当前位置:文档之家› 质谱分析技术简介

质谱分析技术简介

质谱分析技术简介
质谱分析技术简介

材料分析测试技术-习题

第一章 1.什么是连续X射线谱?为什么存在短波限λ0? 答:对X射线管施加不同的电压,再用适当的方法去测量由X射线管发出的X射线的波长和强度,便会得到X射线强度与波长的关系曲线,称之为X射线谱。在管电压很低,小于20kv时的曲线是连续的,称之为连续谱。大量能量为eV的自由电子与靶的原子整体碰撞时,由于到达靶的时间和条件不同,绝大多数电子要经过多次碰撞,于是产生一系列能量为hv的光子序列,形成连续的X射线谱,按照量子理论观点,当能量为eV的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,在极限情况下,极少数的电子在一次碰撞中将全部的能量一次性转化为一个光量子,这个光量子具有最高的能量和最短的波长,即λ0。 2.什么是特征X射线?它产生的机理是什么?为什么存在激发电压Vk? 答:当X射线管电压超过某个临界值时,在连续谱的某个波长处出现强度峰,峰窄而尖锐,这些谱线之改变强度,而峰位置所对应的波长不便,即波长只与靶的原子序数有关,与电压无关,因为这种强度峰的波长反映了物质的原子序数特征,故称为特征X射线,由特征X射线构成的X射线谱叫做特征X射线谱。 它的产生是与阳极靶物质的原子结构紧密相关当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中的某个电子击出,或击到原子系统之外,击出原子内部的电子形成逸出电子,或使这个电子填补到未满的高能级上。于是在原来位置出现空位,原子系统处于激发态,高能级的电子越迁到该空位处,同时将多余的能量e=hv=hc/λ释放出来,变成光电子而成为德特征X射线。 由于阴极射来的电子欲击出靶材的原子内层电子,比如k层电子,必须使其动能大于k 层电子与原子核的结合能Ek或k层的逸出功Wk。即有eV k=1/2mv2〉-Ek=Wk,故存在阴极电子击出靶材原子k电子所需要的临界激发电压Vk。 3、X射线与物质有哪些互相作用? 答;X射线的散射:相干散射,非相干散射 X射线的吸收:二次特征辐射(当入射X射线的能量足够大时,会产生二次荧光辐射); 光电效应:这种以光子激发原子所产生的激发和辐射过程;俄歇效应:当内层电子被击出成为光电子,高能级电子越迁进入低能级空位,同时产生能量激发高层点成为光电子。 4、线吸收系数μl和质量吸收系数μm的含义 答:线吸收系数μl:在X射线的传播方向上,单位长度的X射线强度衰减程度[cm-1](强度为I的入射X射线在均匀物质内部通过时,强度的衰减率与在物质内通过的距离x成正步-dI/I=μdx,强度的衰减与物质内通过的距离x成正比)。与物质种类、密度、波长有关。质量吸收系数μm:他的物理意义是单位重量物质对X射线的衰减量,μ/P=μm[cm2/g]与物质密度和物质状态无关,而与物质原子序数Z和μm=kλ3Z3,X射线波长有关。 5、什么是吸收限?为什么存在吸收限? 答:1)当入射光子能量hv刚好击出吸收体的k层电子,其对应的λk为击出电子所需要的入射光的最长波长,在光电效应产生的条件时,λk称为k系激发限,若讨论X射线的被物质吸收时,λk又称为吸收限。 当入射X射线,刚好λ=λk时,入射X射线被强烈的吸收。当能量增加,即入射λ〉λk时,吸收程度小。

0804仪器科学与技术一级学科简介

0804仪器科学与技术一级学科简介 一级学科(中文)名称:仪器科学与技术 (英文)名称:Instrumentation Science and Technology 一、学科概况 仪器科学与技术学科是一个古老而又极具生命力的学科。它伴随着人类最早的生产和社会活动的开始而萌生。古代的测量器具尽管简单,但也基本具备了测量单位、标准量和标准量与被测量比对过程等测量的基本属性,如我国氏族社会已有“结绳记事”、“契木计时”的记载;大禹治水时使用了准绳与规矩;公元前221年,我国秦朝已形成量值统一的度量衡制度和器具;《汉书·律历志》中用“累黍定尺”和“黄钟律管”对长度进行了定义,其中用发出固定音高的“黄钟律管”之长来定长度标准是我国古代伟大的发明创造,这种方法与几千年后的今天,世界上采用光波波长定义长度基准,从基本原理上有惊人的相似之处;此外还产生了朴素的测量方法,如利用平行光投影的相似现象间接地测量物体的长度;进而产生了以测量单位、标准量、测量量值与被测量值转换关系为基础的测量方法和测量仪器,如日晷和浑天仪等。在这个漫长的历史过程中,尽管该学科在促进生产力发展与社会进步中发挥了巨大作用,但仍处于学科的萌芽阶段。 直至1898年国际米制公约建立,初步形成了以米和公斤等为基本计量单位、相应的计量标准器与测量仪器、量值溯源方法与测量理论;进而衍生出作为该学科理论基础的测量误差理论和计量学等,学科基本理论框架初步形成。随着近代测量科学与仪器技术的学术价值和实验价值显著提升,近代测量科学逐渐从近代物理学和化学等基础学科中分离出来,并逐渐形成为一门独立的学科,成为近代科学的重

要基础学科之一。门捷列夫曾有著名论断:“科学是从测量开始的”,“没有测量就没有科学”,“测量是科学的基础”。 现代测量学是前沿科学领域中最活跃和最有生命力的学科之一。测量科学研究的重大突破性进展和新原理仪器的发明直接或间接地引发了前沿重大科学问题的突破。这在历届诺贝尔奖的研究成果中得到集中体现。到2011年为止,诺贝尔物理学奖、化学奖、生理学和医学奖获奖项目总数为352项,获奖总人数为547名,直接因测量科学研究成果或直接发明新原理仪器而获奖的项目总数为37(占 1 0.5%),总人数为50(占9.1%),如电子显微镜、质谱仪、CT断层扫描仪、扫描隧道显微镜和原子力显微镜等;同时69%的物理学奖、75%的化学奖、92%的生理学和医学奖都是借助于各种先进的高端仪器完成的。 仪器科学与技术的发展,一直与和物理学、化学、生理学和医学等基础学科和前沿学科的发展与重大前沿科学问题的突破紧密地联系在一起。每次科学技术研究取得的重大进展都会推动仪器科学与技术产生跨越式发展。传统仪器科学与技术以牛顿力学、电磁学、经典光学、热力学、化学等为理论基础,建立了长度、力学、热工、电磁、光学、声学、电子、时间频率、电离辐射等计量测试专业与相应的测量仪器技术产业。 现代仪器科学与技术以电动力学、量子力学、现代光学、电子学等为理论基础,同时借助于现代新技术的突破性进展,如微电子技术、计算机技术、激光技术、光子技术、光电子技术和超导技术等,使仪器科学与技术进入以量子计量为标志的新阶段,如激光干涉测量技术、原子频标计量技术、基于电子隧道效应的扫描隧道显微仪器技术、基于量子化霍尔效应的电参量计量技术研究等相继迅速取得突破,并发展成为新的仪器技术,进而促进仪器科学与技术的迅速发展。 仪器科学与技术学科具有与众多相关学科紧密交叉与融合的特

浅谈质谱技术及其应用word精品

浅谈质谱技术及其应用 摘要:质谱分析灵敏度高,分析速度快,被广泛应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。 关键词:质谱仪应用发展 1质谱技术 质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。 1.1质谱原理 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 1.2质谱技术的发展 1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。第一台质谱仪是英国科学家弗朗西斯阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础 1.3质谱技术的分类

《材料分析测试技术》试卷(答案)

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1. X射线管主要由阳极、阴极、和窗口构成。 2. X射线透过物质时产生的物理效应有:散射、光电效应、透射X射线、和热。 3. 德拜照相法中的底片安装方法有:正装、反装和偏装三种。 4. X射线物相分析方法分:定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5. 透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6. 今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8. 扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1. X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co ;b. Ni ;c. Fe。 3. X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用(c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。 4. 能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b. 物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差;b. 像散;c. 色差。 6. 可以帮助我们估计样品厚度的复杂衍射花样是(a)。 a.高阶劳厄斑点;b. 超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子;b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么? 答:X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小 适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一 个最佳厚度(t =

质谱讲义(AB)

质谱(MS) mass spectrometry 质谱法是将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离的分析技术;质谱仪是实现上述分离分析技术,从而测定物质的质量与含量及其结构的仪器。质谱分析法是一种快速,有效的分析方法,利用质谱仪可进行同位素分析,化合物分析,气体成分分析以及金属和非金属固体样品的超纯痕量分析。在有机混合物的分析研究中证明了质谱分析法比化学分析法和光学分析法具有更加卓越的优越性,其中有机化合物质谱分析在质谱学中占最大的比重,全世界几乎有3/4仪器从事有机分析, 现在的有机质谱法,不仅可以进行小分子的分析,而且可以直接分析糖,核酸,蛋白质等生物大分子,在生物化学和生物医学上的研究成为当前的热点,生物质谱学的时代已经到来,当代研究有机化合物已经离不开质谱仪。 一.仪器概述 1.基本结构 质谱仪由以下几部分组成 供电系统 ┏━━━━━┳━━━━━━╋━━━━━━━┳━━━━━━┓ 进样系统离子源质量分析器检测接收器数据系统 ┗━━━━━┻━━┳━━━┻━━━━━━━┛ 真空系统 (1)进样系统:把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。 (2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。 EI(Electron Impact Ionization):电子轰击电离——最经典常规的方式,其他均属软电离,EI使用面广,峰重现性好,碎片离子多。缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。 CI(Chemical Ionization):化学电离——核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的[M+H]+或[M-H]+等‘准’分子离子。得到碎片少,谱图简单,但结构信息少一些。与EI 法同样,样品需要汽化,对难挥发性的化合物不太适合。

质谱技术简介

成绩 中国矿业大学 2014 级硕士研究生课程考试试卷 考试科目现代仪器分析 考试时间2015年4月 学生姓名肖剑 学号TS14040097 所在院系化工学院 任课教师李保民 中国矿业大学研究生院培养管理处印制

质谱技术简介 摘要: 质谱作为一种分子质量信息获得的有力武器,以其微量、快速、灵敏、高精确度等优良性能,广泛应用于现代化学、生物、食品等领域。本文从质谱法的基本原理、色谱-质谱连用技术及质谱技术的新发展三个方面对质谱法进行了一个慨括性的综述,加强了对质谱分析的了解,扩展了质谱连用技术的相关知识,为更好的了解使用质谱提供了一个有力的支持。 关键词:质谱、质谱机理、GC-MS、LC-MS、新发展

前言 质谱,又称质谱法(mass spectrometry,MS),是通过不同的离子化方式,将试样(原子或分子)转化为运动的气态离子,并按照质荷比(m/z)大小进行分离检测的分析方法,是一种与光谱并列的谱学方法。根据质谱图上峰的位置和相对强度大小,质谱可对无机物、有机物和生物大分子进行定性和定量分析。 Thomson JJ于1906年发明质谱,并运用于发现非放射性同位素和无机元素分析。20世纪40年代以后开始用于有机物分析。60年代出现了气相色谱-质谱联用仪,是质谱成为鉴定有机物结构的重要方法。80年代初期,快原子轰击电离的应用,是质谱更好的运用于生物化学大分子。90年代以来,随着电喷雾电离和基质辅助激光解吸电离的应用,已形成生物质谱学一新学科[1]。目前,质谱法已经日益广泛的应用于原子能、化学、电子、冶金、医药、食品、陶瓷等工业生产部门,农业科学研究部门,以及物理、电子与离子物理、同位素地质学、有机化学等科学技术领域[2]。 一.质谱法基本原理 质谱法的基本原理是试样分子或原子在离子源中发生电离,生成各种类型带电粒子或离子,经加速电场的作用获得动能形成离子束;进入质量分析仪,在其中再利用带电粒子在电场或磁场中运动轨迹的差异,将不同质荷比(m/z)的离子按空间位置或时间的不同而分离开;然后到达离子接收器将离子流转变为电信号,得到质谱图。 质谱仪基本结构,化合物的质谱是由质谱仪测得的。质谱仪是使分析试样离子化并按质荷比大小进行分离、检测和记录的仪器。一般质谱仪由进样系统,离子源,质量分析仪,离子接收器及信号放大记录系统组成[3],如下图所示: 二.色谱-质谱连用技术 色谱是一种快速、高效的分离技术,但不能对分离出的每个组分进行鉴定;质谱是一种重要的定性鉴定和结构分析的方法,一种高灵敏度、高效的定性分析工具,但没有分离能力,不能直接分析混合物。二者结合起来,把质谱仪作为色谱仪的检测器将能发挥二者的优点,具有色谱的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。 1.GC-MS

DART实时直接分析质谱离子源技术

DART实时直接分析质谱离子源技术------升级你的LC/MS 2005年美国PITTCON金奖,及R&D 100金奖产品 DART SVP System 自2005年发明以来,直接实时分析-质谱(DART-MS)作为一种崭新的质谱分析技术被快速广泛地应用于药物发现与开发(ADME)、食品药品安全检测、司法鉴定、材料分析及相关化学和生物化学分析等领域,跨国制药公司(如Roche,Merck, Amgen, GSK, Pfizer,Eli Lilly)、国家执法部门(如FBI,FDA,EPA)等相继采用。 相比于现行通用的液-质联用(LC-MS)技术,DART-MS 分析将不再需要繁杂的样品制备和耗时的色谱分离。作为一种“绿色”分析检测技术,DART-MS 将急剧缩短样品分析周期,极大地减少对化学溶剂的消耗和对固定资产及人员的投资。 DART(direct analysis in real time)工作原理: DART 是一种非表面接触型解析/离子化质谱分析离子源技术。其原理是在大气压条件下,中性或惰性气体(如氮气或氦气)经放电产生激发态原子,对该激发态原子进行快速加热和电场加速,使其解析并瞬间离子化待测样品表面的标志性化合物或待测化合物,进行质谱或串联质谱检测,从而实现样品的实时直接分析。 DART主要功能: 快速--DART能在几秒钟内分析存在于气体、液体、固体或材料表面的化合物,从而对样品无损耗定性和定量分析。 简便--样品再也无需冗繁的样品处理和制备。对块状样品和形状怪异的固体样本的分析特别有效,再无需关注样本的几何形状。 高效--在沥青、混凝土、玻璃、塑料、人皮肤、水果、蔬菜、衣服以及名片信用卡表面的化学战剂、爆炸物、毒品药物、体液(血液、唾液以及尿) 、代谢物、肽、低聚糖、高分子材料 以及金属有机化合物等均可以进行实时、无接触检测。 DART适用性: 用于离子检测的质谱仪可以是各种类型的质谱仪(如TOF,离子阱,四极杆或各类串接或杂合质谱)。 DART 可以与所有质谱厂商的各型号的液质联用仪联机。这些厂家包括但不限于:AB-SCIEX,Agilent, Bruker, JOEL, ThermoFisher, Waters等。

对质谱分析技术的理解

对质谱分析技术的理解 袁媛 (天津师范大学物理与电子信息学院物理一班 09506042) 摘要:着重从以下几个方面阐明质谱分析技术:(1)质谱分析技术的定义;(2)质谱分析技术的特点;(3)质谱分析技术的基本过程;(4)质谱仪的发展;(5)质谱仪的分类;(6)质谱仪的系统组成;(7)质谱仪工作过程及基本原理;(8)质谱分析技术的应用。 关键词:质谱质谱仪离子质量分子 作者简介:天津师范大学 物理与电子信息学院 天津 300387 引言: 在《原子与亚原子物理》中,简单学习了质谱分析方法,它是是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。这里将从多层面,多角度对质谱分析技术进行理解。 正文: 一、质谱分析技术的定义 质谱分析法(Mass Spectrometry, MS)是在高真空系统中测定样品的分子离子及碎片离子质量,以确定样品相对分子质量及分子结构的方法。化合物分子受到电子流冲击后,形成的带正电荷分子离子及碎片离子,按照其质量m和电荷z的比值m/z(质荷比)大小依次排列而被记录下来的图谱,称为质谱。在质谱分析过程中,被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。 二、质谱分析法的特点 1.应用范围广。测定样品可以是无机物,也可以是有机物。应用上可做化合物的结构分析、测定原子量与相对分子量、同位素分析、生产过程监测、环境监测、热力学与反应动力学、空间探测等。被分析的样品可以是气体和液体,也可以是固体。

2.灵敏度高,样品用量少。目前有机质谱仪的绝对灵敏度可达50pg(pg为10?1 2 g),无机质谱仪绝对灵敏度可达10?14 。用微克级样品即可得到满意的分析结果。 3.分析速度快,并可实现多组分同时测定。 4.与其它仪器相比,仪器结构复杂,价格昂贵,使用及维修比较困难。对样品有破坏性。 三、质谱分析的基本过程 质谱仪是一种测量带电粒子质荷比的装置。它利用带点粒子在电场和磁场中的运动行为(偏转、漂移、振荡)进行分离和测量。在离子源中样品粒子被电离和解离,电离后成为带电单位电荷的分子离子。其解离后则生成一系列的碎片,这些碎片可能形成带正电荷的碎片离子,或带负电荷或呈中性。 将分子离子和碎片离子引入到一个强的正电场中,使之加速,加速电位通常为6~8kV,此时,所有带单位正电荷的离子都将获得动能。由于动能达数千电子伏,可以认为此时各种带单位正电荷的离子都有近似相同的动能。但是不同质荷比的离子则具有不同的速度,利用离子不同的质荷比及其速度差异、质量分析可将其分离,然后由检测器测量其强度记录后获得一张以质荷比为横坐标、以相对强度为纵坐标的质谱图。(质荷比:m/z ,其中m为离子的质量数,z为离子携带电荷数。) 质谱分析的基本过程可以概括为以下四个环节: 1、通过合适的进样装置将样品引入并进行汽化; 2、汽化后的样品引入到离子源进行电离,即离子化过程; 3、电离后的离子经过适当的加速后进入质量分析器,按不同的质荷比进行分离; 4、经检测、记录,获得一张质谱图。 根据质谱图提供的信息,可以进行无机物和有机物定性和定量分析、复杂化合物的结构分析、样品中同位素比的测定以及固定表面的结构和组成的分析等。 四、质谱仪的发展 从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大

(完整版)材料分析测试技术部分课后答案

材料分析测试技术部分课后答案 太原理工大学材料物理0901 除夕月 1-1 计算0.071nm(MoKα)和0.154nm(CuKα)的X-射线的振动频率和能量。 ν=c/λ=3*108/(0.071*10-9)=4.23*1018S-1 E=hν=6.63*10-34*4.23*1018=2.8*10-15 J ν=c/λ=3*108/(0. 154*10-9)=1.95*1018S-1 E=hν=6.63*10-34*2.8*1018=1.29*10-15 J 1-2 计算当管电压为50kV时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能. E=eV=1.602*10-19*50*103=8.01*10-15 J λ=1.24/50=0.0248 nm E=8.01*10-15 J(全部转化为光子的能量) V=(2eV/m)1/2=(2*8.01*10-15/9.1*10-31)1/2=1.32*108m/s 1-3分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射;

(3)用CuKαX射线激发CuLα荧光辐射。 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。最内层能量最低,向外能量依次增加。 根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。由于释放的特征谱线的能量等于壳层间的能量差,所以K?的能量大于Ka 的能量,Ka能量大于La的能量。 因此在不考虑能量损失的情况下: CuKa能激发CuKa荧光辐射;(能量相同) CuK?能激发CuKa荧光辐射;(K?>Ka) CuKa能激发CuLa荧光辐射;(Ka>la) 1-4 以铅为吸收体,利用MoKα、RhKα、AgKαX射线画图,用图解法证明式(1-16)的正确性。(铅对于上述Ⅹ射线的质量吸收系数分别为122.8,84.13,66.14 cm2/g)。再由曲线求出铅对应于管电压为30 kv条件下所发出的最短波长时质量吸收系数。 解:查表得 以铅为吸收体即Z=82 Kαλ3 λ3Z3 μm Mo 0.714 0.364 200698 122.8 Rh 0.615 0.233 128469 84.13 Ag 0.567 0.182 100349 66.14 画以μm为纵坐标,以λ3Z3为横坐标曲线得K≈8.49×10-4,可见下图 铅发射最短波长λ0=1.24×103/V=0.0413nm λ3Z3=38.844×103 μm = 33 cm3/g 1-5. 计算空气对CrKα的质量吸收系数和线吸收系数(假设空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm3)。 解:μm=0.8×27.7+0.2×40.1=22.16+8.02=30.18(cm2/g) μ=μm×ρ=30.18×1.29×10-3=3.89×10-2 cm-1 1-6. 为使CuKα线的强度衰减1/2,需要多厚的Ni滤波片?(Ni的密度为8.90g/cm3)。1-7. CuKα1和CuKα2的强度比在入射时为2:1,利用算得的Ni滤波片之后其比值会有什么变化? 解:设滤波片的厚度为t 根据公式I/ I0=e-Umρt;查表得铁对CuKα的μm=49.3(cm2/g),有:1/2=exp(-μmρt) 即t=-(ln0.5)/ μmρ=0.00158cm 根据公式:μm=Kλ3Z3,CuKα1和CuKα2的波长分别为:0.154051和0.154433nm ,所以μm=K

质谱技术介绍样本

1. 基本原理 基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)是近年来发展起来的一种新型的软电离生物质谱, 其无论是在理论上还是在设计上都是十分简单和高效的。仪器主要由两部分组成: 基质附助激光解吸电离离子源( MALDI) 和飞行时间质量分析器( TOF) 。MALDI的原理是用激光照射样品与基质形成的共结晶薄膜, 基质从激光中吸收能量传递给生物分子, 而电离过程中将质子转移到生物分子或从生物分子得到质子, 而使生物分子电离的过程。因此它是一种软电离技术, 适用于混合物及生物大分子的测定。TOF的原理是离子在电场作用下加速飞过飞行管道, 根据到达检测器的飞行时间不同而被检测即测定离子的质荷比( M/Z) 与离子的飞行时间成正比 , 检测离子。MALDI-TOF-MS具有灵敏度高、准确度高及分辨率高等特点, 为生命科学等领域提供了一种强有力的分析测试手段, 并正扮演着越来越重要的作用。 2 分子量测定 分子量是有机化合物最基本的理化性质参数。分子量正确与否往往代表着所测定的有机化合物及生物大分子的结构正确与否。MALDI-TOF是一种软电离技术, 不产生或产生较少的碎片离子。它可直接应用于混合物的分析, 也可用来检测样品中是否含有杂质及杂质的分子量。分子量也是生物大分子如多肽、蛋白质等鉴定中首要的参数, 也是基因工程产品报批的重要数据之一。MALDI-TOF 的准确度高达0.1%~0.01%, 远远高于当前常规应用的SDS电泳与高效凝胶色谱技术, 当前可测定生物大分子的分子量高达600KDa。 我们第一次获得了SARS病毒N蛋白整体分子量

我们测定的某纳克级蛋白质的分子量 我们测定的某糖蛋白分子量 某外资企业的新型日用化学品的分子量分布

质谱知识总结

第四章:质谱法 第一节经验 1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。2)正离子模式下,样品还会出现M-1(M-H), M-15(M-CH3), M-18(M-H2O), M-20(M-HF), M-31(M-OCH3)等的峰。分子离子峰应具有合理的质量丢失.也即在比分子离子质量差在4-13,21-26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键.如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位. 3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。 如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。 基峰

研究高质量端离子峰, 确定化合物中的取代基 M-15(CH3); M-16(O, NH2 M-17(OH, NH3); M-18(H2O); M-19(F); M-26(C2H2); M-27(HCN, C2H3); M-28(CO, C2H M-29(CHO, C2H5); M-30(NO); M-31(CH2OH, OCH3); M-32(S, CH M-35(Cl); M-42(CH2CO, CH M-43(CH3CO, C3H7); M-44(CO2, CS (.CH3) M-27 (O) M-28 第二节: 基本原理 2.1基本原理 质谱是唯一可以确定分子式的方法。而分子式对推测结构是至关重要的。质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。 具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。由此可见质谱最简单形式的三项基本功能是: (1)气化挥发度范围很广的化合物; (2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物); (3)根据质荷比(m/z e)将它们分开,并进行检测、记录。由于多电荷离子产生的比例比单电荷离子要

质谱原理简介

质谱原理简介: 质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。 常见术语: 质荷比:离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z. 峰:质谱图中的离子信号通常称为离子峰或简称峰离子丰度:检测器检测到的离子信号强度. 基峰:在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰总离子流图;质量色谱图;准分子离子;碎片离子;多电荷离子;同位素离子总离子流图: 在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图. 质量色谱图指定某一质量(或质荷比)的离子其强度对时间所作的图. 利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是 LC/MS测定中最有用的方式。当样品浓度很低时LC/MS的TIC上往 往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在 LC/MS上都能反映出来,确定LC条件是否合适,以后进行MRM等 其他扫描方式的测定时可作为参考。 1.0 指与分子存在简单关系的离子,通过它可以确定分子量.液质中最常 见的准分子离子峰是[M+H]+或[M-H]-. 在ESI中,往往生成质量大于分子量的离子如

M+1,M+23,M+39,M+18......称准分子离子,表示为:[M+H]+,[M+Na]+ 等碎片离子: 准分子离子经过一级或多级裂解生成的产物离子碎片峰的数目及其丰度则与分子结构有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。 Ep hedri ne, MW = 165 多电荷离子: 指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构 -如共轭体系结构-才会形成多电荷离子.它的存在说明样品是较稳定 的?采用电喷雾的离子化技术, 可产生带很多电荷的离子,最后经计算机自动换算成单质/荷 比离子。 同位素离子由元素的重同位素构成的离子称为同位素离子各种元素的同位素,基本上按照其在自然界的丰度比出现在质谱中,这对于利用质谱确定化合物及碎片的元素组成有很大方便,还可利用稳定同位素合成标记化合物,如:氘等标记化合物,再用质谱法检出这些化合物,在质谱图外貌上无变化,只是质量数的位移,从而说明化合物结构,反应历程等 如何看质谱图: (1)确定分子离子,即确定分子量 氮规则:含偶数个氮原子的分子,其质量数是偶数,含奇数个氮原子 的分子,其质量数是奇数。与高质量碎片离子有合理的质量差,凡质量差在3~8和10~13,21~25之间均不可能,则说明是碎片或杂质。

质谱基本原理

质谱基本原理 质谱法是将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离的分析技术;质谱仪是实现上述分离分析技术,从而测定物质的质量与含量及其结构的仪器。质谱分析法是一种快速,有效的分析方法,利用质谱仪可进行同位素分析,化合物分析,气体成分分析以及金属和非金属固体样品的超纯痕量分析。在有机混合物的分析研究中证明了质谱分析法比化学分析法和光学分析法具有更加卓越的优越性,其中有机化合物质谱分析在质谱学中占最大的比重,全世界几乎有3/4仪器从事有机分析, 现在的有机质谱法,不仅可以进行小分子的分析,而且可以直接分析糖,核酸,蛋白质等生物大分子,在生物化学和生物医学上的研究成为当前的热点,生物质谱学的时代已经到来,当代研究有机化合物已经离不开质谱仪。 一.仪器概述 1.基本结构 质谱仪由以下几部分组成 供电系统 ┏━━━━━┳━━━━━━╋━━━━━━━┳━━━━━━┓ 进样系统离子源质量分析器检测接收器数据系统┗━━━━━┻━━┳━━━┻━━━━━━━┛ 真空系统 (1)进样系统:把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。 (2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。 EI(Electron Impact Ionization):电子轰击电离——最经典常规的方式,其他均属软电离,EI 使用面广,峰重现性好,碎片离子多。缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。 CI(Chemical Ionization):化学电离——核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的[M+H]+或[M-H]+等‘准’分子离子。得到碎片少,谱图简单,但结构信息少一些。与EI法同样,样品需要汽化,对难挥发性的化合物不太适合。 原理R + e-→R+·+ 2e-(电子电离)反应气为含H的 R为反应气体分子R+·+ R →RH+ + (R-H)·分子,例如异丁 M为样品分子RH+ + M →R + (M+H)+ (质子转移)烷,甲烷,氨气, R浓度>>M浓度R+·+ M →R + M+·(电荷交换)甲醇气等 R+·+ M →(R+M)+·(加合离子) FD(Field Desorption):场解吸——大部分只有一根峰, 适用于难挥发极性化合物,例如糖,应用较困难,目前基本被FAB取代。 FAB(Fast Atom Bombardment):快原子轰击——利用氩,氙,80年代初发明,或者铯离子枪(LSIMS,液体二次离子质谱),高速中性原子或离子对溶解在基质中的样品溶液进行轰击,在产生“爆发性”汽化的同时,发生离子-分子反应,从而引发质子转移,最终实现样品离子化。适用于热不稳定以及极性化合物等。FAB法的关键之一是,选择适当的(基质)底物,从而可以进行从较低极性到高极性的范围较广的有机化合物测定,是目前应用比较广的电离技术。不但得到分子量还能提供大量碎片信息。产生的谱介于EI与ESI之间,接近硬电离技术。生成的准分子离子,一般常见[M+H]+和[M+底物]+。另外:还有根据底物脱氢以及分解反应产生的[M-H]_ 容易提供电子的芳烃化合物产生M+

质谱 内标等知识

质谱定量的原则内标的选择 LC-MS 2009-11-01 19:44:11 阅读178 评论2 字号:大中小订阅 <3>质谱定量的原则04——系列讲座 内标 在做MS定量时应该使用内标。选择一个合适的内标,将能减少因为样品提取、HPLC进样和离子化的多样性造成的差异。在复杂基质的分析中,在SRM积分图上,在标准曲线的低端,常会见到:两个不同的浓度水平,会给出近乎一致的响应。只有当使用一种内标时,这两个点才能被区分。一些研究者试图在实验中不用内标去做标准曲线,但成功率不高。我们在标准曲线上每个浓度水平都重复进样3次。没有内标的情况下,重现性%RSD常常会高于20%;而当使用内标时,%RSD能降 低到近2%。 我要如何选择一个内标? 最好的内标是待定量的化合物的同位素内标。同位素标记的内标将和待测物有相似的回收率、ESI离子化响应,和相似的色谱保留时间。如果你运行的不是临床药代动力学定量,可能很难判断上述说法,因为特殊的合成一个同位素标记的内标,是非常昂贵和耗时的。 通常,如果你和一个医学的化学家工作,他们会有一个化合物相似物库,可以被用作内标。这些类似物,在化合物合成中被测试,和该化合物性质相似可以被用户定量内标,而且更重要的是,这些类似物和该化

合物的母离子质量有微小的差异。 尽量不要使用去甲基化(-14)或者是氧化的(+16)的类似物作内标,因为待测化合物的母离子常会发生同样的代谢。 常见的做内标的类似物是氯代的化合物。氯代的化合物类似物会和待测化合物有相似的色谱保留时间,这是内标的一个重要特性。我们已经发现内标物的一个最重要的特性是它和待测化合物共流出。 我该如何使用内标? 首先,内标添加需在样品测试方法的开始阶段,典型的,应在血浆crash 或固相萃取之前。内标应用同一浓度水平添加(包括标样)。内标应给出可靠的质谱响应。应该注意的是:内标的量应添加得合适,应高于定量限,但不能过高,因为过高的内标响应会抑制被分析物的离子化。“我应该添加多少量的内标?”这是一个重要的问题。通过做一些试分析:早、中、晚的时间点,也许一个或两个标准点,你应该知道你的样品中化合物的大概量。这些信息非常有价值,可以帮助建立一个合适的标准曲线,并知道应添加多少量的内标。举例来说:如果待定量的样品浓度范围是100 fg ~25 pg,检测限是100 fg,你应该添加5~10 pg的内标。一个好的经验法则是:内标物的量大概是标准工作曲线浓度最高点的1/3。这将给出一个比较不错的响应,并且不会抑制和干扰待测样品 的离子化。见图1

质谱技术在抗体药物分析中的应用

质谱技术在抗体药物分析中的应用 摘要:质谱技术是抗体药物分析最重要的技术手段之一。本文简述了抗体药物 的发展和质谱技术的原理。对于质谱技术在抗体药物的分析中应用进行了归类整理,主要分为在一级结构和高级结构分析中的应用。一级结构的分析包括:精确 分子量的测定、抗体药物偶联比、肽指纹图谱等,高级结构的分析包括:氢/氘交换质谱、二硫键的分析等。质谱法相对于其他分析方法可以提供更为准确的数据,并可以得到多水平的分析结果。 关键词:抗体药物质谱一级结构高级结构 单克隆抗体药物的发展起源于1975年,Kohler 和Milstein 创立杂交瘤技术, 为大量制备鼠源单克隆抗体提供了技术条件,开创了大规模制备单克隆抗体时代。抗体类药物是指含有抗体片段的蛋白类药物,可以和靶抗原特异性结合,并且更 加安全有效,所以在恶性肿瘤、自身免疫性疾病、心血管疾病、感染和器官移植 排斥等重大疾病上得到了快速的发展,是当前生物药物领域增长最快的一类药物。 [1] 1.抗体药物发展新趋势 在生物药物领域,抗体药物占据着越来越重要的地位,2015年全球销售排名 前10 位的药物中有6 个为抗体药物,分别是humira、enbrel、remicade、rituxan、avastin和Herceptin。抗体药物按来源分类可以分为:鼠源单克隆抗体、人鼠嵌合抗体、人源化抗体和全人源抗体。鼠源单克隆抗体是第一代的抗体药物,经过不 断改造过渡到全人源单抗。目前,FDA 批准的单克隆抗体药物中,人源化单抗和 全人源单抗数量已占据72%[2] 1.1抗体药物偶联物(ADC) 抗体药物偶联物(ADC)由单克隆抗体和小分子化合物两部分组成,小分子 化合物通常是毒性很强的抗肿瘤小分子药物。通过抗体的靶向作用,ADC 的抗体 部分和肿瘤细胞表面抗原特异性识别并结合,通过细胞内吞作用,将抗体和小分 子化合物一起带进肿瘤细胞内部,并在细胞内部发生水解反应,释放出小分子化 合物,从而杀死肿瘤细胞。[3]这样既可以降低小分子药物的毒性,同时具有靶向 结合的作用。已经上市的两个ADC是Kadyla和Adcetris。 1.2双特异性抗体(BsAb) 双特异性抗体(BsAb)是含有两种特异性抗原结合位点的人工抗体,能在靶 细胞和功能分子(细胞)之间架起桥梁,激发具有导向性的免疫反应,现已成为 抗体工程领域的热点。由于基因工程的发展,目前双特异性抗体已经研发出多种 类型[4],主要类型有三功能双特异性抗体、IgG-scFv、三价双特异性分子、串联 单链抗体(串联scFv) 、DVD-Ig 等多种形式。2014年第一个双特异性抗体Blinatumomab获FDA批准,靶向位点是CD19和CD3。 2.质谱技术 近年来质谱仪性能的显著改进主要基于开发出的两种离子化技术:一种是介 质辅助的激光解吸/离子化(matrix-assisted laser desorption/ionization.MALDI) [5]技术。另一种是电喷雾离子化(Electrospray ionization,ESI)[6]技术。由于这两种 电离技术的出现,使原本只能检测小分支的质谱技术,可以运用于检测生物大分子。 MALDI和ESI两种离子化方法都是软性离子化法,能够使生物大分子在离子 化过程中的保持完整性,分析灵敏度都极高,对低浓度的生物大分子样本也有很

DART实时直接分析质谱离子源介绍

DART实时直接分析质谱离子源介绍 字体: 小中大|打印|L发布: 2010-8-09 17:45 作者: webmaster 来源: 华质泰科查看: 26088次 实时直接分析(Direct Analysis in Real Time)简称DART,是一种热解析和离子化技术。 DART操作简单,样品置放于DART源出口和一台LC-MS质谱仪的离子采样口,便可进行分析。 适用于分析液、固、气态的各类型样品 由美国J. Laramee和R. Cody(美JEOL公司)于2005年发明,现由IonSense公司商品化生产、制造和销售。获得2005年Pittcon大奖。 DART已广泛应用于药物发现与开发(ADME)、食品药品安全控制与检测、司法鉴定、临床检验、材料分析、天然产品品质鉴定、及相关化学和生物化学等领域。

相比于现行通用的液质联用(LC-MS)技术,DART-MS分析将不再需要繁杂的样品制备和耗时的色谱分离。作为一种“绿色”分析检测技术,DART-MS将不需要化学溶剂的消耗,急剧缩短样品分析周期,和极大地减少对固定资产及人员的投资。 该技术在美欧等国的研究与应用已成燎原之势,并在著名大学(如Purdue,Rice,George Washington,U Maryland)、研究院(如Los Almos NL,NRCC Canada,US Army)、跨国制药公司(如Roche,Merck,Amgen,GSK,Pfizer,Eli Lilly)、国家执法部门(如FBI,FDA,EPA)等相继采用。 DART主要功能 DART能在几秒钟内分析存在于气体、液体、固体或材料表面的化合物,从而对样品无损耗

相关主题
文本预览
相关文档 最新文档