当前位置:文档之家› 理论力学—质点系运动微分方程

理论力学—质点系运动微分方程

运动微分方程

运动微分方程 弹性体体积V ,表面积S ,密度ρ,单位质量所受的体力为f,体力场为f(x,t),单位向量为n 的面元dS 的面力场为t(n,x,t),x 为原点到受力点的向量,t 为时间。弹性体在t 时刻的动量P (t) dV v dt d dV f dS t dt dP F f V f m F dV f dS t F F F dV v m v p V i V i s i i i V i s i i V i i ??????= += ?=?=+=+===ρρρρρ动量定理合力弹性体动量体体面 ******************************************************************************* 散度定理:散度定理是矢量场中体积分与面积分之间的一个转换。???=??s V S d F dV F 散度:表征矢量场A 产生的体积(三维)或面积(二维)的相对膨胀率,其表达式为▽·A 。 z R y Q x P R Q P z y x F ??+ ??+??=???????=??),,(),,( ,P,Q ,R 为F 在x,y,z 上的分量。 散度定理的证明:S d F dV F s V ?=???????。 令()R Q P F ,,= ,假设F =(0,0,R),则需要证明 dS n R dV R s V z ?? ????=),0,0( 如下图,投影区为U 。 dxdy y x z y x R y x z y x R dxdy dz R dV R U y x Z y x Z z D z ))],(,,()),(,,([)() ,() ,(底顶 顶底????????-== S=S 底+S 顶+S 侧面

理论力学运动学习题课

1. 图示的曲柄滑道机构中,曲柄长OA =10cm ,绕O 轴转动。当?=30°时,其角速度ω=1rad/s ,角加速度α=1rad/s 2,求导杆BC 的加速度和滑块A 在滑道中的相对加速度。 解 取滑块A 为动点,动坐标系固连于导杆上。 切向加速度a a τ和法向加速度a a n ,其大小分别为 a a τ=OA ·ε=10cm/s 2 a a n =OA ·ω2=10cm/s 2 牵连运动为平动的加速度合成定理为 a a = a a τ+ a a n = a e + a r 将上式各矢量分别投影在x 轴和y 轴上,解得 a r ==3.66cm/s 2 a e =13.66cm/s 2 a e 即为导杆在此瞬时的平动加速度。 2. 滚压机构的滚子沿水平地面作纯滚动。已知曲柄OA 长r ,以匀角速度ω转动。连杆AB 长r L 3=, 滚子半径为R 。求图示位置滚子的角速度和角加速度。 解 (1)分析运动,先选AB 杆为研究对象 (2)根据瞬心法求v B 先找到速度瞬心C v B = ωr 3 3 2 (3)利用加速度公式求a B n BA t BA A B a a a a ρρρρ++= ωAB = v A /AC = rω/3r = ω/3

a BA n = ABωAB 2= 3rω2/9 a B = 2 rω2/9 (4)再取滚子为研究对象,求ωB 和αB ωB = v B /R = ωr R 33 2 αB = dωB /dt =1/R ·dv B /dt = a B /R = 2 rω2/9R 3. 图示的四连杆机构中,O 1A =r , AB =O 2B =3r ,曲柄以等角速度ω1绕O 1轴转动。在图示位置时,O 1A ⊥AB ,∠O 2BA =60°。求此瞬时杆O 2B 的角速度ω2和角加速度2α。 解 (1)先计算杆O 2B 的角速度 杆O 1A 和O 2B 作定轴转动,连杆AB 作平面运动。过A 、B 两点作A v ρ、B v ρ 的垂线,其交点C 就是连杆AB 的瞬心。 根据瞬心法或者速度投影法可以求得 ο30cos B A v v = 于是 ωr v v A B 3 230 cos = =ο

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

第3章--振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。 解:系统具有一个自由度,选复摆转角?为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =? 其中 )(22 a g P J C O += ρ 得到复摆运动微分方程为 ?? ρcos )(22 Pa a g P C =+ 或 0cos )(22 =-+?? ρga a C 3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。 解:系统具有一个自由度,选θ为广义坐标。 半圆柱体在任意位置的动能为: 222 1 21ωC C J mv T += 用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2 C C m J ρ= 故 222222 1)cos 2(21θρθθ C m Re R e m T +-+= 系统具有理想约束,重力的元功为 题3-1图 题3-2图

θθδd mge W sin -= 应用动能定理的微分形式 W dT δ= θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd m g e d m R e d m R e d R e m C s i n s i n c o s 2)(2222-=+-++ 等式两边同除dt , θθθθθθθθθθ ρ s i n s i n c o s 2)(2222m g e m R e m R e R e m C -=+-++ 0≠θ ,等式两边同除θ 故微分方程为 0s i n s i n )c o s 2(2222=+++-+θθθθρθ m g e m R e Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为 0])[(22=++-θθρge r R C 要点及讨论 (1)本题也可以用平面运动微分方程求解。系统的受力图与运动分析图如图(b )所示。列写微分方程 ??? ??--=-=-=④③② θ θθρsin )cos (2Ne e R F m mg N y m F x m C C C 上述方程包含C x ,C y ,θ ,F ,N 五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标θ之间的关系 ?? ?-=-=θθ θcos sin e R y e R x C C , ???=-=θθθθθ sin cos e y e R x C C 所以 ?????+=+-=⑥ ⑤22cos sin sin cos θθθθθθθθθ e e y e e R x C C 运动学方程式⑤⑥与方程②③④联立,消去未知约束力N ,F ,就可以得到与式①相同的系统运动微分方程。 因为在理想约束的情况下,未知约束力在动能定理的表达式中并不出现,所以用动能定理解决已知力求运动的问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统的动能 222222 1)c o s 2(21θρθθ C m Re R e m T +-+=

运动微分方程推导

以应力表示的黏性流体运动微分方程的推导 1. 黏性流体的内应力 黏性流体在运动时,表面力不仅有法向应力,还有切向应力,因此黏性流体的表面力不垂直于作用面。 如在任一点取一微小的正六面体,如图所示,作用在平面ABCD 上的力 有法向应力 xx p ,与切向应力xy τ和xz τ。应力符号的第一个字母表示作 用面的外法线方向,第二个脚标表示应力方向。 流体场内任一点的应力状况,即该点流体微团在任一方向的作用面上的应力,都可以用通过该点的三个相互垂直的作用面上的九个应力分量来表示。 2. 以应力表示的运动微分方程 在黏性流体中取一边长为dx,dy,dz 的长方体。各表面应力的方向如图所示。为清晰起见,其中两个面上的应力符号未标。各应力的值均为代数值,正直表示应力沿相应坐标系的正向,反之亦然。由于流体不能承受拉力,因此,

xx p yy p ,zz p 必为负值。 由牛顿第二定律,x 方向的运动微分方程为: Xdxdydz ρ+xx p dydz +[-(xx p - xx p x ??dy )dydz ]+ yx τdxdz +[-(yx τ- yx y τ??dy )dxdz ]+ zx τdxdy +[-(zx τ- zx z τ??dz )]x du dxdy dxdydz dt ρ= 等式两边分别除以 ρ,然后分别对x,y,z 求偏导,得到: 1 1 ( )zx x XX du P yx X X y z dt τρρ τ??+ + +=???? (1) 同理,在y 方向,由牛顿第三定律得:

[()][)][()] yy yy yy xy xy xy zy zy zy y Ydxdydz dxdz dy dxdz y dydz dx dydz x dxdy dz dxdy z dxdydz dt p p p du ρρττ τ ττ τ + +-- + ?+-- + ?+ +-- ?=??? 等式两边同时除以 ρ,然后分别对x,y,z 求偏导得: 1 1 ( )yy zy xy y Y y z x dt p du ρρ ττ+ ++ = ?????? (2)

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

质点运动微分方程

第3篇 动力学 第10章 质点运动微分方程 一、目的要求 1.对质点动力学的基本概念(如惯性、质量等)和动力学基本定律要在物理课程的基础上进一步理解其实质。 2.深刻理解力和加速度的关系,能正确地建立质点的运动微分方程,掌握质点动力学第一类基本问题的解法。 3.掌握质点动力学第二类基本问题的解法,特别是当作用力分别为常力、时间函数、位置函数和速度函数时,质点直线运动微分方程的积分求解方法。对运动的初始条件的力学意义及其在确定质点运动中的作用有清晰的认识,并会根据题目的已知条件正确提出运动的初始条件。 二、基本内容 1.基本概念: 动力学的基本定律,质点的运动微分方程;质点动力学的两类基本问题。 2.主要公式: (1)牛顿第二定律:a m F =(式中,质点的质量为m ,所受合力为F ,其加速度为a 。) (2)质点运动微分方程 1)矢径形式:22dt r d m F =或F r m =,∑=i F F 2)直角坐标形式:∑=x F dt x d m 22,∑=y F dt y d m 22,∑=z F dt z d m 22 3)自然坐标形式:2n m F υρ=∑,d m F dt τυ =∑,∑ = b F 0 强调:动力学基本定律仅在惯性参考系中成立,因此,公式中的速度、加速度指的是绝对速度和绝对加速度。 三、重点和难点 1.重点: (1)建立质点运动微分方程。 (2)求解质点动力学的两类基本问题。 2.难点: 在质点动力学第二类问题中,根据题目所要求的问题对质点运动微分方程进行变量交换后再积分的方法。 四、教学提示 1.建议 (1)在复习物理课程有关内容的基础上,进一步理解动力学各定律的实质,了解古典力学的适用范围。 (2)复习和运用静力学中的合力投影定理与点的运动学知识,学习如何建立不同形式的质点运动微分方程。 (3)注意区分质点动力学的两类基本问题及其解题特点,归纳动力学问题的解题步骤。 2.建议学时 课内(2学时)课外(3学时) 3.作业 10-5,10-12,10-14

理论力学-点的合成运动

第六章点的合成运动 一、是非题 1、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。() 2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。() 3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。() 4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。() 5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。() 6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。() 7、当牵连运动定轴转动时一定有科氏加速度。() 8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。() 二、选择题 1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰 接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴 转动。今以圆盘边缘上的一点M为动点,OA为动坐标,当AM 垂直OA时,点M的相对速度为。 ①υr=Lωr,方向沿AM; ②υr=r(ωr-ω),方向垂直AM,指向左下方; ③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方; ④υr=rωr,方向垂直AM,指向在左下方。 2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小α r= ;牵连加速度的大小αe = ;科氏 加速度的大小αk = 。方向均需在图中画出。 ①Lω2; ②0; ③3Lω2;

质点运动微分方程

质点运动微分方程 班级 学号 姓名 一、是非题 1、只要知道作用在质点上的力,那么质点在任一瞬时的运动状态就完全确定了。 ( ) 2、惯性参考系中,不论初始条件如何变化,只要质点不受力的作用,则该质点应保持静止或等速直线运动状态。 ( ) 3、作用于质点上的力越大,质点运动的速度越高。 ( ) 4、牛顿定律适用于任意参考系。 ( ) 5、 一个质点只要运动,就一定受有力的作用,而且运动的方向就是它受力的方向。 ( ) 二、选择题 1、质点从某一高度处沿水平方向抛出,所受介质阻力为R= -k v, 如图所示, 质点运动微分方程为 。 (1)x k x m (2)x k x m y k mg y m y k mg y m (3)x k x m (4)x k x m y k mg y m y k mg y m 2、如图(a )(b )所示,物体A ,B 的重量分别为A P ,B P ,且B A P P ; A P F 。若不计滑轮的质量则两种情形下,重物 B 的加速 度 。 (1) b B a B a a (2) b B a B a a (3) b B a B a a (4)无法确定 3、在图示圆锥摆中,球M 的质量为m ,绳长l ,若 角保持不 变,则小球的法向加速度为 。 (1) sin g (2) cos g (3) gtg (4) gctg 三、填空题 1、铅垂悬挂的质量——弹簧系统,其质量为m ,弹簧刚度系数为k 。若坐标原点分别取在弹簧静 伸长处和未伸长处,则质点的运动微分方程可写成 和 。 2、质量kg m 2 的重物M ,挂在长m l 5.0 的细绳下端,重物受到水平冲击后,获得了速度 s m v /50 ,则此时绳子的拉力等于 3、知A 物重P=20N ,B 物重Q=30N ,滑轮C 、D 不计质量,并略去各处摩擦,则绳水 平段的拉力为 。

理论力学运动学基础 (1)

第五章运动学基础 一、是非题 1.已知直角坐标描述的点的运动方程为X=f1(t),y=f2(t),z=f3(t),则任一瞬时点的速度、加速度即可确定。()2.一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,尚不能决定该点是作直线运动还是作曲线运动。()3.切向加速度只表示速度方向的变化率,而与速度的大小无关。()4.由于加速度a永远位于轨迹上动点处的密切面内,故a在副法线上的投影恒等于零。()5.在自然坐标系中,如果速度υ=常数,则加速度α=0。()6.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。()7.刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。()8.若刚体内各点均作圆周运动,则此刚体的运动必是定轴转动。()9.定轴转动刚体上点的速度可以用矢积表示为v=w×r,其中w是刚体的角速度矢 量,r是从定轴上任一点引出的矢径。() 10、在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平动。() 二、选择题 1、已知某点的运动方程为S=a+bt2(S以米计,t以秒计,a、b为常数),则点的轨迹。 ①是直线;②是曲线;③不能确定。 2、一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量。 ①平行;②垂直;③夹角随时间变化。 3、刚体作定轴转动时,切向加速度为,法向加速度为。 ①r×ε②ε×r ③ω×v④v×ω 4、杆OA绕固定轴O转动,某瞬时杆端A点的加速度 α分别如图(a)、(b)、(c)所示。则该瞬时的角速度为零, 的角加速度为零。 ①图(a)系统;②图(b)系统;③图(c)系统。

热传导+对流微分方程推导

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m 。 λ——导热系数,又称热导率,/()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(thermal conductivity )及其影响因素 导热系数λ( /()Kcal mh C o )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

运动微分方程

JLU 物理与光电工程学院第一章质点力学之1.4运动微分方程

JLU 物理与光电工程学院§1.4 质点运动定律 1. 第一定律是第二定律所不可缺少的前提, 因为第一定律为整个力学体系选定了一类特殊的参考系-----惯性参考系 着重明确: 力的独立作用原理牛顿三定律完整的牛顿力学理论体系牛顿力学:牛顿三定律为基础的动力学理论和牛顿的万有引力定律(引力理论).

JLU 物理与光电工程学院3. 牛顿第三定律 两个质点间的作用力和反作用力总是同时成对出现, 大小相等, 方向相反, 作用在同一条直线上. 2.第二定律中的质量是惯性质量,与万有引力中的质量相比,近年来的实验结果已经证实相差不到10-12. 爱因斯坦把引力质量等于惯性质量作为广义相对论的基本公设.

JLU 物理与光电工程学院4. 力的独立作用原理: 如果一个质点同时受多个力的作用, 这些力各自产生的动力学效果不受其他力存在的影响. m F a 11r r =m F a 22r r =m F a n n r r =… n a a a a r L r r r +++=21n a m a m a m a m r L r r r +++=21∑=+++=i n F F F F r r L r r 21),,(t r r F r m i &r r r &&r ∑=力的独立作用原理指出, 力不可以是加速度的函数.

JLU 物理与光电工程学院5.经典力学中的力 1)在牛顿力学中, 力由牛顿第二定律定义. 牛顿第二、第三定律指出: 力是物体间的相互作用, 力的动力学效果是使受力质点产生加速度. 2)万有引力定律: 任何两质点间均存在相互作用引力, 方向沿两质点连线, 大小为: 2 2 1 /r m Gm F =3)经典力学中其他常见的力:重力;弹簧弹性力;柔软绳的张力;刚性线或面的支撑力;刚性线或面的摩擦力;洛伦兹力;质点在流体中受流体阻力.6.力学相对性原理和经典力学时空观 (1)力学相对性原理:对任何惯性系,力学运动规律完全相同.或者说,对力学运动规律而言,一切惯性系都是等价的.

变质量物体的运动微分方程研讨(doc 6页)

变质量物体的运动微分方程研讨 (doc 6页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

变质量物体的运动微分方程及火箭运动 专业:物理学 学号: 0840******** 姓名: 秦瑞锋

变质量物体的运动微分方程及火箭运动 秦瑞锋 (物理与电气工程系09级物理学专业,0840********) 摘要:我们已经了解了一定质量的系统的运动学方程和动力学方程,但在实际问题中,系统的质量往往是变化(按一定规律减少或增加)的,我们所学的一定质量的物体的运动学或动力学方程却不适用于变质量系统,下面我们将研究变质量系统的运动学和动力学的若干方程,以及变质量物体的运动规律. 关键字: 变质量系统 运动微分方程 火箭 动能定理 动量定理 一、变质量物体的基本运动微分方程 在以前的学习中,我们接触到的质点或者质点组系统运动过程中,本身的质量不会发生变化。但在实际生活和自然现象中,在某时刻有一部分质量进入或者离开我么们所要研究的对象,经常有变质量系统的运动情况,例如,地球的质量由于陨石的降落而增加,飞行中的喷气飞机和火箭随着燃料的减少质量减少,浮冰由于溶化而减少质量,运动着的传送带在某时可添加或取走货物,下降的陨石由于空气的作用发生破碎或者燃烧使质量减少……这些质点系在运动过程中,不断发生系统外的质点并入,或系统内的质点分离,以致系统的总质量随时间不断改变,我们称这些系统为变质量系统。那么该用怎样的方法研究变质量系统的运动情况呢? 我们可以假设在任何时刻,系统的分离或并入的质量是小量,两次发生分离或并入的时间间隔是小量,在这些理想的假设下,离开质点系的质量 )(m 2 t 和进入质点系的质量 )(1 t m 是时间的连续可微函数,如果系统的质量m t 在t=0时刻为m 0 ,则它随着时间的 变化规律为)()()(2 1 t t t m m m m +-= ,那对应的关于质量的一些物理量也是对时间的 可微函数,得到微分方程后,进行积分,问题可解决。 设变质量质点的质量m 是时间t 的函数,即m =m (t )。在瞬时t ,质点的质量为 m (t ),质点对于定坐标系Oxyz 的速度为v (图1),即将与之合并的微粒的质量为d m (t ),其对Oxyz 的速度为u 。在瞬时t +d t ,微粒与质点合并。于是质点的质量变为(m +d m ),其对Oxyz 的速度成为v +d v 。对于质量分出的情况则d m <0,即 dt dm 为负。 m 和d m 所组成的质点系在瞬时t 的动量为m v +u d m ;在瞬时t +d t 的动量为 (m +d m )(v +d v )。在d t 时间内,动量的增加t F p d ??=ρ ρ为: p d ρ=(m +d m ))(v d v ρρ+-(m v ρ+u ρ d m )。

欧拉运动微分方程各项的单位

欧拉运动微分方程各项的单位

————————————————————————————————作者: ————————————————————————————————日期: ?

第四章 1 欧 拉 运 动 微 分 方 程 d d u f t p =-?1 ζ 各 项 的 单 位 是: (1) 单 位 质 量 力 ? ?(2) 单 位 重 能 量 ?(3) 单 位 重 的 力 ? (4) 上 述 回 答 都 不 对 2. 欧 拉 运 动 微 分 方 程 在 每 点 的 数 学 描 述 是: (1)流入的质量流量等于流出的质量流量(2) 单 位 质 量 力 等 于 加 速 度 (3) 能 量 不 随 时 间 而 改 变?(4) 服 从 牛 顿 第 二 定 律? 3. 欧 拉 运 动 微 分 方 程: (1) 适 用 于 不 可 压 缩 流 体, 不 适 用 于 可 压 缩 流 体? (2) 适 用 于 恒 定 流, 不 适 用 非 恒 定 流? (3) 适 用 于 无 涡 流, 不 适 用 于 有 涡 流? (4) 适 用 于 上 述 所 提 及 的 各 种 情 况 下 流 体 流 动 4. 水 流 一 定 方 向 应 该 是( ) (1) 从 高 处 向 低 处 流; (2) 从 压 强 大 处 向 压 强 小 处 流; (3) 从 流 速 大 的 地 方 向 流 速 小 的 地 方 流; (4) 从 单 位 重 量 流 体 机 械 能 高 的 地 方 向 低 的 地 方 流。 5. 理 想 流 体 流 经 管 道 突 然 放 大 断 面 时, 其 测 压 管 水 头 线( ) (1) 只 可 能 上 升; ??(2) 只 可 能 下 降; (3) 只 可 能 水 平;? (4) 以 上 三 种 情 况 均 有 可 能。 6 在应用恒定总流的能量方程时,可选用图中的( ) 断 面, 作为计算断面。 (a)1,2,3,4,5?(b )1,3,5 (c )2,4?(d )2,3,4 1 122 3 3 4 4 5 5 7. 设有一恒定汇流,如图所示,Q Q Q 312=+, 根据总流伯努力方程式,则有(?) ()12221111 2 2222 2 3333 2 13 23 z p g V g z p g V g z p g V g h h w w + + ++ + =+ + ++--ραραρα

第10章 质点的运动微分方程(邱)

第十章 质点的运动微分方程 10-1 一质量为m 的物体放在匀速转动的水平转台上,它与转轴的距离为r ,如图所示。设物体与转台的摩擦因数为f ,求当物体不致因转台旋转而滑出时,水平台的最大转速。(答:r/min 30 max r fg n π=) 10-2 图示A 、B 两物体的质量分别为m 1与m 2,二者用一绳子连接,此绳跨过一滑轮,滑轮半径为r 。如在开始时,两物体的高度差为h ,而且m 1>m 2,不计滑轮质量。求由静止释放后,两物体达到相同的高度所需的时间。(答:()()g m m h m m t 2121-+= )

10-3 在图示离心浇注装置中,电动机带动支承轮A ,B 作同向转动,管模放在两轮上靠摩擦传动而旋转。使铁水浇入后均匀地紧贴管模的内壁而自动成型,从而可得到质量密实的管形铸件。如已知管模内径D=400mm ,试求管模的最低转速n 。(答:n=67 r/min ) 10-4 质量皆为m 的A 、B 两物块以无重杆光滑铰接,置于光滑的水平及铅垂面上,如图所示。当θ=60°时自由释放,求此瞬时杆AB 所受的力。(答:mg F 2 3 )

10-5 小车以匀加速度a 沿斜面向上运动,在小车的平顶上放一重P 的物块,随车一同运动。问物块与小车间的摩擦因数f 应为多少?(答:g a a f +≥ θθsin cos ) 10-6 重物A 和B 的质量分别为m A =20 kg 和m B =40 kg ,用弹簧连接如图。重物A 按t H y π2cos =的规 律作铅垂简谐运动,其中振幅H=1 cm ,周期T=0.25 s 。求B 对于支承面的压力的最大值和最小值。 (答:F max =714 N,F min =462 N )

相关主题
文本预览
相关文档 最新文档