品,60%的人是来购买其他商品,35%的人既购买食品也购买其他商品。设A=顾客购买食品,B=顾客购买其他商品。则某顾客来超市购买食品的条件下,也购买其他商品的概率为()。

A. C. D.

11、一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如表所示:

正品数次品数合计

供应商乙1028110

设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。从这200各配件中任取一

个进行检查,取出的一个为正品的概率为()。

A. C. D.

12、一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如下表所示:

正品数次品数合计

供应商乙1028110

设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。从这200各配件中任取一个进行检查,取出的一个为供应商甲供应的配件的概率为()。

A. C. D.

13、一家报纸的发行部已知在某社区有75%的住户订阅了该报纸的日报,而且还知道某个订阅日报的住户订阅其晚报的概率为50%。设A=某住户订阅了日报;B=某个订阅了日报的住户订阅了晚报,则该住户既订阅日报又订阅晚报的概率为()

A. C. D.

14、某考生回答一道四选一的考题,假设他知道正确答案的概率为1/2,而他不知道正确答案时猜对的概率应该为1/4。分别定义事件A=该考生答对了;B=该考生知道正确答案,考试结束后发现他答对了,那么他知道正确答案的概率为()。

A. 1 C. D.

15、一部电梯在一周内发生故障的次数及相应的概率如下表所示:

)0 1 2 3

故障次数(X=x

i

表中α值为()

A. C. D.

16、一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所示:

次品数(X=x

)0 1 2 3

i

则该供应商次品数的期望值为()。

A. C. D.

17、一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所示:

)0 1 2 3

次品数(X=x

i

则该供应商次品数的标准差为()。

A. C. D.

18、指出下面关于n重贝努里试验的陈述中哪一个是错误的()。

A. 一次试验只有两个可能结果,即“成功”和“失败”

B. 每次试验成功的概率p都是相同的

C.试验是相互独立的

D.在n次试验中,“成功”的次数对应一个连续型随机变量

19、已知一批产品的次品率为4%,从中有放回地抽取5各。则5个产品中有次品的概率为()。

A. C. D.

20、指出下面的分布中哪一个不是离散型随机变量的概率分布()。

A. 0-1分布

B.二项分布

C. 泊松分布

D.正态分布

21、设X是参数为n=4和p=的二项随机变量,则P(X<2)=( )。

A. C. D.

22、假定某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全公司中每周的加班津贴会超过70元的职员比例为()。

A. C. D.

23、假定某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全

公司中每周的加班津贴在40元~60元之间的职员比例为()。

A. C. D.

24、设Z服从标准正态分布,则P(≤≤)=()。

A. C. D.

25、设Z服从标准正态分布,则P(≤≤)=()。

A. C. D.

26、设Z服从标准正态分布,则P(Z>)=()。

A. C. D.

27、若投掷一枚骰子,考虑两个事件:A:骰子的点数为奇数;B:骰子的点数大于等于4,则条件概率P(A|B)=()。

3 6 2 4

28、推销员向客户推销某种产品成功的概率为。他在一天中共向5名客户进行了推销,则成功谈成客户数不超过2人的概率为()。

A. C. D.

29、一种电梯的最大承载重量为1000公斤,假设该电梯一次进入15人,如果每个人的体重(公斤)服从N(60,152),则超重的概率为()。

A. C. D.

四、选择题答案

五、教材练习题详细解答

Ω【0,100】

(1)平均分数是范围在0~100之间的一个连续变量,=

(2)已经遇到的绿灯次数是从0开始的任意自然数,=ΩN 。

(3)之前生产的产品中可能无次品也可能有任意多个次品,=Ω{10,11,12,13,…}。

、设订日报的集合为A ,订晚报的集合为B ,至少订一种报的集合为B A ,同时订两种报的集合为B A 。

P(B A )=P(A)+P(B)-P(B A )=+、P(B A )=

3

1,P(B A )=91

,P(B)=

P(B A )-P(B A )=9

2

、P(AB)=P(B)P(A |B)= 3

1?61=181

P(B A )=P(B A )=1-P(AB)=

18

17

P(B )=1-P(B)=

3

2 P(B A )=P(A )+P(B )- P(B A )=18

7 P(A |B )= P(B A )/P(B)=

12

7 、设甲发芽为事件A ,乙发芽为事件B 。,

(1)由于是两批种子,所以两个事件相互独立,因此有: P(AB)=P(A)P(B)=

(2)P(B A )=P(A)+P(B)-P(AB)=

(3)P(A B )+P(B A )=P(A)P(B )+P(B)P (A )= 、设合格为事件A ,合格品中一级品为事件B 。

P(AB)=P(A)P(B |A)=?、设前5000小时未坏为事件A ,后5000小时未坏为事件B 。

P(A)=

43 , P(AB)=2

1

, P(B |A)=)()(B P AB P =32

、设职工文化程度小学为事件A ,职工文化程度初中为事件B ,职工文化程度高中为事件C ,职工年龄25岁以下为事件D 。

P(A)=,P(B)=,P(C)=

P(D |A)=,P(D |B)=,P(D |C)=

P(A |D)=P(A)P(D |A)/ {P(A)P(D |A)+P(B)P(D |B)+P(C)P(D |C) } = 55

2 同理P(B |D)= 115, P(C |D)=55

28

、设次品为Z ,由贝叶斯公式有:

P(A |Z)= P(Z |A)P(A)/{P(Z |A) (P(A) + P(Z |B)P(B) + P(Z |C)P(C)}= 同理P(B |Z)=

、由二项分布可得:P(x=0)=,P(x=1)=,P(x=2)=

、(1)P(x=100)=,P(x=10)=,P(x=1)=0,2,P(x=0)=

(2)E(X)=?+?+?=

、(1)P(2

χ(6)≤b)= P(2

χ(6)>b)= b=

(2)EX=?2

0)(dx x Xf =?2

0383dx x =2

3

EX 2

=

?

2

)(dx x Xf =

5

12 DX=EX 2

-(EX)2

=

20

3 、答对至少四道题包含两种情况,对四道错一道,对五道。 C 4

5(

41)4(43)+C 55(41)5

= 64

1 、由泊松分布的性质有: P {X=1}=λe λ

-

P {X=2}= e λ

-/2!

λ=2 P(X=4)=

e

32

、}{}{K X P K X P =+=1=

)!1(1++K K λ?K K λ

)!

(=1

+K λ

=1

K=λ-1和K=λ时P {X=k }最大。

、(1)化为标准正态分布有:

P {

}2?X =P {X>k }+P {X<-2}=P {

23-X >21-}+P {23-X >25

-} =1-Φ(-21)+Φ(-25) =Φ(+21)+1-Φ(+2

5

)

(2)由于(3,4)关于均值3对称,所以P {X>3}=2

1

、P {120

σ

160

-X <

σ

40

}=2Φ(

σ

40

)≥

Φ(

σ

40

)≥,≤σ

、(1)P {≤x -230}=P {

20200-X ≤20

30

}=Φ (2)P {120≤X ≤200}=P {20200-X ≤20

10

}=2Φ-1

第五章 概率与概率分布(ok)

第五章概率与概率分布 5.1写出下列随机试验的样本空间: (1)记录某班一次统计学测验的平均分数。 (2)某人骑自行车在公路上行驶,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 解:(1)测验的平均分数为0至100分,故样本空间为 Ω=≤≤ {|0100} x x (2)遇到第一个红灯停下来以前遇到的绿灯次数为0至∞,故样本空间为 Ω=∞ {0,1,,} (3)与(2)类似,到有10件正品为止,生产产品的总件数的样本空间为 Ω=∞ {10,11,,} 5.2某市有50%的住户订日报,有65%的住户订晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。 解:设A = {订日报},B = {订晚报},C = {同时订两种报纸} 则P(C) = P(A∩B) = P(A) + P(B) – P(A∪B) 由题意可知: P(A) = 0.5,P(B) = 0.65,P(A∪B) = 0.85 于是P(C) = 0.5+0.65 – 0.85 = 0.3 即同时订两种报纸的住户百分比为30%。 5.3设A与B是两个随机事件,已知A与B至少有一个发生的概率是1/3,A发生且B不发生的概率是1/9,求B发生的概率。 解:由题意可知,P(A∪B) = 1/3,()1/9 P A B=。 因为()()()() P A B P A P B P A B =+-,而()()() =-,故有 P A B P A P A B

()()[()()] ()()112399 P B P A B P A P A B P A B P A B =--=-=-= 5.4 设A 与B 是两个随机事件,已知P(A) = P(B) = 1/3,P(A|B) = 1/6,求 ()P A B 。 解:首先,我们有P(AB) = P(B)P(A|B)=(1/3)*(1/6)=1/18, 其次, ()()1() (|)1()()() 1()()()1()11/31/31/1811/3712 P A B P A B P A B P A B P B P B P B P A P B P AB P B -= == ---+= ---+= -= 5.5 有甲、乙两批种子,发芽率分别是0.8和0.7。在两批种子中各随机抽取一粒,求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。 解:设A = {甲种子发芽},B = {甲种子发芽}。 由题意可知,P(A) = 0.8,P(B) = 0.7。 (1)记C={两粒种子都发芽},因A 与B 独立, 故P(C) = P(A)P(B) = 0.8*0.7 = 0.56 (2)记D= {至少有一粒发芽} P(D) = P(A) + P(B) – P(AB) = 0.8+0.7-0.56 = 0.84 (3)记E = {恰有一粒发芽} 则P(E) = P(D) – P(C) = 0.84 – 0.56 = 0.28

概率与概率分布

第六章概率与概率分布 本章是推断统计的基础。 主要内容包括:基础概率,概率的数学性质,概率分布、期望值与变异数推断统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。 第一节基础概率 概率论起源于17世纪,当时在人口统计、人寿保险等工作中,要整理和研究大量的随机数据资料,这就需要一种专门研究大量随机现象的规律性的数学。 参赌者就想:如果同时掷两颗骰子,则点数之和为9 和点数之和为10 ,哪种情况出现的可能性较大? 例如17世纪中叶,贵族德·梅尔发现:将一枚骰子连掷四次,出现一个6 点的机会比较多,而同时将两枚掷24次,出现一次双6 的机会却很少。 概率论的创始人是法国的帕斯卡(1623—1662)和费尔马(1601—1665),他们在以通信的方式讨论赌博的机率问题时,发表了《骰子赌博理论》一书。棣莫弗(1667—1754)发现了正态方程式。同一时期瑞士的伯努利(1654一1705)提出了二项分布理论。1814年,法国的拉普拉斯(1749—1827)发表了《概率分析论》,该书奠定了古典概率理论的基础,并将概率理论应用于自然和社会的研究。此后,法国的泊松(1781—1840)提出了泊松分布,德国的高斯(1777—1855)提出了最小平方法。 1、随机现象和随机事件 概率是与随机现象相联系的一个概念。所谓随机现象,是指事先不能精确预言其结果的现象,如即将出生的婴儿是男还是女?一枚硬币落地后其正面是朝上还是朝下?等等。所有这些现象都有一个共同的特点,那就是在给定的条件下,观察所得的结果不止一个。随机现象具有非确定性,但内中也有一定的规律性。例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

常用概率分布(习题与答案)

第五章 常用概率分布习题(附答案) 一、选择题 1. 估计正常成年女性红细胞计数的95%医学参考值范围时,应用( A. )。 A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 2. 估计正常成年男性尿汞含量的95%医学参考值范围时,应用(E )。 A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 3.若某人群某疾病发生的阳性数X 服从二项分布,则从该人群随机抽出n 个人, 阳性数X 不少于k 人的概率为( A )。 A. )()1()(n P k P k P ++++ B. )()2()1(n P k P k P +++++ C. )()1()0(k P P P +++ D. )1()1()0(-+++k P P P E. )()2()1(k P P P +++ 4.Piosson 分布的标准差σ和均数λ的关系是( C )。 A. σλ> B. σλ< C. λ=2σ D. λ=σ E. λ与σ无固定关系 5.用计数器测得某放射性物质5分钟内发出的脉冲数为330个,据此可估计该放射性物质平均每分钟脉冲计数的95%可信区间为( E )。 A. 33096.1330± B. 33058.2330± C. 3396.133± D. 3358.233± E. 5/)33096.1330(± 6.Piosson 分布的方差和均数分别记为2 σ和λ,当满足条件( E )时,Piosson 分布近似正态分布。 A. π接近0或1 B. 2σ较小 C. λ较小 D. π接近0.5 E. 202≥σ 7.二项分布的图形取决于( C )的大小。 A. π B. n C.n 与π D. σ E. μ 8.在参数未知的正态总体中随机抽样,≥-μX ( E )的概率为5%。 A. 1.96σ B. 1.96 C. 2.58 D. S t ν,2/05.0 E. X S t ν,2/05.0 9.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L ,标准差

第5、6章习题常用的概率分布

常用的概率分布 一、正态分布 概率密度函数:22 2)(21)(σμπσ--=x e x f 正态分布曲线的特点:在μ=x 处最高,两个参数(σμ,),曲线下面积等于1。 正态分布的应用:确定正常值范围 二、二项分布 概念:服从伯努力试验序列的试验,在n 次实验中发生阳性结果的次数为x 次的概率为二项分布,x n x x n c x P --=) 1()(ππ。 二项分布的特点:图形的形态取决于n 和?。 阳性率:n x p =, 标准差 :n p ) 1(ππσ-= 二项分布的应用:计算二项分布中出现阳性次数最多为k 次或者是至少为k 次的概率。 三.Poisson 分布 概念:Poisson 分布看作二项分布的特例,单位空间、单位面积或单位时间内某稀有事件发生次数的概率分布. μμ-=e x x P x !)( Poisson 分布的特点:图形的形态取决于 ? , 总体均数

等于方差, 具有可加性。 注意: 凡个体间有传染性、聚集性,均不能视为二项分布或Poisson 分布。 应用:计算Poisson 分布中某稀有事件出现次数最多为k 次或者是至少为k 次的概率。 ∑ ∑-+----=-+-222)2()2)(1(2)1())2()1((μμμμμμy y x x y x 案例分析: (一)观察某地100名12岁男孩身高,均数为138.00cm ,标准差为 4.12cm ,12 .400.13800.128-=u ,则9925.0)(1=-u φ,结论正确是_____________。 A .理论上身高低于138.00cm 的12岁男孩占%。 B .理论上身高高于138.00cm 的12岁男孩占% C .理论上身高在128.00cm 和138.00cm 之间的12岁男孩占%。 D .理论上身高高于128.00cm 的12岁男孩占% (二)研究人员为了解该地居民发汞(?mol/kg )的基础水平,为汞污染的环境监测积累资料,调查了居住该市1年以上,无明显肝、肾疾病,无汞作业接触史的居民230人,数据如下:

统计学习题 第六章 概率与概率分布

第六章 概率与概率分布 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

第5章概率与概率分布

第5章 概率与概率分布 一、思考题 、频率与概率有什么关系 、独立性与互斥性有什么关系 、根据自己的经验体会举几个服从泊松分布的随机变量的实例。 、根据自己的经验体会举几个服从正态分布的随机变量的实例。 二、练习题 、写出下列随机试验的样本空间: (1)记录某班一次统计学测试的平均分数。 (2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。 、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是3 1 ,A 发生且B 不发生的概率是 9 1 ,求B 发现的概率。 、设A 与B 是两个随机事件,已知P(A)=P(B)= 31,P(A |B)= 6 1 ,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。 、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少 、某种品牌的电视机用到5000小时未坏的概率为 43,用到10000小时未坏的概率为2 1。现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少

、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少 、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。 、考虑抛出两枚硬币的试验。令X 表示观察到正面的个数,试求X 的概率分布。 、某人花2元钱买彩票,他抽中100元奖的概率是%,抽取10元奖的概率是1%,抽中1元奖的概率是20%,假设各种奖不能同时抽中,试求: (1)此人收益的概率分布。 (2)此人收益的期望值。 、设随机变量X 的概率密度为: F(x)= 3 2 3θ X ,01)= 8 7 ,求θ的值。 (2) 求X 的期望值与方差。 、一张考卷上有5道题目,同时每道题列出4个备选答案,其中有一个答案是正确的。某学生凭猜测能答对至少4道题的概率是多少 设随机变量X 服从参数为的泊松分布,且已知P {X=1}= P {X=2},求P {X=4}。 、设随机变量X 服从参数为λ的泊松分布:

第五章 概率与概率分布基础

第五章概率与概率分布基础 第一节什么是概率 第二节概率分布 第三节常用离散型随机变量分布举例 第四节常用连续型随机变量分布举例 为什么学习概率? 概率是公共和非盈利性事业管理中最有用的数量分析方法之一.利用概率及相关知识,公共和非盈利事业的管理者可以判断和解决各种各样的问题. 比如,维修机构的负责人可以运用概率来决定公共设施发生故障的频率,并依此部署维护力量.公共交通部门可以用概率来分析某一站点某一时段内可能候车人数,从而决定公共交通的车次间隔. 本章内容包括一些基本的概率法则和假定. 最常用的适于作定量研究的方法--抽样调查就是通过概率的理论使我们掌握一种媒介,它可以做我们推断和分析的平台. 第一节什么是概率 一、随机事件与概率 (一)随机试验与随机事件 随机现象的特点是:在条件不变的情况下,一系列的试验或观测会得到不同的结果,并且在试验或观测前不能预见何种结果将出现。对随机现象的试验或观测称为随机试验,它必须满足以下的性质: (1)每次试验的可能结果不是唯一的; (2)每次试验之前不能确定何种结果会出现; (3)试验可在相同条件下重复进行。 比如:标准大气压下,水沸腾的温度是100度. 必然事件 扔100次硬币,正面朝上的次数.随机事件. 历史上曾有人做过试验,试图证明抛掷匀质硬币时,出现正反面的机会均等。 实验者n nH fn(H) De Morgan 2048 1061 0.5181 Buffon 4040 2048 0.5069 K. Pearson 12000 6019 0.5016 K. Pearson 24000 12012 0.5005 在经济与社会领域,随机命题是常见的,而必然命题是十分少见的. 任何一种社会现象,社会行为其产生的原因都是复杂的,事物单个出现的时候难免有偶然性和非确定性,但是对于大量事物的研究,由于平衡与排除了单个孤立事件所具有的偶然性,从而可以发现其内部的规律性. 在随机试验中(对随机现象的观察)可能出现也可能不出现,而在大量重复试验中却具有某种规律性的事件,称之为随机事件。 试验的结果可能是一个简单事件,也可能是一个复杂事件。简单事件就是不可以再分解的事件,又称为基本事件。复杂事件是由简单事件组合而成的事件。基本事件 还可称为样本点,设试验有n个基本事件,分别记为(i=1,2,…,n)。集合Ω={ω1 ,ω2 , …,ωn}称为样本空间,Ω中的元素就是样本点。

概率与概率分布(一)

第六章 概率与概率分布(一) 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所 不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

考研资料_厦门大学卫生综合_卫生统计厦大内部习题集_第五章 常用概率分布

第五章常用概率分布习题 一、是非题 1.在确定某个指标的医学参考值范围时,必须选取足够多的健康人来进行计算。2.对于服从正态分布的资料,变量取值位于-1.96到1.96之间的可能性为0.95。3.Poisson分布有两个参数:n和μ。 4.在μ足够大时,Poisson分布就是正态分布。 5.设X服从Poisson分布,则Y=2X也服从Poisson分布。 6.用X表示某个放射性物体的每分钟脉冲数,其平均每分钟脉冲数为5次(可以认为服从Poisson分布),用Y表示连续观察20分钟的脉冲数,则可以认为近似服从正态分布,但不能认为X近似服从正态分布。 二、选择题 1.关于二项分布,错误的是( )。 A.服从二项分布随机变量为离散型随机变量 B.当n很大,π接近0.5时,二项分布图形接近正态分布 C.当π接近0.5时,二项分布图形接近对称分布 D.服从二项分布随机变量,取值的概率之和为1 E.当nπ>5时,二项分布接近正态分布 2.关于泊松分布,错误的是( )。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布由均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布

D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λl和λ2的泊松分布,且相互独立。则X1+X2服从均数为λl+λ2泊松分布 3.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的( ) A.99%B.95%C.47.5%D.49.5%E.90% 4.标准正态曲线下,中间95%的面积所对应的横轴范围是( )。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 5.服从二项分布的随机变量的总体均数为( )。 A.n(1-π) B.(n-1)π(1-π) C.nπ(1-π) D.nπE. 6.服从二项分布的随机变量的总体标准为( )。 A B.(n-1)π(1-π) C.nπ(1-π) D E 7.以下方法中,确定医学参考值范围的最好方法是( ) A.百分位数法B.正态分布法C.对数正态分布法D.标准化法E.结合原始数据分布类型选择相应的方法 8.下列叙述中.错误的是( )。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1 D.服从泊松分布的随机变量,其取值为0到n的概率之和为1 E.标准正态分布的标准差为1 三、筒答题

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

统计学课后答案(第3版)第5章概率与概率分布基础习题答案

第五章 概率与概率分布基础习题答案 一、单选 1.A ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C ; 7.A ; 8.D ; 9.B ;10.C 二、多选 1.ABCE ; 2.ABCE ; 3.ABD ; 4.ACE ; 5.ABCE 6.ABD ; 7.ABCD ; 8.ABCDE ; 9.ABCDE ;10.ACD 三、计算分析题 1、(1)C B A ;C B A ;C B A (2)C AB (3) C B A C B A C B A (4) C B A C B A 或 2、6.0)(1=A P ;4.0)(2=A P ;95.0)(1=A B P ;90.0)(2=A B P (2)16.0889.001.0101.05001.010)(=÷+?+?+?=x E (元) 说明2元彩票平均中奖额为0.16元。 4、包含对6道、7道、8道、9道和10道题的五种情况的概率为: 4661037710288109910101010)43()41()43()41()43()41()43()41()41 (C C C C C ++++ %202.098.01)4 3()41()43()41()43()41()43()41()43)(41()43(15551064410733108221091100010==-=+++++-=C C C C C C 5、!2)2()1(2λ λλλ--=====e X P e X P ,则λ=2 22432!42)4(e e X P ===- 6、(1)化为标准正态分布有: )22 3()2123()2()2()2(-<-+->-=-<+>=>x P x P x P x P x P

第六章 概率与概率分布练习题

第六章 概率与概率分布 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设(机会均等 )。 2.分布函数)(x F 和)(x P 或 ?)(x 的关系,就像向上累计频数和频率的关系一样。所不同的是,)(x F 累计的是(概率 ) 。 3.如果A 和B (互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.(大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 6.抽样设计的主要标准有(最小抽样误差原则 )和(最少经济费用原则 )。 7.在抽样中,遵守(随机原则 )是计算抽样误差的先决条件。 9.若事件A 和事件B 不能同时发生,则称A 和B 是(互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是(1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.随机试验所有可能出现的结果,称为( D )。A 基本事件; B 样本;C 全部事件;D 样本空间。 2.在次数分布中,频率是指( ) A.各组的频率相互之比 B.各组的分布次数相互之比 C.各组分布次数与频率之比 D.各组分布次数与总次数之比 3.若不断重复某次调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为:( D )。 A .总体平均数的次数分布 B .样本平均的抽样分布 C .总体成数的次数分布 D .样本成数的抽样分布 4.以等可能性为基础的概率是(A )。A 古典概率;B 经验概率;C 试验概率;D 主观概率。 5.古典概率的特点应为( A )。 A 基本事件是有限个,并且是等可能的; B 基本事件是无限个,并且是等可能的; C 基本事件是有限个,但可以是具有不同的可能性; D 基本事件是无限的,但可以是具有不同的可能性。 6.任一随机事件出现的概率为( D )。A 在–1与1之间;B 小于0;C 不小于1;D 在0与1之间。 7.若P (A )=0.2,P(B )=0.6,P (A/B )=0.4,则)(B A P =( D )。A 0.8 B 0.08 C 0.12 D 0.24。 8.若A 与B 是任意的两个事件,且P (AB )=P (A )·P (B ),则可称事件A 与B (C )。 A 等价 B 互不相容 C 相互独立 D 相互对立。 9.若相互独立的随机变量X 和Y 的标准差分别为6与8,则(X +Y )的标准差为(B )。A 7 B 10 C 14 D 无法计算。 10.对于变异数D (X ),下面数学表达错误的是( D )。 A D (X )=E (X 2)―μ2 B D (X )=E [(X ―μ)2] C D (X )= E (X 2)―[E (X ) ] 2 D D (X )=σ 11.如果在事件A 和B 存在包含关系A ?B 的同时,又存在两事件的反向包含关系A ?B ,则称事件A 与事件B (A )A 相等 B 互斥 C 对立 D 互相独立 三、多项选择 1.随机试验必须符合以下几个条件(ABD )。 A .它可以在相同条件下重复进行; B .每次试验只出现这些可能结果中的一个; C .预先要能断定出现哪个结果; D .试验的所有结果事先已知; E .预先要能知道哪个结果出现的概率。 2.重复抽样的特点是(ACE )。 A 每次抽选时,总体单位数始终不变; B 每次抽选时,总体单位数逐渐减少; C 各单位被抽中的机会在每次抽选中相等; D 各单位被抽中的机会在每次抽选中不等; E 各次抽选相互独立。 3.关于频率和概率,下面正确的说法是(BCE )。 A .频率的大小在0与1之间; B .概率的大小在0与1之间; C .就某一随机事件来讲,其发生的频率是唯一的; D .就某一随机事件来讲,其发生的概率是唯一的; E .频率分布有对应的频数分布,概率分布则没有。

概率与概率分布(二)

第六章 概率与概率分布(二) 一、填空题 1.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件_表示. 2.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__. 3.设A,B 为两个事件,若概率P(A)= 41,P(B)=3 2,P(AB)=61 ,则概率P(A+B)=__. 4.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)= __. 5.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ?B ,则条件概率P(B A )=__. 6.设A,B 为两个事件,若概率P(B)= 103,P(B A )=61 ,P(A+B)=5 4,则概率P(A)=__. 7.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 9.设A,B,C 为三个事件,且已知概率P(A)=0.9,P(B)=0.8,P(C)=0.7,若事件A,B,C 相互独立,则概率P(A+B+C)=__. 10.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 11.设离散型随机变量X 的概率分布如下表 c c c c P X 4322101- 则常数c =__. 12.已知离散型随机变量X 的概率分布如下表 4 14121P 3 21X 则概率P {3

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞+∞p p p . 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

贾俊平《统计学》(第5版)课后习题-第5章 概率与概率分布【圣才出品】

第5章 概率与概率分布 一、思考题 1.频率与概率有什么关系? 答:概率是一种现象的固有属性,比如一枚均匀的硬币,随意抛掷的话正面出现的概率就是1/2。这跟实验是没有关系的。而频率,就是一组实验中关心的某个结果出现的次数比上所有实验次数的比值,它和实验密切相关。一般来说,随着实验次数的增多,频率会接近于概率。比如抛掷均匀的硬币10000次,出现正面的频率就会非常接近于概率0.5。 2.独立性与互斥性有什么关系? 答:互斥事件一定是相互依赖(不独立)的,但相互依赖的事件不一定是互斥的。例如,事件A表示有雨,事件B表示晴天(无雨),事件C表示有风。显然事件A与B是互斥的,因而也是不独立的;事件A与C显然不互斥,但是看来也是有依赖关系的。 不互斥事件可能是独立的,也可能是不独立的,然而独立事件不可能是互斥的。关于不互斥事件相互独立的例子,如有一批产品,A表示第一次抽到正品,B表示第二次抽到的也是正品,在有放回抽样时这两个事件就是独立的。 3.根据自己的经验体会举几个服从泊松分布的随机变量的实例。 答:服从泊松分布的随机变量有: (1)在某一公司中每月观察到的事故的次数; (2)单位时间内到达某一服务柜台(服务站、诊所、超级市场的结账柜台、电话总

机等)请求服务的顾客人数; (3)保险公司每天收到的死亡声明的个数; (4)某种仪器每月出现故障的次数。 4.根据自己的经验体会举几个服从正态分布的随机变量的实例。 答:服从正态分布的随机变量: (1)某地区同年龄组儿童的发育特征,如身高、体重、肺活量; (2)某公司年销售量; (3)在同一条件下产品的质量。 二、练习题 1.写出下列随机试验的样本空间: (1)记录某班一次统计学测验的平均分数; (2)某人骑自行车在公路上行驶,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数; (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 解:(1)平均分数是范围在0~100之间的一个连续变量,所以平均分数的样本空间Ω=[0,100]。 (2)遇到的绿灯次数是从0开始的任意自然数,所以样本空间Ω=N。 (3)之前生产的产品中可能无次品也可能有任意多个次品,所以样本空间 Ω={10,11,12,13,…}。

相关主题
文本预览
相关文档 最新文档